# THE Observer's Handbook for 1925

PUBLISHED BY

# The Royal Astronomical Society of Canada

EDITED BY C. A. CHANT



SEVENTEENTH YEAR OF PUBLICATION

TORONTO 198 College Street Printed for the Society 1925 

# CALENDAR

## 

| JANUARY                                              | FEBRUARY                                             | MARCH                                                | APRIL                                                |  |  |
|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--|--|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |  |  |
| MAY                                                  | JUNE                                                 | JULY                                                 | AUGUST                                               |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |  |  |
| SEPTEMBER                                            | OCTOBER                                              | NOVEMBER                                             | DECEMBER                                             |  |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |  |  |

# THE Observer's Handbook for 1925

PUBLISHED BY

# The Royal Astronomical Society of Canada

EDITED BY C. A. CHANT



SEVENTEENTH YEAR OF PUBLICATION

TORONTO 198 College Street Printed for the Society 1925

## CONTENTS

-----

| Preface         | -          | -         | -        | -         | -      | -      | -  | 3  |
|-----------------|------------|-----------|----------|-----------|--------|--------|----|----|
| Anniversaries   | s and Fe   | stivals   | -        | -         | -      | -      |    | 3  |
| Symbols and     | Abbrev     | iations   | -        | -         | -      | -      | -  | 4  |
| Solar and Sid   | lereal Ti  | me        | _        | -         | -      | -      | -  | 5  |
| Ephemeris of    | the Sun    | L -       | -        | -         | -      | -      | -  | 6  |
| Occultations    | of Fixed   | Stars b   | y the N  | Ioon      | -      | -      | -  | 8  |
| Times of Sun    | rise and   | Sunset    | -        | -         | -      | -      | -  | 8  |
| Planets for th  | ie Year    | -         | -        | -         | -      | -      | -  | 22 |
| Eclipses in 19  | 925        | -         |          | <u> </u>  | -      | -      | -  | 26 |
| The Sky and     | Astrono    | mical P   | henome   | na for e  | ach Mo | nth    | -  | 28 |
| Eclipses, etc., | , of Jupi  | ter's Sat | tellites | -         | -      | -      | -  | 52 |
| Meteors and     | Shooting   | g Stars   | -        | -         | -      | -      | -  | 54 |
| Elements of t   | he Solar   | System    | ı        | -         | -      | -      | -  | 55 |
| Satellites of t | he Solar   | System    |          | -         | -      | -      | -  | 56 |
| Double Stars    | , with a   | short lis | st       | -         | -      | -      | -  | 57 |
| Variable Star   | s, with a  | a short l | ist      | -         | -      | -      | -  | 59 |
| Distances of    | the Star   | s         | _        | -         | -      | -      | -  | 61 |
| The Brightest   | t Stars, t | heir ma   | gnitude  | s, types, | proper | motion | 5, |    |
| distances a     | nd radia   | l velocit | ies      | -         | -      | -      | -  | 63 |
| Geographical    | Position   | ns of Son | me Poir  | ts in C   | anada  | -      | -  | 71 |
| Index           | -          | -         | -        | -         |        | -      | -  | 72 |

#### PREFACE

The HANDBOOK for 1925 is somewhat larger than those issued in the last few years, a table containing the most important information regarding some 260 of the brighter stars being added. This was prepared by Mr. W. E. Harper, of the Dominion Astrophysical Observatory, Victoria, B.C. There is also an account of the total eclipse of the sun of January 24, 1925, by Mr. R. M. Motherwell of the Dominion Observatory, Ottawa.

Descriptions of the constellations and also star maps are not included, since fuller information is available in a better form and at a reasonable price in many publications, such as: Young's Uranography (72 c.), Norton's Star Atlas and Telescopic Handbook (10s. 6d.), Olcott's A Field-book of the Stars (\$1.50), or McKready's A Beginner's Star Book (\$5.00).

In the preparation of this HANDBOOK the Editor has been assisted by the two gentlemen named above, by Mr. J. P. Henderson, M.A., of the Dominion Observatory; Mr. J. H. Horning, M.A., of Toronto; and his colleague Dr. R. K. Young, of the University of Toronto.

THE EDITOR.

TORONTO, December, 1924.

#### **ANNIVERSARIES AND FESTIVALS, 1925**

| New Year's Day Thur., Jan. 1 | Pentecost (Whit Sunday) May 31 |
|------------------------------|--------------------------------|
| Epiphany Tues., Jan. 6       | Trinity SundayJune 7           |
| Septuagesima SundayFeb. 8    | Corpus Christi Thur., June 11  |
| Quinquagesima SundayFeb. 22  | St. John Baptist               |
| Ash Wednesday                | Dominion Day                   |
| St. David Sun., Mar. 1       | Labor Day Mon., Sept. 7        |
| St. Patrick Tues., Mar. 17   | St. Michael (Michael-          |
| Palm Sunday                  | mas Day)Tues., Sept. 29        |
| Good FridayApr. 10           | All Saints DaySun., Nov. 1     |
| Easter SundayApr. 12         | First Sunday in Advent Nov. 29 |
| St. George                   | Saint Andrew                   |
| Rogation SundayMay 17        | Conception Day Tues., Dec. 8   |
| Ascension Day Thur., May 21  | St. Thomas Mon., Dec. 21       |
| Victoria Day Sun., May 24    | Christmas DayFri., Dec. 25     |

King George V., born June 3, 1865; began to reign May 6, 1910. Queen Mary, born May 26, 1867. Prince of Wales, born June 23, 1894.

### SYMBOLS AND ADBREVIATIONS

### SIGNS OF THE ZODIAC

| Υ | Aries $\dots 0^{\circ}$     | Ω Leo                       | オ Sagittarius240   |
|---|-----------------------------|-----------------------------|--------------------|
| 8 | Taurus $\ldots .30^{\circ}$ | $\mathbb{M}^{p}$ Virgo 150° | ♂ Capricornus 270° |
| Д | Gemini60°                   | $\simeq$ Libra180°          | Aquarius 300°      |
| ଡ | Cancer90°                   | M Scorpio 210°              | ) (Pisces 330°     |

### SUN, MOON AND PLANETS

| $\odot$ | The Sun.      | Ø  | The Moon generally. | ୍ୟ | Jupiter.    |
|---------|---------------|----|---------------------|----|-------------|
| ۲       | New Moon.     | ម្ | Mercury.            | Þ  | Saturn.     |
| ٢       | Full Moon.    | ę  | Venus.              | ô  | or 몇 Uranus |
| D       | First Quarter | Φ  | Earth.              | Ψ  | Neptune.    |
| Ø       | Last Quarter. | ീ  | Mars.               |    | -           |

### ASPECTS AND ABBREVIATIONS

o' Conjunction, or having the same Longitude or Right Ascension O' Opposition, or differing 180° in Longitude or Right Ascension
 Quadrature, or differing 90° in Longitude or Right Ascension.
 Ω Ascending Node; U' Descending Node.
 a or A. R., Right Ascension; δ Declination.

h, m, s, Hours, Minutes, Seconds of Time. "", Degrees, Minutes, Seconds of Arc.

### THE GREEK ALPHABET

| Α, α,             | Alpha.   | Ι, ι, | Iota.    | Ρ,ρ,         | Rho.     |
|-------------------|----------|-------|----------|--------------|----------|
| Β, β,             | Beta.    | Κ, κ, | Kappa.   | Σ, σ,ς,      | Sigma.   |
| Γ, γ,             | Gamma.   | Λ, λ, | Lambda.  | Τ, τ,        | Tau.     |
| $\Delta, \delta,$ | Delta.   | Μ, μ, | Mu.      | $\Upsilon v$ | Upsilon. |
| Ε, ε,             | Epsilon. | Ν, ν, | Nu.      | Φ, φ,        | Pĥi.     |
| Ζ,ζ,              | Zeta.    | Ξ.ξ.  | Xi.      | Χ, χ,        | Chi.     |
| Η, η,             | Eta.     | 0,0,  | Omicron. | Ψ,ψ,         | Psi.     |
| θ,θ,θ,            | Theta.   | Π,π,  | Pi.      | Ω, ω,        | Omega    |

In the Configurations of Jupiter's Satellites (pages 29, 31, etc.), O represents the disc of the planet, d signifies that the satellite is on the disc, \* signifies that the satellite is behind the disc or in the shadow. Configurations are for an inverting telescope.

### SOLAR AND SIDEREAL TIME

In practical astronomy three different kinds of time are used, while in ordinary life we use a fourth.

I. Apparent Time—By apparent noon is meant the moment when the sun is on the meridian, and apparent time is measured by the distance in degrees that the sun is east or west of the meridian. Apparent time is given by the sun-dial.

2. Mean Time—The interval between apparent noon on two successive days is not constant, and a clock cannot be constructed to keep apparent time. For this reason mean time is used. The length of a mean day is the average of all the apparent days throughout the year. The real sun moves about the ecliptic in one year; an imaginary mean sun is considered as moving uniformly around the celestial equator in one year. The difference between the times that the real sun and the mean sun cross the meridian (*i. e.* between apparent noon and mean noon) is the equation of time. (See next page).

3. Sidereal Time—This is time as determined from the stars. It is sidereal noon when the Vernal Equinox or First of Aries is on the meridian. In accurate time-keeping the moment when a star is on the meridian is observed and the corresponding mean time is then computed with the assistance of the Nautical Almanac. When a telescope is mounted equatorially the position of a body in the sky is located by means of the sidereal time.

4. Standard Time—In everyday life we use still another kind of time. A moment's thought will show that in general two places will not have the same mean time; indeed, difference in longitude between two places is determined from their difference in time. But in travelling it is very inconvenient to have the time varying from station. For the purpose of facilitating transportation the system of *Standard Time* was introduced in 1883. Within a certain belt approximately 15° wide, all the clocks show the same time, and in passing from one belt to the next the hands of the clock are moved forward or backward one hour.

In Canada we have six standard time belts, as follows; —60th meridian or Atlantic Time, 4h. slower than Greenwich; 75th meridian or Eastern Time, 5h.; 90th meridian or Central Time, 6h.; 105th meridian or Mountain Time, 7h.; 120th meridian or Pacific Time, 8h.; and 135th meridian or Yukon Time, 9h. slower than Greenwich.

| 1925 | EPHEMERIS | OF | SUN | AT | 0h | GREENWICH | CIVIL | TIME |
|------|-----------|----|-----|----|----|-----------|-------|------|
|      |           |    |     |    |    |           |       |      |

| Date                                                                | R.A.                                                                                                                                                                                                                                                                  | Equation<br>of Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Declination                                                                                                                                                                     | Date                                                                                | R.A.                                                                                                                                                                              | Equation<br>of Time                                                                                                                                                                      | Declination                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jan.<br>" 1<br>" 1<br>" 1<br>" 1<br>" 1<br>" 2<br>" 2<br>" 2<br>" 3 | $ \begin{array}{c} h \ m \ s \\ 1 \ 18 \ 43 \ 51 \\ 4 \ 18 \ 57 \ 5 \\ 7 \ 19 \ 10 \ 16 \\ 0 \ 19 \ 23 \ 21 \\ 3 \ 19 \ 36 \ 22 \\ 6 \ 19 \ 49 \ 18 \\ 9 \ 20 \ 2 \ 7 \\ 2 \ 20 \ 14 \ 50 \\ 5 \ 20 \ 27 \ 27 \\ 8 \ 20 \ 32 \ 7 \\ 8 \ 20 \ 32 \ 18 \\ \end{array} $ | $\begin{array}{c} {}^{m} {}^{8} {}^{+} {}^{3} {}^{2} {}^{0} {}^{9} {}^{+} {}^{4} {}^{4} {}^{5} {}^{2} {}^{2} {}^{0} {}^{+} {}^{4} {}^{4} {}^{5} {}^{2} {}^{2} {}^{0} {}^{+} {}^{6} {}^{5} {}^{8} {}^{+} {}^{7} {}^{2} {}^{2} {}^{0} {}^{0} {}^{+} {}^{6} {}^{3} {}^{3} {}^{0} {}^{0} {}^{+} {}^{1} {}^{3} {}^{3} {}^{3} {}^{0} {}^{0} {}^{+} {}^{1} {}^{1} {}^{3} {}^{2} {}^{3} {}^{3} {}^{-} {}^{1} {}^{1} {}^{2} {}^{1} {}^{8} {}^{9} {}^{0} {}^{-} {}^{1} {}^{1} {}^{1} {}^{2} {}^{3} {}^{1} {}^{1} {}^{2} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{2} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{1} {}^{1} {}^{3} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}^{1} {}$ |                                                                                                                                                                                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                               | $\begin{array}{c} h \ m \ s \\ 0 \ 46 \ 50 \\ 0 \ 57 \ 46 \\ 1 \ 9 \ 44 \\ 1 \ 19 \ 44 \\ 1 \ 30 \ 47 \\ 1 \ 41 \ 53 \ 3 \\ 2 \ 4 \ 17 \\ 2 \ 15 \ 35 \\ 2 \ 26 \ 57 \end{array}$ | $\begin{array}{r} m & s \\ + & 3 & 36.4 \\ + & 2 & 43.2 \\ + & 1 & 51.6 \\ + & 1 & 2.1 \\ + & 0 & 15.4 \\ - & 0 & 28.0 \\ - & 1 & 43.8 \\ - & 2 & 15.6 \\ - & 2 & 43.0 \end{array}$      | $ \begin{array}{c} \circ & \prime & \prime & \prime \\ + & 5 & 1 & 47 \\ + & 6 & 10 & 29 \\ & 7 & 18 & 49 \\ & 9 & 30 & 40 \\ & 10 & 34 & 0 \\ & 10 & 34 & 0 \\ & 11 & 36 & 23 \\ & 12 & 37 & 3 \\ & 12 & 37 & 3 \\ & 13 & 35 & 51 \\ & 14 & 32 & 39 \\ \end{array} $ |
| Feb.<br>" 1 " 1 " 1 " 1 " 2 " 2 " 2 " 2                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                  | $\begin{array}{c} +13 \ 55. \ 0 \\ +14 \ 12. \ 0 \\ +14 \ 21. \ 7 \\ +14 \ 24. \ 2 \\ +14 \ 19. \ 9 \\ +14 \ 9. \ 2 \\ +13 \ 52. \ 4 \\ +13 \ 29. \ 8 \\ +13 \ 1. \ 7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{ccccccc} -16 & 43 & 45 \\ -15 & 50 & 6 \\ -14 & 54 & 1 \\ 13 & 55 & 41 \\ 12 & 55 & 17 \\ 11 & 52 & 59 \\ 10 & 49 & 0 \\ 9 & 43 & 29 \\ 8 & 36 & 39 \end{array}$ | May 3<br>" 6<br>" 9<br>" 12<br>" 15<br>" 15<br>" 18<br>" 21<br>" 24<br>" 27<br>" 30 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                  |
| Mar.<br>" 1<br>" 1<br>" 1<br>" 1<br>" 2<br>" 2<br>" 2<br>" 3        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                  | $\begin{array}{c} +12 \ 40. \ 1 \\ +12 \ 3. \ 6 \\ +11 \ 22. \ 8 \\ +10 \ 38. \ 3 \\ +9 \ 50. \ 5 \\ +9 \ 0. \ 3 \\ +8 \ 8. \ 1 \\ +7 \ 14. \ 6 \\ +6 \ 20. \ 2 \\ +5 \ 25. \ 4 \\ +4 \ 30. \ 6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                            | June 2<br>" 5<br>" 8<br>" 11<br>" 14<br>" 17<br>" 20<br>" 23<br>" 26<br>" 29        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | $\begin{array}{c} - & 2 & 20.6 \\ - & 1 & 51.8 \\ - & 1 & 20.1 \\ - & 0 & 45.7 \\ - & 0 & 9.1 \\ + & 0 & 29.0 \\ + & 1 & 8.1 \\ + & 1 & 47.4 \\ + & 2 & 26.1 \\ + & 3 & 3.6 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                  |

| Date                                                                                  | R.A.                                                                                                                                                                           | Equation<br>of Time                                                                                                                                                                                                                                | Declination                                                                                                                                                                                                                   | Date                                                                                 | R.A.                                                                                                                                                                                                 | Equation<br>of Time                                                                                                                                                                   | Declination                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| July 2<br>" 5<br>" 11<br>" 14<br>" 17<br>" 20<br>" 23<br>" 26<br>" 29                 | h m s<br>6 41 43<br>6 54 5<br>7 6 25<br>7 18 42<br>7 30 55<br>7 43 3<br>7 55 8<br>8 7 7<br>8 19 1<br>8 30 50                                                                   | $\begin{array}{c} m & s \\ + & 3 & 39.2 \\ + & 4 & 12.4 \\ + & 5 & 9.4 \\ + & 5 & 32.6 \\ + & 5 & 51.6 \\ + & 6 & 6.2 \\ + & 6 & 15.8 \\ + & 6 & 20.2 \\ + & 6 & 19.2 \end{array}$                                                                 | $\begin{array}{c} \circ & \prime & \prime \\ +23 & 6 & 5 \\ +22 & 51 & 55 \\ +22 & 34 & 10 \\ +22 & 12 & 55 \\ +21 & 48 & 13 \\ +21 & 20 & 9 \\ +20 & 48 & 50 \\ +20 & 14 & 21 \\ +19 & 36 & 49 \\ +18 & 56 & 22 \end{array}$ | Oct. 3<br>"6<br>"9<br>"12<br>"15<br>"15<br>"21<br>"21<br>"24<br>"27<br>"30           | $\begin{array}{c} h \ m \ s \\ 12 \ 34 \ 1 \\ 12 \ 44 \ 55 \\ 12 \ 55 \ 53 \\ 13 \ 6 \ 55 \\ 13 \ 18 \ 1 \\ 13 \ 29 \ 13 \\ 13 \ 40 \ 30 \\ 13 \ 51 \ 52 \\ 14 \ 3 \ 21 \\ 14 \ 14 \ 56 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                  | $ \begin{array}{c} \circ & \prime & \prime \\ - & 3 & 40 & 12 \\ - & 4 & 49 & 42 \\ - & 5 & 58 & 41 \\ - & 7 & 6 & 59 \\ - & 8 & 14 & 26 \\ - & 9 & 20 & 50 \\ -10 & 26 & 3 \\ -11 & 29 & 51 \\ -12 & 32 & 5 \\ -13 & 32 & 33 \end{array} $ |
| Aug. 1<br>"4<br>"7<br>"10<br>"13<br>"16<br>"19<br>"22<br>"25<br>"28<br>"31            | $\begin{array}{c} 8 & 42 & 33 \\ 8 & 54 & 10 \\ 9 & 5 & 42 \\ 9 & 17 & 9 \\ 9 & 28 & 31 \\ 9 & 39 & 47 \\ 9 & 51 & 0 \\ 10 & 2 & 8 \\ 10 & 13 & 11 \\ 10 & 25 & 7 \end{array}$ | $\begin{array}{r} + \ 6 \ 12.\ 5 \\ + \ 6 \ 0.\ 3 \\ + \ 5 \ 42.\ 7 \\ + \ 5 \ 19.\ 8 \\ + \ 4 \ 51.\ 9 \\ + \ 4 \ 51.\ 9 \\ + \ 4 \ 51.\ 9 \\ + \ 2 \ 59.\ 8 \\ + \ 2 \ 13.\ 8 \\ + \ 1 \ 23.\ 8 \\ + \ 1 \ 23.\ 8 \\ + \ 0 \ 30.\ 3 \end{array}$ | $\begin{array}{c} +18 \ 13 \ 7 \\ +17 \ 27 \ 10 \\ +16 \ 38 \ 47 \\ +15 \ 47 \ 47 \\ +14 \ 54 \ 36 \\ +13 \ 59 \ 15 \\ +12 \ 2 \ 41 \\ +11 \ 1 \ 59 \ 15 \\ + 9 \ 59 \ 15 \\ + 8 \ 55 \ 20 \end{array}$                       | Nov. 2<br>" 5<br>" 8<br>" 11<br>" 14<br>" 17<br>" 20<br>" 23<br>" 26<br>" 29         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                 | $\begin{array}{c} -16 & 21.7 \\ -16 & 22.2 \\ -16 & 15.1 \\ -16 & 0.4 \\ -15 & 37.8 \\ -15 & 7.5 \\ -14 & 29.8 \\ -13 & 44.8 \\ -12 & 52.9 \\ -11 & 54.4 \end{array}$                 | $\begin{array}{c} -14 \ 31 \ 5\\ -15 \ 27 \ 31\\ -16 \ 21 \ 39\\ -17 \ 13 \ 20\\ -18 \ 2 \ 23\\ -18 \ 48 \ 32\\ -19 \ 31 \ 48\\ -20 \ 11 \ 49\\ -20 \ 48 \ 29\\ -21 \ 21 \ 38\end{array}$                                                   |
| Sept. 3<br>" 6<br>" 9<br>" 12<br>" 15<br>" 15<br>" 18<br>" 21<br>" 24<br>" 27<br>" 30 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                           | $\begin{array}{r} - & 0 & 26.3 \\ - & 1 & 25.4 \\ - & 2 & 26.3 \\ - & 3 & 28.6 \\ - & 4 & 31.7 \\ - & 5 & 35.2 \\ - & 6 & 38.7 \\ - & 7 & 41.6 \\ - & 8 & 43.5 \\ - & 9 & 43.9 \end{array}$                                                        | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                          | Dec. 2<br>" 5<br>" 8<br>" 11<br>" 14<br>" 17<br>" 20<br>" 23<br>" 26<br>" 29<br>" 31 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                 | $\begin{array}{r} -10 \ 49.\ 6\\ -9 \ 39.\ 1\\ -8 \ 23.\ 3\\ -7 \ 2.\ 9\\ -5 \ 38.\ 8\\ -4 \ 11.\ 8\\ -2 \ 42.\ 8\\ -1 \ 13.\ 1\\ +0 \ 16.\ 5\\ +1 \ 45.\ 2\\ +2 \ 43.\ 4\end{array}$ | $\begin{array}{ccccccc} -21 & 51 & 9\\ -22 & 16 & 54\\ -22 & 38 & 46\\ -22 & 56 & 39\\ -23 & 10 & 27\\ -23 & 20 & 6\\ -23 & 25 & 34\\ -23 & 26 & 47\\ -23 & 23 & 45\\ -23 & 16 & 30\\ -23 & 9 & 19\end{array}$                              |

1925, EPHEMERIS OF SUN AT 0h GREENWICH CIVIL TIME

To obtain the Sidereal Time or R.A. of Mean Sun, subtract the Equation of Time from the Right Ascension. In the Equation of Time the Sign + means the watch is faster than the Sun, -that it is slower. To obtain the Local Mean Time, in the former case add the Equation of Time to, and in the latter case subtract it from, apparent or sun-dial time.

| Date      | Star                | Mag | Immersion* | Emersion*   | Positio | n Angle     |
|-----------|---------------------|-----|------------|-------------|---------|-------------|
|           |                     |     |            | Emersion    | Immer.  | Emer.       |
| 1925      |                     |     | hm         | h m         | 0       | 0           |
| Jan. 3    | $\xi^2$ Ceti        | 4.3 | 18 47.1    | $19 \ 46.8$ | 105     | 205         |
| Feb. 2    | $\theta'$ Tauri     | 4.2 |            | 13 42.7     |         | 222         |
| Feb. 2    | a Tauri             | 1.1 | 16 55.9    | 18 01.4     | 107     | 215         |
| Feb. 19   | ξ Sagittarii        | 3.7 | 8 00.6     | 9 03 1      | 124     | 236         |
| Feb. 27   | $\xi^2$ Ceti        | 4.3 |            | 10 39 1     | 1.41    | 288         |
| Feb. 27   | μ Ceti              | 4.4 | 20 23.5    | 21 21 3     | 57      | 270         |
| Mar. 15   | $\gamma$ Librae     | 4.0 | 3 49.8     | 4 54 3      | 77      | 326         |
| Apr. 14   | µ Sagittarii        | 4.0 | 1 59.2     | 3 10 7      | 88      | 289         |
| Apr. 17   | i Capricorni        | 4.3 | 6 34.8     | 7 52 3      | 64      | 260         |
| May 1     | Neptune             | 7.7 | 16 04.4    | 16 41.7     | 165     | 222         |
| July 6    | o Sagittarii        | 3.9 | 0 13.6     | 1 25.1      | 100     | 256         |
| July 10   | 🖞 Aquarii           | 4.5 | 3 41.5     | 4 31.7      | 13      | 292         |
| July 10   | $\psi^2$ Aquarii    | 4.6 | 4 28.6     | 5 35.6      | 88      | 218         |
| July 14   | 🖊 Ceti              | 4.4 | 7 42.7     | 8 50.2      | 30      | $\bar{282}$ |
| Aug. 4    | γ Capricorni        | 3.8 | 20 42.2    | $21 \ 36.7$ | 112     | 225         |
| Aug. 5    | δ Capricorni        | 3.0 | 0 15.4     | $1 \ 24.3$  | -90     | $\bar{231}$ |
| Aug. 10   | ξ <sup>2</sup> Ceti | 4.3 | 6 28.9     | 7 36.2      | 85      | 215         |
| Aug. 29   | o Sagittarii        | 3.9 | 20 03.6    | 21 19.6     | 93      | 262         |
| Sept. 2-3 | $\psi$ Aquarii      | 4.5 | 23 40.6    | 00 40.6     | 27      | 293         |
| Sept. 11  | v Geminorum         | 4.1 | 9 38.3     | 10 27.5     | 144     | 222         |
| Sept. 22  | γ Librae            | 4.0 | 11 03.1    | 11 45.9     | 62      | 339         |
| Sept. 28  | $\gamma$ Capricorni | 3.8 |            | $16 \ 52.2$ |         | 242         |
| Sept. 28  | $\delta$ Capricorni | 3.0 | 19 25.6    | 20 40.1     | 66      | 258         |
| Oct. 4    | ξ² Ceti             | 4.3 | 0 19.9     | $0 \ 58.2$  | 121     | 182         |
| Oct. 9    | ζ Geminorum         | 3.7 | 10 04.7    | 11 09.8     | 90      | 286         |
| Oct. 11   | δ Cancri            | 4.2 | 9 45.8     | 10 58.0     | 91      | 306         |
| Nov. 27   | <b>ξ</b> ² Ceti     | 4.3 | 16 11.5    | 17 09.4     | 66      | <b>248</b>  |
| Nov. 28   | μ Ceti              | 4.4 | $2 \ 42.4$ | 3 12.9      | 133     | 190         |

### OCCULTATIONS OF STARS BY THE MOON, 1925 Computed for Ottawa by R. M. Motherwell

\*Eastern Standard Time, the hours numbering from midnight

### TIMES OF SUNRISE AND SUNSET

In the tables on pages 10 to 21 are given the times of sunrise and sunset for places in latitudes  $44^{\circ}$ ,  $46^{\circ}$ ,  $48^{\circ}$ ,  $50^{\circ}$  and  $52^{\circ}$ , which cover pretty well the populated parts of Canada. The times are given in Mean Solar Time, and in the table on page following this, are given corrections to change these times to the Standard or Railroad times of the cities and towns named, or for places near them.

### How the Tables are Constructed

The time of sunrise and sunset at a given place, in mean solar time, varies from day to day, and depends principally upon the declination of the sun. Variations in the equation of time, the apparent diameter of the sun and atmospheric refraction at the points of sunrise and sunset also affect the final result. These quantities, as well as the solar declination, do not have precisely the same values on corresponding days from year to year, and so it is impossible to give in any general table the exact time of sunrise and sunset day by day. With this explanation the following general table has been computed, giving the rising and setting of the upper limb of the sun, corrected for refraction, using the values of the solar declination and equation of time given in the Nautical Almanac for 1899; these are very close average values and may be accepted as approximately correct for years. It must also be remembered that these times are computed for the sea horizon, which is only approximately realised on land surfaces, and is generally widely departed from in hilly and mountainous localities. The greater or less elevation of the point of view above the ground must also be considered, to get exact results.

### The Times for Any Station

In order to find the time of sunrise and sunset for any place on any day, first from the list below find the approximate latitude of the place and the correction, in minutes, which follows the name. Then find in the monthly table the time of sunrise and sunset for the proper latitude, on the desired day, and apply the correction.

| 44 <sup>°</sup> |      | 46°          |      | 48°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 50°        |        | 52°.    |             |
|-----------------|------|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|--------|---------|-------------|
| m               | ins. | m            | ins. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mins.   | 1          | nins.  | m       | ins.        |
| Barrie          | + 17 | Charlotte-   |      | Port Arth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ur + 57 | Brandon    | +40    | Calgary | + 36        |
| Brantford       | +21  | town         | +13  | Victoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + 33    | Indian     |        | Edmon-  | -           |
| Chatham         | + 29 | Fredericton  | + 26 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Head       | - 5    | ton     | + 34        |
| Goderich        | + 27 | Montreal     | - 6  | 1. Sec. 1. Sec |         | Kamloops   | + 2    | Prince  | -           |
| Guelph          | +21  | Ottawa       | + 3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Kenora     | + 18   | Alber   | t+ 4        |
| Halif <b>ax</b> | + 14 | Parry Sound  | + 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Medicine   |        | Saska-  |             |
| Hamilton        | + 20 | Quebec       | - 15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Hat        | : + 22 | toor    | 1+ <b>6</b> |
| Kingston        | + 6  | Sherbrooke   | - 12 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Moosejaw   | + 2    |         |             |
| London          | + 25 | St. John,    |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | Moosomin   | +40    |         |             |
| Orillia         | + 18 | N.B.         | + 24 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | Nelson     | - 11   |         |             |
| Owen Sound      | + 24 | Sydney       | + 1  | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | Portage La | ι      |         |             |
| Peterboro       | +13  | Three Rivers | - 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Prairie    | + 33   |         |             |
| Port Hope       | + 14 |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Regina     | - 2    |         |             |
| Stratford       | + 24 |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Vancouver  | + 12   |         |             |
| Toronto         | + 18 |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Winnipeg   | + 28   |         |             |
| Windsor         | +32  |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |        |         |             |
| Woodstock       | +23  |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |        |         |             |
| Yarmouth        | + 24 |              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | l          |        |         |             |

*Example.*—Find the time of sunrise at Owen Sound, also at Regina, on February 11.

In the above list Owen Sound is under "44", and the correction is + 24 min. On page 11 the time of sunrise on February 11 for latitude 44° is 7.05; add 24 min. and we get 7.29 (Eastern Standard Time). Regina is under "50", and the correction is -2 min. From the table the time is 7.18, and subtracting 2 min. we get the time of sunrise 7.16 (Central Standard Time).

|                            | Latitu                                                        | de 44°                                        | Latitu                                                        | de <b>46°</b>                                 | Latitu                                                       | de <b>48</b> °                                | Latitu                                                        | de 50°                                       | Latitu                                   | de 52°                                    |
|----------------------------|---------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------|
| Day of<br>Month            | Sunrise                                                       | Sunset                                        | Sunrise                                                       | Sunset                                        | Sunrise                                                      | Sunset                                        | Sunrise                                                       | Sunset                                       | Sunrise                                  | Sunset                                    |
| 1<br>2<br>3<br>4<br>5      | h. m.<br>7 35<br>7 35<br>7 35<br>7 35<br>7 35<br>7 35<br>7 35 | h. m.<br>4 33<br>4 34<br>4 35<br>4 36<br>4 37 | h. m.<br>7 42<br>7 42<br>7 42<br>7 42<br>7 42<br>7 42<br>7 42 | h. m.<br>4 26<br>4 26<br>4 27<br>4 28<br>4 29 | h. m.<br>7 50<br>7 50<br>7 50<br>7 50<br>7 50<br>7 50        | h. m.<br>4 18<br>4 19<br>4 20<br>4 21<br>4 22 | h. m.<br>7 59<br>7 59<br>7 59<br>7 59<br>7 58<br>7 58<br>7 58 | h. m.<br>4 9<br>4 10<br>4 11<br>4 12<br>4 13 | h. m.<br>8 9<br>8 8<br>8 8<br>8 7<br>8 7 | h. m.<br>3 59<br>4 0<br>4 2<br>4 3<br>4 4 |
| 6<br>7<br>8<br>9<br>10     | 7 35<br>7 35<br>7 34<br>7 34<br>7 34<br>7 34                  | 4 38<br>4 39<br>4 40<br>4 41<br>4 42          | 7 42<br>7 42<br>7 41<br>7 41<br>7 41<br>7 41                  | 4 30<br>4 32<br>4 33<br>4 34<br>4 35          | 7 49<br>7 4 <del>9</del><br>7 49<br>7 49<br>7 49<br>7 48     | 4 23<br>4 24<br>4 25<br>4 26<br>4 27          | 7 58<br>7 58<br>7 57<br>7 57<br>7 57<br>7 56                  | 4 14<br>4 16<br>4 17<br>4 18<br>4 19         | 8 6<br>8 6<br>8 5<br>8 5<br>8 5<br>8 4   | 4 6<br>4 7<br>4 8<br>4 9<br>4 11          |
| 11<br>12<br>13<br>14<br>15 | 7 34<br>7 33<br>7 33<br>7 32<br>7 32<br>7 32                  | 4 43<br>4 44<br>4 45<br>4 46<br>4 48          | 7 40<br>7 40<br>7 39<br>7 39<br>7 39<br>7 38                  | 4 36<br>4 38<br>4 39<br>4 40<br>4 41          | 7 48<br>7 47<br>7 47<br>7 46<br>7 45                         | 4 29<br>4 30<br>4 31<br>4 33<br>4 34          | 7 56<br>7 55<br>7 55<br>7 54<br>7 53                          | 4 21<br>4 22<br>4 23<br>4 25<br>4 26         | 8 4<br>8 3<br>8 2<br>8 1<br>8 0          | 4 12<br>4 14<br>4 15<br>4 17<br>4 19      |
| 16<br>17<br>18<br>19<br>20 | 7 31<br>7 30<br>7 30<br>7 29<br>7 28                          | 4 49<br>4 50<br>4 52<br>4 53<br>4 54          | 7 38<br>7 37<br>7 36<br>7 35<br>7 34                          | 4 42<br>4 44<br>4 45<br>4 47<br>4 48          | 7 45<br>7 44<br>7 43<br>7 42<br>7 41                         | 4 36<br>4 37<br>4 38<br>4 40<br>4 41          | 7 52<br>7 52<br>7 51<br>7 50<br>7 49                          | 4 28<br>4 29<br>4 31<br>4 32<br>4 34         | 8 0<br>7 59<br>7 58<br>7 57<br>7 56      | 4 21<br>4 22<br>4 24<br>4 26<br>4 27      |
| 21<br>22<br>23<br>24<br>25 | 7 28<br>7 27<br>7 26<br>7 25<br>7 25<br>7 25                  | 4 55<br>4 57<br>4 58<br>4 59<br>5 1           | 7 34<br>7 33<br>7 32<br>7 31<br>7 30                          | 4 49<br>4 51<br>4 52<br>4 54<br>4 55          | 7 40<br>7 40<br>7 39<br>7 38<br>7 36                         | 4 43<br>4 44<br>4 46<br>4 47<br>4 49          | 7 48<br>7 46<br>7 45<br>7 44<br>7 43                          | 4 36<br>4 37<br>4 39<br>4 41<br>4 42         | 7 55<br>7 54<br>7 52<br>7 51<br>7 50     | 4 29<br>4 31<br>4 32<br>4 34<br>4 36      |
| 26<br>27<br>28<br>29<br>30 | 7 24<br>7 23<br>7 22<br>7 21<br>7 20                          | 5 2<br>5 3<br>5 5<br>5 6<br>5 8               | 7 29<br>7 28<br>7 27<br>7 26<br>7 25                          | 4 56<br>4 58<br>4 59<br>5 1<br>5 3            | 7 35<br>7 34<br>7 33<br>7 3 <sup>2</sup><br>7 3 <sup>0</sup> | 4 50<br>4 52<br>4 54<br>4 55<br>4 57          | 7 42<br>7 40<br>7 39<br>7 38<br>7 36                          | 4 44<br>4 46<br>4 47<br>4 49<br>4 51         | 7 49<br>7 47<br>7 46<br>7 45<br>7 43     | 4 38<br>4 39<br>4 41<br>4 43<br>4 44      |
| 31                         | 7 18                                                          | 59                                            | 7 23                                                          | 54                                            | 729                                                          | 4 58                                          | 7 35                                                          | 4 52                                         | 7 42                                     | 4 46                                      |

JANUARY

|                       | Latitud                                       | e 44°                                         | Latitud                                       | e <b>46</b> °                              | Latitud                                       | le <b>48</b> °                           | Latitud                                       | e <b>50°</b>                                 | Latitude                                                                       | e <b>52</b> <sup>0</sup>                      |
|-----------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------|
| Vay of<br>Month       | Sunrise                                       | Sunset                                        | Sunrise                                       | Sunset                                     | Sunrise                                       | Sunset                                   | Sunrise                                       | Sunset                                       | Sunrise                                                                        | Sunset                                        |
| 1<br>2<br>3<br>4<br>5 | h. m.<br>7 17<br>7 16<br>7 15<br>7 14<br>7 13 | h. m.<br>5 10<br>5 12<br>5 13<br>5 14<br>5 15 | h. m.<br>7 22<br>7 21<br>7 20<br>7 19<br>7 18 | h. m.<br>5 5<br>5 7<br>5 8<br>5 10<br>5 11 | h. m.<br>7 28<br>7 26<br>7 25<br>7 24<br>7 22 | h. m.<br>5 0<br>5 1<br>5 3<br>5 5<br>5 6 | h. m.<br>7 33<br>7 32<br>7 30<br>7 29<br>7 27 | h. m.<br>4 54<br>4 56<br>4 58<br>4 59<br>5 1 | h. m.<br>7 40<br>7 38<br>7 36<br>7 34<br>7 33                                  | h. m.<br>4 48<br>4 50<br>4 52<br>4 54<br>4 56 |
| 6                     | 7 12                                          | 5 17                                          | 7 17                                          | 5 12                                       | 7 21                                          | 5 8                                      | 7 26                                          | 5 3                                          | 7 31                                                                           | 4 57                                          |
| 7                     | 7 10                                          | 5 18                                          | 7 15                                          | 5 14                                       | 7 19                                          | 5 9                                      | 7 24                                          | 5 5                                          | 7 29                                                                           | 4 59                                          |
| 8                     | 7 9                                           | 5 20                                          | 7 13                                          | 5 15                                       | 7 18                                          | 5 11                                     | 7 23                                          | 5 6                                          | 7 27                                                                           | 5 1                                           |
| 9                     | 7 8                                           | 5 21                                          | 7 12                                          | 5 17                                       | 7 16                                          | 5 13                                     | 7 21                                          | 5 8                                          | 7 25                                                                           | 5 3                                           |
| 10                    | 7 6                                           | 5 23                                          | 7 11                                          | 5 18                                       | 7 15                                          | 5 14                                     | 7 19                                          | 5 10                                         | 7 23                                                                           | 5 5                                           |
| 11                    | 7 5                                           | 5 24                                          | 7 10                                          | 5 19                                       | 7 13                                          | 5 16                                     | 7 18                                          | 5 11                                         | 7 21                                                                           | 5 7                                           |
| 12                    | 7 3                                           | 5 25                                          | 7 8                                           | 5 21                                       | 7 12                                          | 5 17                                     | 7 16                                          | 5 13                                         | 7 19                                                                           | 5 9                                           |
| 13                    | 7 2                                           | 5 27                                          | 7 6                                           | 5 23                                       | 7 10                                          | 5 19                                     | 7 14                                          | 5 15                                         | 7 18                                                                           | 5 10                                          |
| 14                    | 7 1                                           | 5 28                                          | 7 4                                           | 5 24                                       | 7 8                                           | 5 21                                     | 7 12                                          | 5 17                                         | 7 16                                                                           | 5 12                                          |
| 15                    | 6 59                                          | 5 29                                          | 7 3                                           | 5 26                                       | 7 6                                           | 5 22                                     | 7 10                                          | 5 18                                         | 7 14                                                                           | 5 14                                          |
| 16                    | 6 58                                          | 5 31                                          | 7 I                                           | 5 27                                       | 7 5                                           | 5 24                                     | 7 9                                           | 5 20                                         | 7 12                                                                           | 5 16                                          |
| 17                    | 6 56                                          | 5 32                                          | 7 0                                           | 5 29                                       | 7 3                                           | 5 26                                     | 7 7                                           | 5 22                                         | 7 10                                                                           | 5 18                                          |
| 18                    | 6 55                                          | 5 34                                          | 6 58                                          | 5 30                                       | 7 1                                           | 5 27                                     | 7 5                                           | 5 23                                         | 7 9                                                                            | 5 19                                          |
| 19                    | 6 53                                          | 5 35                                          | 6 56                                          | 5 32                                       | 6 59                                          | 5 29                                     | 7 3                                           | 5 25                                         | 7 7                                                                            | 5 21                                          |
| 20                    | 6 52                                          | 5 36                                          | 6 54                                          | 5 33                                       | 6 58                                          | 5 30                                     | 7 I                                           | 5 27                                         | 7 5                                                                            | 5 23                                          |
| 21                    | 6 50                                          | 5 38                                          | 6 53                                          | 5 35                                       | 6 56                                          | 5 32                                     | 6 59                                          | 5 29                                         | $\begin{array}{cccc} 7 & 3 \\ 7 & 0 \\ 6 & 58 \\ 6 & 56 \\ 6 & 54 \end{array}$ | 5 25                                          |
| 22                    | 6 48                                          | 5 39                                          | 6 51                                          | 5 36                                       | 6 54                                          | 5 33                                     | 6 57                                          | 5 30                                         |                                                                                | 5 27                                          |
| 23                    | 6 47                                          | 5 40                                          | 6 49                                          | 5 38                                       | 6 52                                          | 5 35                                     | 6 55                                          | 5 32                                         |                                                                                | 5 29                                          |
| 24                    | 6 45                                          | 5 42                                          | 6 47                                          | 5 39                                       | 6 50                                          | 5 36                                     | 6 53                                          | 5 34                                         |                                                                                | 5 31                                          |
| 25                    | 6 44                                          | 5 43                                          | 6 46                                          | 5 41                                       | 6 49                                          | 5 38                                     | 6 51                                          | 5 35                                         |                                                                                | 5 33                                          |
| 26                    | 6 42                                          | 5 44                                          | 6 44                                          | 5 42                                       | 6 47                                          | 5 39                                     | 6 49                                          | 5 37                                         | 6 51                                                                           | 5 34                                          |
| 27                    | 6 40                                          | 5 45                                          | 6 42                                          | 5 43                                       | 6 45                                          | 5 41                                     | 6 48                                          | 5 38                                         | 6 49                                                                           | 5 36                                          |
| 28                    | 6 38                                          | 5 47                                          | 6 41                                          | 5 45                                       | 6 43                                          | 5 42                                     | 6 45                                          | 5 40                                         | 6 47                                                                           | 5 38                                          |

FEBRURAY

MARCH

| Densit          | Latitu      | ide 44°     | Latitu      | de <b>46°</b> | Latitu     | de <b>48°</b> | Latitu           | de 50°     | Latitu      | de <b>52°</b> |
|-----------------|-------------|-------------|-------------|---------------|------------|---------------|------------------|------------|-------------|---------------|
| Day of<br>Month | Sunrise     | Sunset      | Sunrise     | Sunset        | Sunt se    | Sunset        | Sunrise          | Sunset     | Sunrise     | Sunset        |
| I               | h m<br>6 37 | h m<br>5 48 | h m<br>6 39 | h m<br>546    | h m<br>64I | h m<br>544    | h m<br>6 43      | h m<br>542 | h m<br>6 43 | h m<br>54I    |
| 2               | 6 35        | 5 49        | 6 37        | 5 47          | 6 39       | 5 45          | 6 41             | 5 44       | 6 42        | 5 42          |
| 3               | 6 34        | 5 50        | 6 35        | 5 49          | 6 37       | 5 47          | 6 39             | 5 45       | 6 40        | 5 44          |
| 4               | 6 20        | 5 52        | 6 33        | 5 50          | 0 35       | 5 48          | 0 37             | 5 47       | 0 38        | 5 45          |
| 5               | 0 30        | 5 53        | 0 31        | 5 52          | 0 33       | 5 50          | 0 35             | 5 40       | 0 30        | 5 47          |
| 6               | 6 28        | 5 55        | 6 30        | 5 53          | 6 31       | 5 51          | 6 33             | 5 50       | 6 34        | 5 49          |
| 7               | 6 26        | 5 56        | 6 28        | 5 54          | 6 29       | 5 53          | 6 31             | 5 52       | 6 32        | 5 51          |
| 8               | 6 25        | 5 57        | 6 26        | 5 56          | 6 27       | 5 54          | 6 28             | 5 53       | 6 29        | 5 52          |
| 9               | 0 23        | 5 58        | 6 24        | 5 57          | 6 25       | 5 50          | 0 20             | 5 55       | 0 27        | 5 54          |
| . 10            | 0 21        | 0 0         | 0 22        | 5 59          | 0 23       | 5 57          | 0 24             | 5 50       | 0 25        | 5 50          |
| IΙ              | 6 19        | 6 I         | 6 20        | 60            | 6 21       | 5 59          | 6 22             | 5 58       | 6 23        | 5 57          |
| I 2             | 6 18        | 62          | 6 18        | 6 I           | 6 19       | 6 0           | 6 20             | 6 0        | 6 21        | 5 59          |
| 13              | 6 16        | 64          | 6 16        | 6 3           | 6 17       | 6 2           | 6 18             | 62         | 6 19        | 6 I           |
| 14              | 6 14        | 6 5         | 6 15        | 6 4           | 6 15       | 6 3           | 6 15             | 63         | 6 16        | 63            |
| 15              | 0 12        | 00          | 6 13        | 65            | 6 13       | 0 5           | 6 13             | 65         | 6 14        | 64            |
| 16              | 6 10        | 67          | 6 11        | 6 7           | 6 11       | 66            | 6 11             | 66         | 6 11        | 66            |
| 17              | 68          | 68          | 69          | 68            | 69         | 6 8           | 69               | 68         | 69          | 68            |
| 18              | 6 7         | 6 10        | 6 7         | 6 9           | 6 7        | 69            | 6 7              | 69         | 67          | 6 10          |
| 19              | 6 5         | 6 11        | 6 5         | 6 11          | 6 5        | 0 11          | 0 5              | 6 11       | 04          | 6 12          |
| 20              | 03          | 0 12        | 63          | 0 12          | 0 3        | 0 12          | 03               | 6 13       | 02          | 6 13          |
| 21              | 6 і         | 6 13        | 6 і         | 6 14          | 6 і        | 6 14          | 6 0              | 6 14       | 5 59        | 6 15          |
| 22              | 5 59        | 6 14        | 5 59        | 6 15          | 5 59       | 6 15          | 5 58             | 6 IĠ       | 5 57        | 6 17          |
| 23              | 5 58        | 6 16        | 5 57        | 6 16          | 5 56       | 6 17          | 5 56             | 6 17       | 5 55        | 6 19          |
| 24              | 5 56        | 6 17        | 5 55        | 6 17          | 5 54       | 6 18          | 5 54             | 6 19       | 5 52        | 6 20          |
| <b>2</b> 5      | 5 54        | 6 18        | 5 53        | 6 19          | 5 52       | 6 20          | 5 5 <sup>2</sup> | 620        | 5 5°        | 6 22          |
| 26              | 5 52        | 6 19        | 5 51        | 6 <b>2</b> 0  | 5 50       | 6 21          | 5 50             | 6 22       | 5 48        | 6 24          |
| 27              | 5 50        | 6 21        | 5 49        | 6 22          | 5 48       | 6 23          | 5 47             | 6 24       | 5 46        | 6 26          |
| 28              | 5 48        | 6 22        | 5 47        | 6 23          | 5 46       | 6 24          | 5 45             | 6 25       | 5 43        | 6 27          |
| 29              | 5 47        | 6.23        | 5 46        | 0 24          | 5 44       | 6 26          | 5 43             | 6 27       | 5 4 I       | 6 29          |
| 30              | 5 45        | 0 24        | 5 44        | 0 25          | 5 42       | 0 27          | 5 4 I            | <b>Б28</b> | 5 39        | 0 31          |
| 31              | 5 43        | 6 25        | 5 42        | 6 27          | 5 40       | 6 28          | 5 38             | 6 30       | 5 36        | 6 32          |

|                                      | (Latitu                                                                           | de 44°                                                                | Latituc                                                               | le <b>46°</b>                                                         | Latitu                                                                | ude <b>48°</b>                                                        | Latitu                                                                | de <b>50°</b>                                                         | Latitu                                                                | de 52°                                                                |
|--------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| Day : :<br>Mont`                     | Sunrise                                                                           | Sunset                                                                | Sunrise                                                               | Sunset                                                                | Sunrise                                                               | Sunset                                                                | Sunrise                                                               | Sunset                                                                | Sunrise                                                               | Sunset                                                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | h. m.<br>5 41<br>5 39<br>5 38<br>5 36<br>5 34<br>5 32<br>5 30<br>5 29             | h. m.<br>6 27<br>6 28<br>6 29<br>6 30<br>6 32<br>6 33<br>6 34<br>6 35 | h. m.<br>5 40<br>5 38<br>5 36<br>5 34<br>5 32<br>5 30<br>5 28<br>5 26 | h. m.<br>6 28<br>6 30<br>6 31<br>6 32<br>6 33<br>6 34<br>6 36<br>6 37 | h. m.<br>5 38<br>5 36<br>5 34<br>5 32<br>5 30<br>5 28<br>5 26<br>5 24 | h. m.<br>6 30<br>6 31<br>6 33<br>6 34<br>6 36<br>6 37<br>6 38<br>6 40 | h. m.<br>5 36<br>5 34<br>5 32<br>5 30<br>5 28<br>5 26<br>5 24<br>5 21 | h. m.<br>6 31<br>6 33<br>6 35<br>6 36<br>6 38<br>6 39<br>6 41<br>6 42 | h. m.<br>5 34<br>5 32<br>5 30<br>5 27<br>5 25<br>5 23<br>5 21<br>5 19 | h. m.<br>6 34<br>6 36<br>6 37<br>6 39<br>6 41<br>6 43<br>6 44<br>6 46 |
| 9                                    | 5 27                                                                              | 6 36                                                                  | 5 24                                                                  | 6 39                                                                  | 5 22                                                                  | 6 41                                                                  | 5 19                                                                  | 6 44                                                                  | 5 16                                                                  | 6 48                                                                  |
| 10                                   | 5 25                                                                              | 6 37                                                                  | 5 23                                                                  | 6 40                                                                  | 5 20                                                                  | 6 43                                                                  | 5 17                                                                  | 6 46                                                                  | 5 14                                                                  | 6 49                                                                  |
| 11                                   | 5 24                                                                              | 6 38                                                                  | 5 21                                                                  | 6 41                                                                  | 5 18                                                                  | 6 44                                                                  | 5 15                                                                  | 6 47                                                                  | 5 11                                                                  | 6 51                                                                  |
| 12                                   | 5 22                                                                              | 6 40                                                                  | 5 19                                                                  | 6 43                                                                  | 5 16                                                                  | 6 45                                                                  | 5 13                                                                  | 6 49                                                                  | 5 9                                                                   | 6 53                                                                  |
| 13                                   | 5 20                                                                              | 6 41                                                                  | 5 17                                                                  | 6 44                                                                  | 5 14                                                                  | 6 47                                                                  | 5 11                                                                  | 6 50                                                                  | 5 7                                                                   | 6 54                                                                  |
| 14                                   | 5 18                                                                              | 6 42                                                                  | 5 15                                                                  | 6 45                                                                  | 5 12                                                                  | 6 48                                                                  | 5 9                                                                   | 6 52                                                                  | 5 5                                                                   | 6 56                                                                  |
| 15                                   | 5 17                                                                              | 6 43                                                                  | 5 14                                                                  | 6 46                                                                  | 5 10                                                                  | 6 50                                                                  | 5 7                                                                   | 6 53                                                                  | 5 3                                                                   | 6 58                                                                  |
| 16                                   | 5 15                                                                              | 6 45                                                                  | 5 12                                                                  | 6 48                                                                  | 5 8                                                                   | 6 51                                                                  | 5 5                                                                   | 6 55                                                                  | 5 I                                                                   | 7 0                                                                   |
| 17                                   | 5 13                                                                              | 6 46                                                                  | 5 10                                                                  | 6 49                                                                  | 5 6                                                                   | 6 53                                                                  | 5 2                                                                   | 6 56                                                                  | 4 58                                                                  | 7 1                                                                   |
| 18                                   | 5 11                                                                              | 6 47                                                                  | 5 8                                                                   | 6 50                                                                  | 5 5                                                                   | 6 54                                                                  | 5 1                                                                   | 6 58                                                                  | 4 56                                                                  | 7 3                                                                   |
| 19                                   | 5 10                                                                              | 6 48                                                                  | 5 6                                                                   | 6 52                                                                  | 5 3                                                                   | 6 55                                                                  | 4 59                                                                  | 6 59                                                                  | 4 54                                                                  | 7 5                                                                   |
| 20                                   | 5 8                                                                               | 6 49                                                                  | 5 5                                                                   | 6 53                                                                  | 5 1                                                                   | 6 57                                                                  | 4 57                                                                  | 7 1                                                                   | 4 52                                                                  | 7 6                                                                   |
| 21                                   | 5       7         5       5         5       3         5       2         5       0 | 6 50                                                                  | 5 3                                                                   | 6 54                                                                  | 4 59                                                                  | 6 58                                                                  | 4 55                                                                  | 7 2                                                                   | 4 50                                                                  | 7 8                                                                   |
| 22                                   |                                                                                   | 6 52                                                                  | 5 I                                                                   | 6 56                                                                  | 4 57                                                                  | 7 0                                                                   | 4 53                                                                  | 7 4                                                                   | 4 48                                                                  | 7 10                                                                  |
| 23                                   |                                                                                   | 6 53                                                                  | 4 59                                                                  | 6 57                                                                  | 4 55                                                                  | 7 1                                                                   | 4 5 <sup>0</sup>                                                      | 7 6                                                                   | 4 46                                                                  | 7 11                                                                  |
| 24                                   |                                                                                   | 6 54                                                                  | 4 58                                                                  | 6 58                                                                  | 4 54                                                                  | 7 3                                                                   | 4 49                                                                  | 7 7                                                                   | 4 44                                                                  | 7 13                                                                  |
| 25                                   |                                                                                   | 6 56                                                                  | 4 56                                                                  | 7 0                                                                   | 4 52                                                                  | 7 4                                                                   | 4 47                                                                  | 7 9                                                                   | 4 42                                                                  | 7 14                                                                  |
| 26                                   | 4 59                                                                              | 6 57                                                                  | 4 54                                                                  | 7 I                                                                   | 4 50                                                                  | 7 5                                                                   | 4 45                                                                  | 7 10                                                                  | 4 40                                                                  | 7 16                                                                  |
| 27                                   | 4 57                                                                              | 6 58                                                                  | 4 53                                                                  | 7 2                                                                   | 4 48                                                                  | 7 7                                                                   | 4 43                                                                  | 7 12                                                                  | 4 38                                                                  | 7 18                                                                  |
| 28                                   | 4 56                                                                              | 6 59                                                                  | 4 51                                                                  | 7 3                                                                   | 4 47                                                                  | 7 8                                                                   | 4 41                                                                  | 7 13                                                                  | 4 36                                                                  | 7 19                                                                  |
| 29                                   | 4 54                                                                              | 7 0                                                                   | 4 50                                                                  | 7 5                                                                   | 4 45                                                                  | 7 10                                                                  | 4 39                                                                  | 7 15                                                                  | 4 34                                                                  | 7 21                                                                  |
| 30                                   | 4 53                                                                              | 7 1                                                                   | 4 48                                                                  | 7 6                                                                   | 4 3                                                                   | 7 12                                                                  | 4 3 <sup>8</sup>                                                      | 7 16                                                                  | 4 32                                                                  | 7 22                                                                  |

APRIL

|                 | Latitu  | de 44° | Latitu  | de 46° | Latitu  | de <b>48°</b> | Latitu  | de 50° | Latitu  | de 52° |
|-----------------|---------|--------|---------|--------|---------|---------------|---------|--------|---------|--------|
| Day of<br>Month | Sunrise | Sunset | Sunrise | Sunset | Sunrise | Sunset        | Sunrise | Sunset | Sunrise | Sunset |
|                 | h. m.   | h. m.  | h. m.   | h. m.  | h. m.   | h. m.         | h. m.   | h. m.  | h. m.   | h. m.  |
| 1               | 4 51    | 7 3    | 4 47    | 7 7    | 4 42    | 7 12          | 4 36    | 7 18   | 4 30    | 7 24   |
| 2               | 4 50    | 7 4    | 4 45    | 7 9    | 4 40    | 7 14          | 4 34    | 7 20   | 4 28    | 7 20   |
| 3               | 4 40    | 7 6    | 4 43    | 7 11   | 4 30    | 7 17          | 4 32    | 7 22   | 4 20    | 7 27   |
| 5               | 4 46    | 7 8    | 4 41    | 7 13   | 4 35    | 7 18          | 4 29    | 7 24   | 4 24    | 7 31   |
| 6               | 4 44    | 7 0    | 4 30    | 7 14   | 4 34    | 7 10          | 4 27    | 7 26   | 1 21    | 7 22   |
| 7               | 4 43    | 7 10   | 4 38    | 7 15   | 4 32    | 7 21          | 4 26    | 7 27   | 4 10    | 7 34   |
| 8               | 4 42    | 7 11   | 4 36    | 7 16   | 4 31    | 7 22          | 4 24    | 7 29   | 4 17    | 7 36   |
| 9               | 4 40    | 7 12   | 4 35    | 7 17   | 4 29    | 7 23          | 4 22    | 7 30   | 4 15    | 7 38   |
| 10              | 4 39    | 7 13   | 4 34    | 7 19   | 4 28    | 7 25          | 4 21    | 7 32   | 4 13    | 7`39   |
| 11              | 4 38    | 7 14   | 4 32    | 7 20   | 4 26    | 7 26          | 4 20    | 7 33   | 4 11    | 7 41   |
| 12              | 4 37    | 7 16   | 4 3 I   | 7 21   | 4 25    | 7 28          | 4 18    | 7 34   | 4 10    | 7 42   |
| 13              | 4 36    | 7 17   | 4 30    | 7 23   | 4 24    | 7 29          | 4 16    | 7 36   | 4 8     | 7 44   |
| 14              | 4 35    | 7 18   | 4 49    | 7 24   | 4 22    | 7 30          | 4 15    | 7 37   | 4 7     | 7 45   |
| 15              | 4 34    | 7 19   | 4 28    | 7 25   | 4 21    | 7 31          | 4 14.   | 7 39   | 4 5     | 7 47   |
| 16              | 4 32    | 7 20   | 4 26    | 7 26   | 4 20    | 7 33          | 4 12    | 7 40   | 4 4     | 7 48   |
| 17              | 4 31    | 7 21   | 4 25    | 7 27   | 4 18    | 7 34          | 4 11    | 7 42   | 4 3     | 7 50   |
| 18              | 4 30    | 7 22   | 4 24    | 7 28   | 4 17    | 7 35          | 4 10    | 7 43   | 4 I     | 7 51   |
| 19              | 4 30    | 7 23   | 4 23    | 7 30   | 4 10    | 7 30          | 4 8     | 7 44   | 4 0     | 7 52   |
| 20              | 4 29    | / -4   | 4 22    | / 31   | 4 15    | / 30          | 4 7     | 7 40   | 3 50    | 7 54   |
| 21              | 4 28    | 7 25   | 4 21    | 7 32   | 4 14    | 7 39          | 4 6     | 7 47   | 3 57    | 7 55   |
| 22              | 4 27    | 7 20   | 4 20    | 7 33   | 4 13    | 7 40          | 4 5     | 7 48   | 3 50    | 7 56   |
| 23              | 4 20    | 7 2/   | 4 19    | 7 34   | 4 12    | 7 41          | 4 4     | 7 49   | 3 55    | 7 50   |
| 24              | 4 25    | 7 20   | 4 10    | 7 26   | 4 10    | 7 43          | 4 3     | 7 51   | 3 53    | 7 59   |
| -3              | 4 -4    | 1-9    | 4.7     | 1 30   | 4.0     | 1 47          | 1       | / 54   | 3 52    | 0,     |
| 26              | 4 24    | 7 30   | 4 16    | 7 37   | 4 9     | 7 45          | 4 0     | 7 53   | 3 51    | 8 2    |
| 27              | 4 23    | 7 31   | 4 16    | 7 38   | 4 8     | 7 46          | 3 59    | 7 54   | 3 50    | 8 3    |
| 28              | 4 22    | 7 32   | 4 15    | 7 39   | 4 7     | 7 47          | 3 58    | 7 56   | 3 49    | 8 5    |
| 29<br>20        | 4 22    | 7 33   | 4 14    | 7 40   | 4 0     | 7 48          | 3 58    | 7 57   | 3 47    | 8 9    |
| 30              | 4 21    | / 34   | 4 14    | / 41   | 4 5     | 49            | 3 57    | / 50   | 3 40    | 00     |
| 31              | 4 21    | 7 34   | 4 13    | 7 42   | 4 5     | 7 50          | 3 56    | 7 59   | 3 45    | 8 9    |

MAY

|                                    | Latitu                                       | de <b>44°</b>                                | Latituc                                  | le <b>46°</b>                                | Latitu                          | le <b>48°</b>                                | Latitu                                                                             | le <b>50°</b>                                | Latitu                                       | de <b>52°</b>                                |
|------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| Jay of                             | Sunrise                                      | Sunset                                       | Sunrise                                  | Sunset                                       | Sunrise                         | Sunset                                       | Sunrıse                                                                            | Sunset                                       | Sunrise                                      | Sunset                                       |
| I                                  | h. m.<br>4 20                                | h. m.<br>7 35                                | h. m.<br>4 I 2                           | h. m.<br>7 43                                | h. m.<br>4 4                    | h.m.<br>751                                  | h. m.<br>3 56                                                                      | h.m.<br>80                                   | h. m.<br>3 45                                | h. m.<br>8 10                                |
| 2<br>3<br>4<br>5                   | 4 19<br>4 19<br>4 18<br>4 18                 | 7 36<br>7 37<br>7 38<br>7 39                 | 4 12<br>4 11<br>4 11<br>4 10             | 7 44<br>7 44<br>7 45<br>7 46                 | 4 4<br>4 3<br>4 3<br>4 2        | 7 52<br>7 52<br>7 53<br>7 53<br>7 54         | 3 55<br>3 54<br>3 54<br>3 54<br>3 53                                               | 8 I<br>8 2<br>8 3<br>8 4                     | 3 44<br>3 44<br>3 43<br>3 43                 | 8 11<br>8 11<br>8 12<br>8 13                 |
| 6<br>7<br>8<br>9<br>10             | 4 17<br>4 17<br>4 17<br>4 17<br>4 16         | 7 39<br>7 40<br>7 41<br>7 41<br>7 42         | 4 10<br>4 10<br>4 9<br>4 9<br>4 9<br>4 9 | 7 47<br>7 48<br>7 48<br>7 49<br>7 49<br>7 49 | 4 2<br>4 1<br>4 I<br>4 I<br>4 0 | 7 55<br>7 56<br>7 57<br>7 57<br>7 57<br>7 58 | $\begin{array}{c} 3 & 5^2 \\ 3 & 5^2 \\ 3 & 5^2 \\ 3 & 5^1 \\ 3 & 5^1 \end{array}$ | 8 4<br>8 5<br>8 6<br>8 7<br>8 8              | 3 43<br>3 42<br>3 42<br>3 41<br>3 41         | 8 14<br>8 15<br>8 15<br>8 16<br>8 17         |
| 11<br>12<br>13<br>14<br>15         | 4 16<br>4 16<br>4 16<br>4 16<br>4 16<br>4 16 | 7 42<br>7 43<br>7 43<br>7 44<br>7 44<br>7 44 | 4 9<br>4 9<br>4 8<br>4 8<br>4 8<br>4 8   | 7 50<br>7 51<br>7 51<br>7 52<br>7 52         | 4 0<br>4 0<br>4 0<br>4 0<br>4 0 | 759<br>759<br>80<br>80<br>81                 | 3 50<br>3 50<br>3 50<br>3 50<br>3 50<br>3 50                                       | 8 8<br>8 9<br>8 10<br>8 10<br>8 11           | 3 41<br>3 41<br>3 40<br>3 40<br>3 40<br>3 40 | 8 18<br>8 18<br>8 19<br>8 19<br>8 20         |
| 16<br>17<br>18<br>19<br><b>2</b> 0 | 4 16<br>4 17<br>4 17<br>4 17<br>4 17<br>4 17 | 7 45<br>7 45<br>7 45<br>7 46<br>7 46<br>7 46 | 4 8<br>4 8<br>4 8<br>4 8<br>4 8<br>4 8   | 7 53<br>7 53<br>7 54<br>7 54<br>7 54<br>7 54 | 4 0<br>4 0<br>4 0<br>4 0<br>4 0 | 8 I<br>8 2<br>8 2<br>8 2<br>8 3              | 3 50<br>3 50<br>3 50<br>3 50<br>3 50<br>3 50                                       | 8 11<br>8 12<br>8 12<br>8 12<br>8 12<br>8 13 | 3 40<br>3 40<br>3 39<br>3 39<br>3 39<br>3 39 | 8 21<br>8 21<br>8 22<br>8 23<br>8 23         |
| 21<br>22<br>23<br>24<br>25         | 4 17<br>4 18<br>4 18<br>4 18<br>4 18<br>4 18 | 7 46<br>7 46<br>7 46<br>7 47<br>7 47<br>7 47 | 4 8<br>4 9<br>4 9<br>4 10<br>4 10        | 7 54<br>7 55<br>7 55<br>7 55<br>7 55<br>7 55 | 4 0<br>4 0<br>4 I<br>4 I<br>4 I | 8 3<br>8 3<br>8 3<br>8 3<br>8 3<br>8 3       | 3 50<br>3 50<br>3 51<br>3 51<br>3 51<br>3 51                                       | 8 13<br>8 13<br>8 13<br>8 13<br>8 13<br>8 13 | 3 39<br>3 39<br>3 40<br>3 40<br>3 40<br>3 40 | 8 23<br>8 23<br>8 23<br>8 23<br>8 23<br>8 23 |
| 26<br>27<br>28<br>29<br>30         | 4 19<br>4 19<br>4 19<br>4 20<br>4 20         | 7 47<br>7 47<br>7 47<br>7 47<br>7 47<br>7 47 | 4 IO<br>4 II<br>4 II<br>4 I2<br>4 12     | 7 55<br>7 55<br>7 55<br>7 55<br>7 55<br>7 54 | 4 2<br>4 2<br>4 3<br>4 3<br>4 4 | 8 3<br>8 3<br>8 3<br>8 3<br>8 3<br>8 3       | 3 52<br>3 52<br>3 53<br>3 53<br>3 53<br>3 54                                       | 8 13<br>8 13<br>8 13<br>8 13<br>8 13<br>8 13 | 3 41<br>3 41<br>3 42<br>3 42<br>3 42<br>3 43 | 8 23<br>8 23<br>8 23<br>8 23<br>8 23<br>8 23 |

JUNE

JULY

|                 | Latitu    | ide 44°   | Latitu  | de <b>46°</b>    | Latitu  | de <b>48°</b> | Latitu  | de 50° | Latitu                        | ide 52°  |
|-----------------|-----------|-----------|---------|------------------|---------|---------------|---------|--------|-------------------------------|----------|
| Day of<br>Month | Sunrise   | Sunset    | Sunrise | Sunset           | Sunrise | Sunset        | Sunrise | Sunset | Sunrise                       | Sunset   |
|                 | h. m.     | h. m.     | h. m.   | h. m.            | h. m.   | h. m.         | h. m.   | h. m.  | h. m.                         | h. m.    |
| 1               | 4 21      | 7 47      | 4 13    | 7 54             | 4 4     | 8 3           | 3 55    | 8 12   | 3 44                          | 8 23     |
| 2               | 4 21      | 7 40      | 4 14    | 7 54             | 4 5     | 8 2           | 3 50    | 8 12   | 3 45                          | 8 22     |
| 3               | 4 22      | 7 46      | 4 14    | 7 54             | 4 6     | 8 2           | 3 50    | 8 11   | 3 47                          | 8 21     |
| 5               | 4 23      | 7 46      | 4 15    | 7 53             | 4 7     | 8 2           | 3 58    | 8 11   | 3 48                          | 8 21     |
| 6               | 4 24      | 7 45      | 4 16    | 7 53             | 4 8     | 8 т           | 3 59    | 8 10   | 3 48                          | 8 20     |
| 7               | 4 24      | 7 45      | 4 17    | 7 53             | 49      | 8 1           | 4 0     | 8 10   | 3 49                          | 8 20     |
| 8               | 4 25      | 7 45      | 4 18    | 7 52             | 4 10    | 8 0           | 4 0     | 8 9    | 3 50                          | 8 19     |
| 9<br>10         | 4 20      | 7 44 7 43 | 4 19    | 7 52 7 51        | 4 10    | 7 59          | 4 1 4 2 | 8 8    | $3 5^{1}$<br>3 5 <sup>2</sup> | 8 19     |
| 11              | 4 28      | 7 43      | 4 20    | 7 50             | 4 12    | 7 59          | 4 3     | 8 7    | 3 53                          | 8 17     |
| I 2             | 4 29      | 7 42      | 4 21    | 7 50             | 4 13    | 7 58          | 4 4     | 8 7    | 3 54                          | 8 16     |
| 13              | 4 29      | 7 42      | 4 22    | 7 49             | 4 14    | 7 57          | 4 5     | 8 0    | 3 50                          | 8 14     |
| 14              | 4 30      | 7 40      | 4 23    | 7 48             | 4 15    | 7 56          | 4 7     | 8 4    | 3 58                          | 8 13     |
| 16              | 4 32      | 7 40      | + 25    | 7 47             | 4 17    | 7 55          | 4 8     | 8 3    | 3 59                          | 8 12     |
| 17              | 4 33      | 7 39      | 4 26    | 7 46             | 4 18    | 7 54          | 4 10    | 8 2    | 4 0                           | 8 11     |
| 18              | 4 34      | 7 38      | 4 27    | 7 45             | 4 19    | 7 53          | 4 11    | 8 1    | 4 2                           | 8 10     |
| 20              | 4 34 4 36 | 7 30      | 4 20    | 7 44 7 43        | 4 20    | 7 52 7 51     | 4 12    | 7 59   | 4 5                           | 88       |
| 21              | 4 37      | 7 36      | 4 30    | 7 42             | 4 23    | 7 50          | 4 15    | 7 58   | 4 5                           | 8 7      |
| 22              | 4 38      | 7 35      | 4 31    | 7 4 <sup>1</sup> | 4 24    | 7 49          | 4 16    | 7 57   | 4 7                           | 8 5      |
| 23              | 4 39      | 7 34      | 4 32    | 7 40             | 4 25    | 7 48          | 4 17    | 7 56   | 4 8                           | 8 4      |
| 24              | 4 40      | 7 33      | 4 33    | 7 39             | 4 20    | 7 47          | 4 18    | 7 54   | 4 10                          | 02<br>81 |
| 25              | 4 40      | / 32      | 4 34    | 7 30             | 4 27    | / 40          | 4 20    | 1 33   | 4 11                          | 0 1      |
| 26              | 4 41      | 7 31      | 4 35    | 7 37             | 4 28    | 7 44          | 4 21    | 7 52   | 4 12                          | 80       |
| 27              | 4 42      | 7 30      | 4 30    | 7 30             | 4 30    | 7 43          | 4 22    | 7 50   | 4 14                          | 7 50     |
| 20<br>20        | 4 44      | 7 28      | 4 30    | 7 34             | 4 31    | 7 40          | 4 24    | 7 49   | 4 17                          | 7 55     |
| 30              | 4 46      | 7 27      | 4 40    | 7 33             | 4 33    | 7 39          | 4 26    | 7 46   | 4 18                          | 7 54     |
| 31              | 4 47      | 7 26      | 4 41    | 7 32             | 4 35    | 7 38          | 4 28    | 7 44   | 4 20                          | 7 52     |

|                 | L   | atitu    | de  | <b>44</b> ° |    | atitu  | de  | 46°   |    | atitu | de  | <b>48°</b> | I  | atitu | ude | <b>50</b> ° |    | atitu    | ıde | 520        |
|-----------------|-----|----------|-----|-------------|----|--------|-----|-------|----|-------|-----|------------|----|-------|-----|-------------|----|----------|-----|------------|
| Day of<br>Month | Sui | nrise    | Sı  | inset       | St | inrise | Sı  | inset | Su | nrise | s   | unset      | Su | nrise | S   | inset       | Su | inrise   | S   | inset      |
| •               | h   | m        | h   | m           | h  | m      | h   | n     | h  | m     | h   | m          | h  | m     | h   | m           | h  | m        | h   | m          |
| 1               | 4   | 40       | 17  | 24          | 4  | 42     | 17  | 30    | 4  | 30    | 1 / | 30         | 4  | 29    | 17  | 43          | 4  | 21       | 1 4 | 50         |
| 2               | 4   | 49<br>50 | 1 7 | 22<br>22    | 4  | 44     | 1 7 | 27    | 4  | 30    | 1 5 | 33         | 4  | 32    | 1 % | 4.          | 4  | 21<br>21 | 5   | 49         |
| 4               | 4   | 51       | 17  | 21          | 4  | 46     | 17  | 26    | 4  | 40    | 7   | 32         | 4  | 33    | 17  | 38          | 4  | 26       | 7   | 45         |
| 5               | 4   | 52       | 7   | 19          | 4  | 47     | 7   | 24    | 4  | 41    | 7   | 30         | 4  | 35    | 7   | 37          | 4  | 28       | 7   | 43         |
| 6               | 4   | 53       | 7   | 18          | 4  | 48     | 7   | 23    | 4  | 43    | 7   | 29         | 4  | 36    | 7   | 35          | 4  | 29       | 7   | <b>4</b> 1 |
| 7               | 4   | 54       | 7   | 17          | 4  | 49     | 7   | 22    | 4  | 44    | 7   | 27         | 4  | 38    | 7   | 33          | 4  | 31       | 7   | 40         |
| 8               | 4   | 56       | 7   | 15          | 4  | 51     | 7   | 20    | 4  | 45    | 17  | 26         | 4  | 39    | 7   | 32          | 4  | 32       | 7   | 38         |
| 9               | 4   | 57       | 7   | 14          | 4  | 52     | 7   | 19    | 4  | 40    | 7   | 24         | 4  | 40    | 7   | 30          | 4  | 34       | 7   | 30         |
| 10              | 4   | 50       | 17  | 12          | 4  | 55     | 1   | 17    | 4  | 40    | 11  | 22         | 4  | 42    | 1   | 20          | 4  | 30       | 1   | 54         |
| II              | 4   | 59       | 7   | II          | 4  | 54     | 7   | 16    | 4  | 49    | 7   | 2 I        | 4  | 44    | 7   | 26          | 4  | 37       | 7   | 32         |
| I 2             | 5   | 0        | 7   | 9           | 4  | 56     | 7   | 14    | 4  | 51    | 7   | 19         | 4  | 45    | 7   | 25          | 4  | 39       | 7   | 30         |
| 13              | 5   | 2        | 7   | 8           | 4  | 57     | 7   | 12    | 4  | 52    | 7   | 17         | 4  | 47    | 7   | 23          | 4  | 40       | 7   | 28         |
| 14              | 5   | 3        | 7   | 6           | 4  | 58     | 7   | II    | 4  | 53    | 7   | 10         | 4  | 48    | 7   | 21          | 4  | 42       | 7   | 26         |
| 15              | 5   | 4        | 7   | 5           | 4  | 59     | 7   | 9     | 4  | 55    | 7   | 14         | 4  | 50    | 7   | 19          | 4  | 44       | 7   | 24         |
| 16              | 5   | 5        | 7   | 3           | 5  | I      | 7   | 8     | 4  | 56    | 7   | I 2        | 4  | 51    | 7   | 17          | 4  | 45       | 7   | 22         |
| 17              | 5   | 6        | 7   | 2           | 5  | 2      | 7   | 6     | 4  | 57    | 7   | 10         | 4  | 53    | 7   | 15          | 4  | 47       | 7   | 20         |
| 18              | 5   | 7        | 7   | 0           | 5  | 3      | 7   | 4     | 4  | 59    | 7   | 2          | 4  | 54    | 7   | 13          | 4  | 48       | 7   | 18         |
| 19              | 5   | 0        | 6   | 59          | 5  | 4      | 7   | 3     | 5  | 0     | 7   | 7          | 4  | 55    | 7   | 12          | 4  | 50       | 7   | 10         |
| 20              | 5   | 10       | 0   | 57          | 5  | 0      | 7   | 1     | 5  | 2     | 1   | 5          | 4  | 57    | 7   | 9           | 4  | 52       | 7   | 14         |
| 2 I             | 5   | II       | 6   | 55          | 5  | 7      | 6   | 59    | 5  | 3     | 7   | 3          | 4  | 59    | 7   | 7           | 4  | 53       | 7   | I 2        |
| 22              | 5   | 12       | 6   | 54          | 5  | 8      | 6   | 57    | 5  | 4     | 7   | I          | 5  | 0     | 7   | 5           | 4  | 55       | 7   | 10         |
| 23              | 5   | 13       | 6   | 52          | 5  | 9      | 6   | 56    | 5  | 6     | 6   | 59         | 5  | 2     | 7   | 3           | 4  | 56       | 7   | 8          |
| 24              | 5   | 14       | 6   | 5°          | 5  | II     | 6   | 54    | 5  | 7     | 6   | 57         | 5  | 3     | 7   | I           | 4  | 58       | 7   | 6          |
| 25              | 5   | 15       | 0   | 49          | 5  | 12     | 0   | 52    | 5  | 0     | 0   | 50         | 5  | 4     | 7   | 0           | 5  | 0        | 7   | 4          |
| 26              | 5   | 16       | 6   | 47          | 5  | 13     | 6   | 50    | 5  | 10    | 6   | 54         | 5  | 6     | 6   | 57          | 5  | I        | 7   | 2          |
| 27              | 5   | 18       | 6   | +5          | 5  | 14     | 6   | 48    | 5  | II    | 6   | 52         | 5  | 8     | 6   | 55          | 5  | 3        | 7   | 0          |
| 28              | 5   | 19       | 6   | 44          | 5  | 16     | 0   | 40    | 5  | 12    | 0   | 50         | 5  | 9     | 0   | 53          | 5  | 4        | 6   | 58         |
| 29              | 5   | 20       | 0   | 42          | 5  | 17     | 6   | 45    | 5  | 14    | 6   | 40         | 5  | 10    | 0   | 51          | 5  | D<br>Q   | 0   | 50         |
| 30              | 5   | 41       | U   | 40          | 5  | 10     | 0   | 43    | 5  | *5    | U   | 40         | 5  | 12    | U   | 49          | 5  | 0        | U   | 54         |
| 31              | 5   | 22       | 6   | 38          | 5  | 19     | 6   | 41    | 5  | 17    | 6   | 44         | 5  | 14    | 6   | 47          | 5  | 10       | 6   | 51         |

AUGUST

|                            | Latitude 44                                                                                                                    | Latitude 46°                                                                                                                                                                                                        | Latitude 48°                                                                                                                                                                                                | Latitude 50°                                                                                                                                                                | Latitude 52°                                                                                                                                                                |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day of<br>Month            | Sunrise Sunse                                                                                                                  | t Sunrise Sunse                                                                                                                                                                                                     | t Sunrise Sunset                                                                                                                                                                                            | Sunrise Sunset                                                                                                                                                              | Sunrise Sunset                                                                                                                                                              |
| I                          | h. m. h. m<br>5 23 6 30                                                                                                        | h. m. h. m.<br>5 20 6 39                                                                                                                                                                                            | h. m. h. m.<br>5 18 6 42                                                                                                                                                                                    | h. m. h. m.<br>5 15 6 45<br>5 16 6 43                                                                                                                                       | h. m. h. m.<br>5 II 6 49<br>5 I3 6 46                                                                                                                                       |
| 2<br>3<br>4<br>5           | 5     24     0     3       5     25     6     3       5     27     6     3       5     28     6     2                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                               | 5       19       0       40         5       21       6       38         5       22       6       36         5       23       6       34                                                                     | 5     18     6     40       5     20     6     38       5     21     6     36                                                                                               | 5 15 6 44<br>5 17 6 42<br>5 19 6 39                                                                                                                                         |
| 6<br>7<br>8<br>9<br>10     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                           | 3     5     27     6     29       5     5     28     6     27       4     5     30     6     26       2     5     31     6     24       5     32     6     23                                                       | 5     25     6     32       5     26     6     30       5     27     6     28       5     29     6     26       5     30     6     24                                                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                        | 5       20       6       37         5       22       6       34         5       24       6       32         5       26       6       30         5       27       6       27 |
| 11<br>12<br>13<br>14       | 5 34 6 1<br>5 36 6 1<br>5 37 6 1<br>5 38 6 1<br>5 39 6 1                                                                       | 9       5       33       6       20         7       5       34       6       18         5       5       36       6       16         3       5       37       6       14         1       5       38       6       12 | 5       31       6       22         3       5       33       6       20         5       5       34       6       17         4       5       36       6       15         2       5       37       6       13 | 5       30       6       23         5       31       6       21         5       33       6       19         5       34       6       17         5       36       6       14 | 5       29       6       25         5       30       6       23         5       32       6       21         5       33       6       18         5       35       6       16 |
| 16<br>17<br>18<br>19<br>20 | $\begin{array}{c cccc} 5 & 40 & 6 \\ 5 & 41 & 6 \\ 5 & 42 & 6 \\ 5 & 44 & 6 \\ 5 & 45 & 6 \end{array}$                         | 9     5     39     6     10       8     5     41     6     5       6     5     42     6     6       4     5     44     6       2     5     45     6                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                       | 5 38 6 12<br>5 39 6 10<br>5 41 6 8<br>5 42 6 5<br>5 43 6 3                                                                                                                  | 5       36       6       14         5       38       6       11         5       39       6       9         5       41       6       7         5       42       6       4    |
| 21<br>22<br>23<br>24<br>25 | 5       46       6         5       47       5         5       48       5         5       49       5         5       50       5 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                | 0     5     45     6     1       8     5     47     5     59       6     5     48     5     56       4     5     50     5     54       2     5     51     5     52                                          | 5 45 6 I<br>5 46 5 59<br>5 48 5 56<br>5 50 5 54<br>5 51 5 52                                                                                                                | 5       44       6       2         5       46       6       0         5       48       5       58         5       49       5       55         5       51       5       53   |
| 26<br>27<br>28<br>29<br>30 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                               | 0     5     52     5     50       8     5     54     5     48       6     5     55     5     46       4     5     57     5     54       3     5     58     5     44                                         | 5     52     5     50       3     5     54     5     48       5     5     55     5     46       4     5     57     5     54       2     5     58     5     41               | 5       53       5       51         5       54       5       48         5       56       5       46         5       58       5       44         5       59       5       41 |

SEPTEMBER

|                            | Latitu                                   | de 44º                                       | Latitu                                  | de 46°                                      | Latitu                                  | de 48°                                              | Latitud                                | le <b>50°</b>                                                        | Latitu                                 | de 52º                                      |
|----------------------------|------------------------------------------|----------------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|----------------------------------------|---------------------------------------------|
| Dajsf<br>Month             | Sunrise                                  | Sunset                                       | Sunrise                                 | Sunset                                      | Sunrise                                 | Sunset                                              | Sunrise                                | Sunset                                                               | Sunrise                                | Sunset                                      |
| I<br>                      | h m<br>5 58<br>5 59<br>6 0<br>6 1<br>6 2 | h m<br>5 41<br>5 40<br>5 38<br>5 36<br>5 34  | h m<br>5 58<br>6 0<br>6 1<br>6 2<br>6 4 | h m<br>5 41<br>5 39<br>5 37<br>5 35<br>5 33 | h m<br>5 59<br>6 1<br>6 2<br>6 4<br>6 5 | h m<br>5 40<br>5 38<br>5 36<br>5 36<br>5 34<br>5 32 | h m<br>6 0<br>6 2<br>6 3<br>6 5<br>6 6 | h m<br>5 39<br>5 37<br>5 35<br>5 35<br>5 33<br>5 31                  | h m<br>6 1<br>6 3<br>6 5<br>6 6<br>6 8 | h m<br>5 39<br>5 37<br>5 35<br>5 32<br>5 30 |
| 6<br>7<br>8<br>9<br>10     | 6 4<br>6 5<br>6 6<br>6 8<br>6 9          | 5 32<br>5 31<br>5 29<br>5 27<br>5 25         | 6 5<br>6 6<br>6 8<br>6 9<br>6 10        | 5 31<br>5 30<br>5 28<br>5 26<br>5 24        | 6 7<br>6 8<br>6 9<br>6 11<br>6 12       | 5 30<br>5 28<br>5 26<br>5 24<br>5 22                | 6 8<br>6 10<br>6 11<br>6 12<br>6 14    | 5 28<br>5 26<br>5 24<br>5 22<br>5 20                                 | 6 10<br>6 11<br>6 13<br>6 15<br>6 16   | 5 28<br>5 25<br>5 23<br>5 21<br>5 19        |
| 11<br>12<br>13<br>14<br>15 | 6 10<br>6 11<br>6 12<br>6 13<br>6 15     | 5 24<br>5 22<br>5 20<br>5 19<br>5 17         | 6 12<br>6 13<br>6 14<br>6 16<br>6 17    | 5 22<br>5 20<br>5 18<br>5 16<br>5 14        | 6 14<br>6 15<br>6 17<br>6 18<br>6 20    | 5 20<br>5 18<br>5 16<br>5 14<br>5 12                | ο 16<br>6 17<br>6 19<br>6 21<br>6 22   | 5 18<br>5 16<br>5 14<br>5 12<br>5 10                                 | 6 18<br>6 19<br>6 21<br>6 23<br>6 24   | 5 17<br>5 15<br>5 13<br>5 10<br>5 8         |
| 16<br>17<br>18<br>19<br>20 | 6 16<br>6 17<br>6 19<br>6 20<br>6 21     | 5 15<br>5 13<br>5 12<br>5 10<br>5 9          | 6 18<br>6 20<br>6 21<br>6 22<br>6 24    | 5 13<br>5 11<br>5 9<br>5 8<br>5 6           | 6 21<br>6 22<br>6 24<br>6 25<br>6 27    | 5 10<br>5 8<br>5 6<br>5 5<br>5 3                    | 6 24<br>6 26<br>6 27<br>6 28<br>6 30   | 5 7<br>5 5<br>5 3<br>5 2<br>5 0                                      | 6 26<br>6 27<br>6 29<br>6 31<br>6 33   | 5 6<br>5 4<br>5 1<br>4 59<br>4 <b>57</b>    |
| 21<br>22<br>23<br>24<br>25 | 6 22<br>6 24<br>6 25<br>6 26<br>6 28     | 5 7<br>5 6<br>5 4<br>5 2<br>5 1              | 6 25<br>6 27<br>6 28<br>6 30<br>6 31    | 5 4<br>5 2<br>5 1<br>4 59<br>4 57           | 6 28<br>6 30<br>6 31<br>6 33<br>6 34    | 5 1<br>4 59<br>4 58<br>4 56<br>4 54                 | 6 32<br>6 34<br>6 35<br>6 37<br>6 38   | 4 57<br>4 56<br>4 54<br>4 52<br>4 5 <sup>2</sup><br>4 5 <sup>0</sup> | 6 35<br>6 37<br>6 39<br>6 40<br>6 42   | 4 55<br>4 53<br>4 51<br>4 48<br>4 46        |
| 26<br>27<br>28<br>29<br>30 | 6 29<br>6 30<br>6 32<br>6 33<br>6 34     | 4 59<br>4 57<br>4 56<br>4 55<br>4 55<br>4 54 | 6 32<br>6 34<br>6 35<br>6 37<br>6 38    | 4 56<br>4 54<br>4 52<br>4 51<br>4 49        | 6 36<br>6 38<br>6 39<br>6 41<br>6 42    | 4 52<br>4 50<br>4 48<br>4 47<br>4 45                | 6 40<br>6 42<br>6 43<br>6 45<br>6 47   | 4 48<br>4 46<br>4 44<br>4 42<br>4 41                                 | 6 44<br>6 46<br>6 48<br>6 50<br>6 52   | 4 44<br>4 42<br>4 40<br>4 38<br>4 36        |
| 31                         | 6 35                                     | 4 52                                         | 6 40                                    | 4 48                                        | 6 44                                    | <b>+ 4</b> 4                                        | 6 48                                   | 4 39                                                                 | 6 53                                   | 4 35                                        |

### OCTOBER

|                 | Latitud | de <b>44</b> ° | Latitud | e <b>46</b> ° | Latitu  | de 48° | Latitud | le 50° | Latitu  | de 52° |
|-----------------|---------|----------------|---------|---------------|---------|--------|---------|--------|---------|--------|
| Day of<br>Month | Sunrise | Sunset         | Sunrise | Sunset        | Sunrise | Sunset | Sunrise | Sunset | Sunrise | Sunset |
|                 | h. m.   | <b>h</b> , m,  | h. m.   | h. m.         | h. m.   | h. m.  | h. m.   | h. m.  | h. m.   | h. m.  |
| I               | 6 37    | 4 51           | 6 41    | 4 46          | 6 45    | 4 42   | 6 50    | 4 37   | 6 55    | 4 33   |
| 2               | 6 10    | 4 49           | 6 44    | 4 45          | 6 47    | 4 41   | 6 52    | 4 30   | 6 50    | 4 31   |
| 4               | 6 41    | 4 40           | 6 45    | 4 44          | 6 50    | 4 39   | 6 55    | 4 34   | 7 1     | 4 27   |
| 5               | 6 42    | 4 45           | 6 47    | 4 41          | 6 51    | 4 36   | 6 57    | 4 31   | 7 2     | 4 26   |
| 6               | 6 43    | 4 44           | 6 48    | 4 39          | 6 53    | 4 35   | 6 58    | 4 29   | 7 4     | 4 24   |
| 7               | 6 44    | 4 43           | 6 49    | 4 38          | 6 54    | 4 33   | 7 0     | 4 28   | 7 0     | 4 22   |
| 0               | 6.47    | 4 42           | 6 51    | 4 37          | 6 50    | 4 32   | 7 2     | 4 20   | 7 0     | 4 21   |
| 10              | 6 49    | 4 40           | 6 54    | 4 30          | 6 59    | 4 30   | 7 5     | 4 23   | 7 11    | 4 18   |
| 11              | 6 50    | 4 38           | 6 55    | 4 33          | 7 I     | 4 28   | 7 7     | 4 22   | 7 13    | 4 16   |
| 12              | 6 51    | 4 37           | 6 56    | 4 32          | 7 2     | 4 26   | 7 8     | 4 20   | 7 15    | 4 15   |
| 13              | 0 53    | 4 30           | 6 50    | 4 31          |         | 4 25   | 7 10    | 4 19   | 7 18    | 4 13   |
| 15              | 6 55    | 4 35           | 7 1     | 4 30          | 7 7     | 4 24   | 7 13    | 4 16   | 7 20    | 4 10   |
| 16              | 6 57    | 4 33           | 7 2     | 4 28          | 7 8     | 4 21   | 7 15    | 4 15   | 7 21    | 4 9    |
| 17              | 6 58    | 4 32           | 7 4     | 4 27          | 7 10    | 4 20   | 7 16    | 4 14   | 7 23    | 4 7    |
| 10              | 0 59    | 4 32           | 7 5     | 4 20          | 7 12    | 4 19   | 7 18    | 4 13   | 7 25    | 4 0    |
| <b>2</b> 0      | 7 2     | 4 30           | 7 8     | 4 25          | 7 14    | 4 17   | 7 21    | 4 10   | 7 28    | 4 4    |
| 21              | 7 3     | 4 29           | 7 9     | 4 23          | 7 15    | 4 17   | 7 23    | 4 9    | 7 30    | 4 3    |
| 22              | 7 4     | 4 28           | 7 10    | 4 22          | 7 17    | 4 16   | 7 24    | 4 8    | 7 32    | 4 2    |
| 23              | 7 0     | 4 28           | 7 12    | 4 22          | 7 19    | 4 15   | 7 20    | 4 7    | 7 33    | 2 50   |
| 24<br>25        | 7 8     | 4 27           | 7 14    | 4 20          | 7 21    | 4 14   | 7 29    | 4 5    | 7 35    | 3 58   |
| 26              | 7 9     | 4 26           | 7 16    | 4 10          | 7 23    | 4 12   | 7 31    | 4 4    | 7 38    | 3 57   |
| 27              | 7 10    | 4 25           | 7 17    | 4 19          | 7 24    | 4 12   | 7 32    | 4 4    | 7 40    | 3 56   |
| 28              | 7 12    | 4 25           | 7 18    | 4 18          | 7 25    | 4 11   | 7 33    | 4 3    | 7 41    | 3 55   |
| 29              | 7 13    | 4 24           | 7 19    | 4 18          | 7 27    | 4 10   | 7 35    | 4 2    | 7 43    | 3 55   |
| 30              | 7 14    | 4 24           | 7 21    | 4 17          | 7 28    | 4 10   | 7 36    | 4 2    | 7 44    | 3 54   |

### NOVEMBER

|                            | Latitu                                       | de 44°                                              | Latitu                                               | de <b>46°</b>                                       | Latitu                                              | de <b>48°</b>                                 | Latitu                                                   | ide <b>50°</b>                                       | Latitude 52°                                                                                                                                                                                                                                                |
|----------------------------|----------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day of<br>Month            | Sunrise                                      | Sunset                                              | Sunrise                                              | Sunset                                              | Sunrise                                             | Sunset                                        | Sunrise                                                  | Sunset                                               | Sunrise Sunset                                                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5      | h m<br>7 15<br>7 16<br>7 17<br>7 18<br>7 19  | h m<br>4 23<br>4 23<br>4 23<br>4 23<br>4 23<br>4 22 | h m<br>7 22<br>7 23<br>7 24<br>7 25<br>7 26          | h m<br>4 16<br>4 16<br>4 16<br>4 16<br>4 16<br>4 15 | h m<br>7 29<br>7 31<br>7 32<br>7 33<br>7 33<br>7 34 | h m<br>4 9<br>4 9<br>4 8<br>4 8<br>4 8<br>4 8 | h m<br>7 37<br>7 39<br>7 40<br>7 41<br>7 42              | h m<br>4 I<br>4 l<br>4 0<br>4 0<br>3 59              | h         m         h         m           7         46         3         54           7         47         3         53           7         48         3         52           7         50         3         52           7         51         3         51 |
| 6<br>7<br>8<br>9<br>10     | 7 20<br>7 21<br>7 22<br>7 23<br>7 24         | 4 22<br>4 22<br>4 22<br>4 22<br>4 22<br>4 22        | 7 27<br>7 29<br>7 30<br>7 30<br>7 31                 | 4 15<br>4 15<br>4 15<br>4 15<br>4 15<br>4 15        | 7 35<br>7 36<br>7 37<br>7 37<br>7 38                | 4 8<br>4 7<br>4 7<br>4 7<br>4 7<br>4 7        | 7 43<br>7 45<br>7 46<br>7 47<br>7 48                     | 3 59<br>3 59<br>3 59<br>3 59<br>3 58<br>3 58         | 7     53     3     51       7     54     3     50       7     55     3     50       7     56     3     50       7     57     3     50                                                                                                                       |
| 11<br>12<br>13<br>14<br>15 | 7 25<br>7 26<br>7 26<br>7 27<br>7 27<br>7 28 | 4 22<br>4 22<br>4 22<br>4 22<br>4 22<br>4 23        | 7 32<br>7 33<br>7 34<br>7 35<br>7 36                 | 4 15<br>4 15<br>4 15<br>4 15<br>4 15<br>4 15        | 7 40<br>7 41<br>7 42<br>7 43<br>7 44                | 4 7<br>4 7<br>4 7<br>4 7<br>4 7<br>4 7        | 7 49<br>7 50<br>7 51<br>7 52<br>7 53                     | 3 58<br>3 58<br>3 58<br>3 58<br>3 58<br>3 58<br>3 58 | 7       58       3       50         7       59       3       50         7       59       3       49         8       0       3       49         8       1       3       49                                                                                   |
| 16<br>17<br>18<br>19<br>20 | 7 29<br>7 30<br>7 30<br>7 31<br>7 31<br>7 31 | 4 23<br>4 23<br>4 24<br>4 24<br>4 24<br>4 24        | 7 36<br>7 37<br>7 38<br>7 38<br>7 38<br>7 39         | 4 15<br>4 16<br>4 16<br>4 16<br>4 16<br>4 17        | 7 44<br>7 45<br>7 46<br>7 46<br>7 46<br>7 47        | 4 7<br>4 8<br>4 8<br>4 8<br>4 8<br>4 9        | 7 53<br>7 54<br>7 55<br>7 55<br>7 56                     | 3 58<br>3 59<br>3 59<br>3 59<br>3 59<br>4 0          | 8       2       3       49         8       3       3       49         8       4       3       50         8       4       3       50         8       4       3       50         8       5       3       51                                                   |
| 21<br>22<br>23<br>24<br>25 | 7 32<br>7 32<br>7 33<br>7 33<br>7 33<br>7 34 | 4 25<br>4 25<br>4 26<br>4 27<br>4 27<br>4 27        | 7 39<br>7 40<br>7 40<br>7 41<br>7 41<br>7 41         | 4 17<br>4 18<br>4 18<br>4 19<br>4 20                | 7 47<br>7 48<br>7 48<br>7 49<br>7 49<br>7 49        | 4 9<br>4 10<br>4 10<br>4 11<br>4 J2           | 7 56<br>7 57<br>7 57<br>7 58<br>7 58<br>7 58             | 4 0<br>4 I<br>4 I<br>4 2<br>4 3                      | 8       5       3       51         8       6       3       52         8       6       3       52         8       7       3       53         8       7       3       53         8       7       3       53                                                   |
| 26<br>27<br>28<br>29<br>30 | 7 34<br>7 34<br>7 34<br>7 35<br>7 35<br>7 35 | 4 28<br>4 28<br>4 29<br>4 30<br>4 31                | 7 42<br>7 42<br>7 42<br>7 42<br>7 42<br>7 42<br>7 42 | 4 20<br>4 21<br>4 22<br>4 22<br>4 23                | 7 50<br>7 50<br>7 50<br>7 50<br>7 50<br>7 50        | 4 12<br>4 13<br>4 14<br>4 15<br>4 16          | 7 5 <sup>8</sup><br>7 59<br>7 59<br>7 59<br>7 59<br>7 59 | 4 3<br>4 4<br>4 5<br>4 6<br>4 7                      | 8       8       3       54         8       8       3       54         8       8       3       55         8       8       3       56         8       8       3       57                                                                                      |
| 31                         | 7 35                                         | 4 32                                                | 7 42                                                 | 4 24                                                | 7 50                                                | + 17                                          | 7 59                                                     | 4 8                                                  | 8 8 3 58                                                                                                                                                                                                                                                    |

### DECEMBER

### THE PLANETS DURING 1925

In the following notes on the planets a general account of the phenomena in connection with their motions is given. Fuller details will be found on the pages headed *The Sky for the Month* (pages 28, 30,  $\ldots$ ).

#### MERCURY

Mercury's apparent separation from the sun is never very great, and consequently the planet is comparatively seldom seen with the naked eye; but when near its greatest elongation, or angular distance from the sun, it is easily visible as a star of the first magnitude. It can often be seen for about a fortnight, or even longer, at such a time, but some of these occasions are much more favourable than others. In general, the planet can best be seen at an eastern elongation (that is, as an evening star) in the spring; at a western elongation (that is, as a morning star) in the autumn. Similar elongations recur, on the average, every 116 days, or a little less than four months.

The eastern elongations are as follows:—March 31,  $18^{\circ} 58'$ ; July 28,  $27^{\circ} 11'$ ; November 22,  $22^{\circ} 3'$ .

The western elongations:--January 17, 24° 4'; May 16, 25° 50'; September 11, 17° 57'; December 31, 22° 36'.

The March elongation is the best for evening observations. At those in July and November the planet is much farther from the sun, but is not so high above the horizon. The September elongation is the best for morning observations, for a similar reason. But with a clear sky Mercury should be visible at practically every elongation, though a field glass may be required sometimes to locate it.

Further details are given on the pages devoted to The Sky for the Month.

#### VENUS

At the beginning of the year Venus is a morning star rising almost two hours before the sun. It gradually moves in towards the sun and reaches superior conjunction with it on April 24. For some time before and after this date the planet is lost in the sun's rays. By the end of May it sets about 45 minutes after the sun and should easily be detected in the evening sky. It is an evening star all the rest of the year. On November 28 Venus attains its greatest elongation east of the sun, 47° 17', at which time its phase as revealed by the telescope is that of the moon at first quarter. It continues to increase in brilliancy during the rest of the year and reaches its maximum on January 2, 1926. Further details of the planet's brightness are given in the monthly pages.

### MARS

During 1924 Mars made an exceptionally close approach to the earth, opposition occurring on August 23, and of course there will be no opposition in 1925. The next is on November 4, 1926. At the beginning of the year it is an evening star in the constellation Pisces, being near the equinoctial point. Its stellar magnitude is 0.4, a little fainter than Arcturus. Its brightness steadily diminishes until in June its magnitude is 2.0, almost that of Polaris. At the same time it gradually draws in towards the sun, coming to conjunction on September 13. After this the planet becomes a morning star, slowly separating from the sun. By December 1 it rises about two hours before the sun, and on December 31 it transits at 9.24 and is becoming brighter. At this time it is in Scorpio, not far from Antares, having passed through 16 hours of R.A. during the year.

A map showing the path of Mars amongst the stars during 1925 is on the third page of the cover.

### JUPITER

Jupiter is the greatest of all the planets. Its brightness exceeds that of any of the fixed stars and though at times Mars rivals it Venus only distinctly outshines it.

On December 2, 1924, Jupiter was in conjunction with the sun, and so at the beginning of the year it is too close to the sun for convenient observation. By February 1 it rises about  $1\frac{34}{4}$  hours before the sun and so can be well observed as a morning star. Its stellar magnitude then is -1.5, almost the same as that of Sirius. It continues to improve its position for observation and comes to



Path of Jupiter among the Stars during 1925. The round dots on the path represent the position of the planet on the first of each month.

opposition with the sun on July 10. After that it apparently drifts steadily westward in the sky and it is a brilliant evening star all the rest of the year, though by December 31 it has become rather too near the sun for convenient observation. It reaches conjunction with the sun on January 25, 1926.

Jupiter is a fine object for a small telescope. Even a field glass will reveal its disc and also its four large moons. They were discovered by Galileo in 1610, but since then five more have been discovered, all very faint objects (see page 56). The path of Jupiter amongst the stars in 1925 is given in the accompanying diagram.

### SATURN

At the beginning of the year Saturn is a good morning star, crossing the meridian at 8 a.m. It slowly moves eastward amongst the stars until February 22, when it becomes stationary and begins to retrograde which it continues to do until July 12. Midway between these dates, namely on May 1, it is in opposition to the sun. At this time the planet rises as the sun sets and so is visible all night long. After this it drifts to the western sky and is an evening star. During October it becomes lost in the sun's rays and on November 9 it comes into conjunction with the sun. For the rest of the year it is a morning star.



Path of Saturn among the Stars during 1925. The dots on the path represent the position of the planet on the first of each month.

By many observers Saturn, with its unique ring system and its numerous satellites, is considered the finest object in the sky. During some months in 1921 the rings were invisible (as explained in the HANDBOOK for 1921) and we now see their north face. During this year the formation of the rings can be well seen, though they will continue to open out until 1928, and then for seven years they will continue to close in again. The accompanying diagram shows the path of Saturn amongst the stars in 1925.

### Uranus

This planet was discovered by Sir William Herschel in 1781 and it appears to the naked eye on a dark night as a star of the sixth magnitude. It is in the constellation Pisces most of the year and will remain there for several years to come as it moves forward in its orbit only a little over 4° per year. It moves forward until July 1, when it begins to retrograde which it continues to do until December 1. Midway between these dates, namely on September 16, it is in opposition with the sun, when it will be visible all night. It is then about 5° south of Lambda Piscium. For some weeks before and after this date the planet can best be observed, and its position and motion can be followed with a field glass. See the accompanying map of the planet's path amongst the stars.



position of the planet on the first of each month.

### Neptune

The planet Neptune is the most distant member of the solar system, being 2,800 millions of miles from the sun and requiring 165 years to complete a revolu-

tion. During the year it moves in the constellation Leo. On January 1 its R.A. is 9h 39m. It retrogrades until May 1 when its R.A. is 9h 29m. The motion then becomes direct and on December 31 the planet is in R.A. 9h 48m, Decl. 13° 44' S, about 4° west of Regulus. The planet appears as a star of the eighth magnitude and so cannot be seen with the naked eye.

### ECLIPSES, 1925

There will be four eclipses in 1925, two of the sun and two of the moon.

1. A total eclipse of the sun, January 24, 1925. The path of totality will begin at sunrise just southeast of Lake of the Woods and crossing the southwestern part of Lake Superior, the north part of Lake Michigan, Lake Huron, southwestern Ontario and New York State, will sweep across the Atlantic Ocean, leaving the earth at sunset between the Shetland and Orkney Islands. Total eclipse will begin in Ontario a few minutes after nine o'clock and will last between one and two minutes. At Goderich it will last about 100 seconds while at St. Catharines it will last 105 seconds. For points nearer the edge of the path the duration of totality will, of course, be less. Sarnia and St. Thomas are just south of the path of the total eclipse, Owen Sound and Whitby are just north and Goderich, Hamilton, St. Catharines and Buffalo are close to the centre of the path.

The eclipse is visible as a partial eclipse in the eastern half of North America and Mexico, Central America, the north end of South America and the Atlantic Ocean, ending at sunset on a line passing through Iceland, Ireland, Spain and northern Africa. In southwestern Ontario the partial eclipse begins just after sunrise, in the Maritime Provinces about twenty minutes after eight (eastern standard time). At Windsor about ninety-eight hundredths of the sun's diameter is covered by the moon, at Ottawa and North Bay about ninety-six hundredths and at Quebec, St. John and Halifax about ninety-two hundredths.

#### CIRCUMSTANCES OF THE ECLIPSE

|                              | Greer     | wich | Civil | Long. from | Latitu | de |
|------------------------------|-----------|------|-------|------------|--------|----|
|                              |           | Tim  | e     | Greenwich  |        |    |
|                              | d         | h    | m     | 0 /        | 0      | '  |
| Eclipse begins January       | 24        | 12   | 41.4  | +88 02     | +24    | 43 |
| Central eclipse begins "     | <b>24</b> | 14   | 02.0  | +94 24     | +48    | 18 |
| Central eclipse at local ap- |           |      |       |            |        |    |
| parent noon                  | <b>24</b> | 15   | 06.4  | +43 33     | +42    | 09 |
| Central eclipse ends "       | <b>24</b> | 15   | 45.0  | + 3 05     | +61    | 28 |
| Eclipse ends "               | 24        | 17   | 05.8  | + 0 11     | +39    | 41 |

2. A partial eclipse of the moon, February 8-9, 1925. The beginning is visible in Europe, Asia, Africa and the eastern part of the Atlantic Ocean. The ending is visible in Asia, Europe, Africa, the Atlantic Ocean, South America and the eastern part of North America.

### CIRCUMSTANCES OF THE ECLIPSE

|                         | d       | h         | m     |            |
|-------------------------|---------|-----------|-------|------------|
| Moon enters penumbraFeb | ruary 8 | 18        | 48.1) |            |
| Moon enters umbra       | " 8     | 20        | 8.6   | c · 1      |
| Middle of the eclipse   | " 8     | <b>21</b> | 42.0  | Greenwich  |
| Moon leaves umbra       | " 8     | 23        | 15.4  | Civil Time |
| Moon leaves penumbra    | " 9     | 00        | 35.2) |            |
|                         | , 1.    |           | 1 00) |            |

Magnitude of the eclipse = 0.735 (Moon's diameter = 1.00)

A map showing the path of totality in United States and Canada will be found at the back of this book.

3. An annular eclipse of the sun, July 20-21, 1925. This eclipse is visible only in the Southern Pacific Ocean, ending at sunrise on the eastern coast of Australia. The path of annulus begins between Australia and New Zealand and ends west of the south part of South America.

4. A partial eclipse of the moon, August 4, 1925. The beginning will be visible generally in western North America, western South America, the Pacific Ocean, Australia and the northeastern part of Asia. The ending will be visible generally in the Pacific Ocean, Australia, eastern Asia and the Indian Ocean.

### CIRCUMSTANCES OF THE ECLIPSE

4 h

-----

|                                                  |          | u  | 11 | m    |
|--------------------------------------------------|----------|----|----|------|
| Moon enters penumbraG.C.T.                       | Aug.     | 4  | 9  | 24.8 |
| Moon enters umbra                                | **       | 4  | 10 | 27.4 |
| Middle of the eclipse                            | 44       | 4  | 11 | 52.6 |
| Moon leaves umbra                                | "        | 4  | 13 | 17.6 |
| Moon leaves penumbra                             | " "      | 4  | 14 | 19.9 |
| Magnitude of the eclipse $= 0.751$ (moon's diame | ter = 1. | 0) |    |      |

The Sun.—During January the sun's R.A. increases from 18h 44m to 20h 56m and its Decl. from 23° 4' S to 17° 18' S. The equation of time (see page 6) increases from 3m 35s to 13m 44s. On account of this rapid rise in value the time of mean noon appears to remain, for the first ten days of the month, at the same distance from the time of sunrise, that is, the forenoons as indicated by our clocks are of the same length. On the 20th the sun enters the sign of Aquarius, the second of the winter signs of the zodiac. On January 3 the earth is in perihelion, at a distance of 91,338,000 miles. On January 24 there is a total eclipse of the sun visible in Ontario and the eastern United States (see page 26).

The Moon.—For its phases and conjunctions with the planets, see opposite page. On January 3 the moon occults a star in Cetus (see page 8).

Mercury on the 15th is in R.A. 18h 4m, Decl.  $21^{\circ} 40'$  S, and transits at 10.27 (L.M.T.). On the 17th it attains its greatest elongation, at which time it is  $24^{\circ} 4'$  west of the sun, and it should be easily observed as a morning star. On the date given at sunrise the planet is about  $12^{\circ}$  above the horizon and  $45^{\circ}$  south of the east point. Use a field-glass in searching for the planet before sunrise. (See page 22).

Venus on the 15th is in R.A. 18h 0m, Decl.  $22^{\circ} 53'$  S, and transits at 10.25 (L.M.T.). Thus it is a morning star and rises about  $1\frac{1}{2}$  hrs. before the sun. It is still a prominent object and has a stellar magnitude of -3.4 all the month. It is slowly approaching the sun but does not reach conjunction with it until April 24.

*Mars* on the 15th is in R.A. 1h 0m, Decl. 6° 43' N and transits at 17.23 (L.M.T.). Its stellar magnitude is now only +0.7 and its brightness about one twenty-fifth that at the time of opposition in August last. It is in the constellation Pisces and can easily be observed as an evening star.

Jupiter on the 15th is in R.A. 18h 28m, Decl.  $23^{\circ}$  10' S, and transits at 10.50 (L.M.T.). It was in conjunction with the sun on December 22, and is a morning star rising in the south-east at about 6.30 or about one hour before the sun. Consequently it is not very well placed for observation. For the configuration of its satellites, see next page; and for their eclipses, etc., see page 52.

Saturn on the 15th is in R.A. 14h 45m, Decl.  $13^{\circ} 32'$  S, and transits at 7.08 (L.M.T.). It is a very good morning star. It is in Libra, not far from Alpha and about  $15^{\circ}$  east of Spica. At sunrise it is  $30^{\circ}$  above the horizon and  $10^{\circ}$  west of south. Stellar magnitude 0.8. At the beginning of the year the earth is  $20^{\circ}$  N of the plane of Saturn's rings; at the end,  $23^{\circ}$ .

Uranus on the 15th is in R.A. 23h 19m, Decl.  $5^{\circ}$  12' S, and transits at 15.41 (L.M.T.). It is thus an evening star in Pisces.

Neptune on the 15th is in R.A. 9h 38m, Decl.  $14^{\circ}$  31' N, and transits at 2.18 (L.M.T.). It is in Leo about 5° west of Regulus from which it is separating.

For further information regarding the planets, especially *Uranus* and *Neptune* with maps of their paths, see pages 22 to 26. Local Mean Time (L.M.T.) counts from midnight. To change to Standard Time, see page 9.

|          | (75th | Μ         | <b>JANUARY</b><br>ASTRONOMICAL PHENOMENA<br>eridian Time, Hours Numbering from Midnight)                  | Minima of<br>Algol | Configurations<br>of Jupiter's<br>Satellites |
|----------|-------|-----------|-----------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------|
| <b>D</b> | Thur  | 1         | 9h 22m of of 0 . of 4° 30′ N.: 18h 26m Moon F.O                                                           | h m                |                                              |
|          | Fri.  | 2         |                                                                                                           |                    |                                              |
|          | Sat.  | 3         | 9h                                                                                                        | $2 \ 10$           |                                              |
|          | Sun.  | 4         |                                                                                                           |                    |                                              |
|          | Mon.  | <b>5</b>  |                                                                                                           | $23\ 00$           |                                              |
|          | Tues. | 6         | 19h & Stationary                                                                                          |                    |                                              |
|          | Wed.  | 7         |                                                                                                           |                    |                                              |
| _        | Thur. | 8         |                                                                                                           | 19 50              |                                              |
| Ľ        | Fri.  | 9         | 21h 47m F.M                                                                                               |                    | 'n.                                          |
|          | Sat.  | 10        |                                                                                                           | 10.10              | S                                            |
|          | Sun.  | 11        | 141 40 / 111/17 111 02 05/ 0                                                                              | 16 40              | to                                           |
|          | Mon.  | 12        | 14h 49m $\mathcal{O} \Psi \mathcal{Q}, \Psi \mathcal{O}^* 27$ S                                           |                    | ity                                          |
|          | Tues. | 13        |                                                                                                           | 13 30              | kim.                                         |
|          | Thur  | 14        |                                                                                                           | 10 00              | 102                                          |
|          | Fri   | 16        | $2h \sim 8 \circ 8 1^{\circ} 0' N$                                                                        |                    | f b                                          |
| Ø        | Sat   | 17        | 17h 8 Greatest Florg W $24^{\circ} 4' \cdot 18h 33m$ Moon                                                 |                    | it c                                         |
| Ψ.       | Sat.  | 11        |                                                                                                           | 10 20              | unc                                          |
|          | Sun.  | 18        | $20h 49m \circ \flat \oplus 3^{\circ} 4' S \dots$                                                         |                    | ŏ                                            |
|          | Mon.  | 19        | ······································                                                                    |                    | n a                                          |
|          | Tues. | 20        | $22h \triangleleft 9 2\downarrow, 9 0^{\circ} 10' N$                                                      | 7 10               | e o                                          |
|          | Wed.  | 21        | 23h of \$ 24, \$ 0° 36' N                                                                                 |                    | ibl                                          |
|          | Thur. | 22        | 16h 34m ơ 24<br>${\Bbb G}$ , 24 2° 58′ S.; 17h 49m ơ<br>${\Bbb G}$ ,<br>${\Bbb G}$ ,<br>${\Bbb Q}$ 2° 25′ |                    | vis                                          |
|          |       |           | S.; 19h 49m ♂ ♀ ₵ , ♀ 2° 44′ S                                                                            |                    | In                                           |
|          | Fri.  | 23        |                                                                                                           | 4 0                |                                              |
| ę        | Sat.  | <b>24</b> | 9h 45m N.M.; O Total Eclipse visible in Central                                                           |                    |                                              |
|          | 0     | ~ ~       | Ontario (see p. 26)                                                                                       |                    |                                              |
|          | Sun.  | 25        | 001 H + 00                                                                                                | 0 50               |                                              |
|          | Mon.  | 26        | 20h Q = in Q                                                                                              | 0 50               |                                              |
|          | Tues. | 21<br>90  | $011 \neq 1110; 1011 21111 0 0 U, 0 2 20 N$                                                               | 21 20              |                                              |
|          | Thur  | 20        |                                                                                                           | £1 00              |                                              |
|          | Fri   | 49<br>30  | 2h 30m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                              |                    |                                              |
| D        | Sat.  | 31        | 11h 43m Moon F.Q.                                                                                         | 18 20              |                                              |

Explanation of symbols and abbreviations on page 4.

The Sun.—During February the sun's R.A. increases from 20h 56m to 22h 46m, and its Decl. changes from  $17^{\circ}$  18' S to  $7^{\circ}$  51' S. The equation of time reaches a maximum value of 14m 24s on the 12th (see page 6). For the change in the length of the day, see page 11. On the 20th the sun enters the third winter sign of the zodiac, Pisces.

The Moon.—For its phases and conjunctions with the planets, see opposite page. On February 2 it occults two stars in Taurus, one of them being Aldebaran; on the 19th, one in Sagittarius; and on the 27th, two in Cetus (see page 8). There is a partial eclipse of the moon on the 8-9th (see page 26).

Mercury on the 15th is in R.A. 21h 3m, Decl.  $18^{\circ} 51'$  S, and transits at 11.23 (L.M.T.). It is approaching the sun with which it comes into conjunction early next month, and so it is not well placed for observation.

Venus on the 15th is in R.A. 20h 48m, Decl. 18° 39' S, and crosses the meridian at 11.08 (L.M.T.). It is still a morning star but only about 15° from the sun, and so not well situated for observation.

*Mars* on the 15th is in R.A. 2h 16m, Decl.  $14^{\circ}$  24' N, and transits at 16.35 (L.M.T.). It is now in the constellation Aries, its stellar magnitude is 1.1 which is the same as that of Aldebaran, and it can easily be observed as an evening star.

Jupiter on the 15th is in R.A. 18h 57m, Decl. 22° 44′ S, and it transits the meridian at 9.17 (L.M.T.). It is in Sagittarius and is easily observed as a morning star, of stellar magnitude -1.5 or approximately equal in brightness to Sirius. On the 7th the planet passes very near the naked-eye pair of stars Nu<sub>1</sub> and Nu<sub>2</sub>.

Saturn on the 15th is in R.A. 14h 46m, Decl.  $13^{\circ}$  33' S, and it crosses the meridian at 7.09 (L.M.T.). It is about 2° north of the third magnitude white star Alpha Librae. The planet is increasing in brightness, its stellar magnitude being 0.7, as compared with 0.8 a month ago, which is equivalent to an increase of 11 per cent. It reaches a stationary point on the 22nd, when it begins to retrograde, or move westward amongst the stars.

Uranus on the 15th is in R.A. 23h 24m, Decl.  $4^{\circ}$  37' S, and it transits at 13.44 (L.M.T.). It is an evening star in Pisces.

Neptune on the 15th is in R.A. 9h 34m, Decl.  $14^{\circ} 47'$  N, and transits at 23.52 (L.M.T.). It is in opposition to the sun on the 10th.

For further information regarding the planets, especially *Uranus* and *Neptune*, with maps of their paths, see pages 22 to 26.

|   | (75th | Me        | <b>FEBRUARY</b><br>ASTRONOMICAL PHENOMENA<br>eridian Time, Hours Numbering from Midnight)                                      | Minima of<br>Algol |     | Comgurations<br>of Jupiter's<br>Satellites at<br>5h 45m |
|---|-------|-----------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|---------------------------------------------------------|
|   |       |           |                                                                                                                                | h                  | m   |                                                         |
|   | Sun.  | 1         |                                                                                                                                |                    |     | 42103                                                   |
|   | Mon.  | <b>2</b>  |                                                                                                                                |                    |     | d43O2                                                   |
|   | Tues. | 3         | $3h \circ \xi \varphi$ , $\xi \circ 0^{\circ} 38' S$ .; $3h \Box \flat \odot$                                                  | 15                 | 10  | 30142                                                   |
|   | Wed.  | 4         |                                                                                                                                |                    |     | 32104                                                   |
|   | Thur. | <b>5</b>  |                                                                                                                                |                    |     | 23014                                                   |
|   | Fri.  | 6         | 2h & in Aphelion                                                                                                               | 12                 | 00  | 10234                                                   |
|   | Sat.  | 7         |                                                                                                                                |                    |     | O2134                                                   |
| Ċ | Sun.  | 8         | 16h 49m F.M.; C, Partial Eclipse, Ending visible in<br>Eastern Canada (see p. 26); 19h 44m σ' ΨC, Ψ0°<br>22' S                 |                    |     | 21034                                                   |
|   | Mon.  | 9         |                                                                                                                                | 8                  | 50  | 3014*                                                   |
|   | Tues. | 10        | $6h \circ^{\circ} \Psi \odot \dots$                                                                                            |                    |     | 3042*                                                   |
|   | Wed.  | 11        |                                                                                                                                |                    |     | 3214O                                                   |
|   | Thur. | 12        |                                                                                                                                | <b>5</b>           | 40  | 42301                                                   |
|   | Fri.  | 13        |                                                                                                                                |                    |     | 41023                                                   |
|   | Sat.  | <b>14</b> |                                                                                                                                |                    |     | 40213                                                   |
|   | Sun.  | 15        | 4h 40m $\circ' \flat \mathbb{G}$ , $\flat 2^{\circ} 57' $ S                                                                    | <b>2</b>           | 30  | 42103                                                   |
| Œ | Mon.  | 16        | 4h 41m Moon L.Q                                                                                                                |                    |     | 42031                                                   |
|   | Tues. | 17        |                                                                                                                                | 23                 | 20  | 4302*                                                   |
|   | Wed.  | 18        |                                                                                                                                |                    |     | 34120                                                   |
|   | Thur. | 19        | 11h 19m of $24$ (C), $242^{\circ}$ 33′ S                                                                                       |                    |     | 23401                                                   |
|   | Fri.  | 20        |                                                                                                                                | 20                 | 00  | 10324                                                   |
| _ | Sat.  | 21        | 18h 17m $\mathcal{O} \oplus \mathbb{Q}$ , $\oplus 0^{\circ} 39' S$                                                             |                    |     | 01234                                                   |
|   | Sun.  | 22        | 5h 52m $\mathcal{O} \ \mathfrak{G} \ \mathfrak{G}$ , $\mathfrak{G} \ 1^{\circ} 11' \ S.; 16h \ \mathfrak{P} \ Stationary; 21h$ | L                  |     |                                                         |
|   |       |           | 12m N.M                                                                                                                        |                    | ~ ~ | 21034                                                   |
|   | Mon.  | 23        | 23h 22m ♂ õℚ , õ 2° 33′ N                                                                                                      | 16                 | 50  | 20314                                                   |
|   | Tues. | 24        |                                                                                                                                |                    |     | 31024                                                   |
|   | Wed.  | 25        |                                                                                                                                | 10                 | 40  | dd304                                                   |
|   | Thur. | 26        | IIh $Q$ Greatest Hel. Lat. S                                                                                                   | 13                 | 40  | 32014                                                   |
|   | Fri.  | 27        | $22h \ 57m \ 0 \ 0'$ (Q), $0' \ 6'' \ 25'' \ N \dots$                                                                          |                    |     | 10324                                                   |
| _ | Sat.  | 28        |                                                                                                                                |                    |     | 40123                                                   |

Explanation of symbols and abbreviations on page 4.

The Sun.—During March the sun's R.A. increases from 22h 46m to 0h 40m, and its Decl. changes from  $7^{\circ}$  51' S to  $4^{\circ}$  16' N. The equation of time decreases from 12m 34s to 4m 12s (see page 6). For changes in the length of the day, see page 12. On the 20th at 10.13 p.m. E.S.T. the sun enters the first spring sign of the zodiac, Aries (see opp. page).

The Moon.—For its phases and its conjunctions with the planets, see opposite page. On March 15 it occults a star in Libra (see page 8).

Mercury on the 15th is in R.A. 0h 15m, Decl. 1° 10' N, and transits at 12.45 (L.M.T.). The planet is in superior conjunction with the sun on the 5th. It then separates from the sun and on the 31st reaches greatest elongation east, being then 18° 58' from the sun. This is an excellent time to see the planet. Just after sunset, almost directly in the west, Mercury will appear as a brilliant first magnitude star. It should be visible for about two weeks before and a week after greatest elongation. A field-glass will help to locate the planet at first. (See page 22).

Venus on the 15th is in R.A. 23h 4m, Decl. 7° 29' S, and transits at 11.34 (L.M.T.). It is slowly approaching superior conjunction with the sun, and is not well situated for observation.

*Mars* on the 15th is in R.A. 3h 28m, Decl. 19° 53' N, and it transits the meridian at 15.57 (L.M.T.) and it sets about 7h 25m later (to an observer in 45° north latitude). On the date given it is in Taurus about 5° south-west of the Pleiades, and its stellar magnitude is 1.4.

Jupiter on the 15th is in R.A. 19h 18m, Decl.  $22^{\circ}$  12' S, and transits the meridian at 7.48 (L.M.T.). It rises (to a person in N latitude 45°) 4h 24m before this and so is a bright morning star. Its stellar magnitude is -1.6, the same as that of Sirius.

Saturn on the 15th is in R.A. 14h 49m, Decl.  $13^{\circ}$  45' and it crosses the meridian at 3.20 (L.M.T.). Its position is very little different from that a month ago, but it is now moving westward more rapidly than then. Its stellar magnitude is 0.6 and consequently its brightness 11 per cent. greater than a month ago.

Uranus on the 15th is in R.A. 23h 30m, Decl.  $4^{\circ}$  1' S, and it transits at 12.04 (L.M.T.). It is in conjunction with the sun on the 12th and hence cannot be observed during the month.

Neptune on the 15th is in R.A. 9h 31m, Decl. 15° 1′ N, and transits at 22.00 (L.M.T.). It is still retrograding, that is, moving westward amongst the stars.

For further information regarding the planets, especially *Uranus* and *Neptune*, with maps of their paths, see pages 22 to 26.

|   | (75th | M         | <b>MARCH</b><br>ASTRONOMICAL PHENOMENA<br>eridian Time, Hours Numbering from Midnight) | Minima of<br>Algol | Configurations<br>of Jupiter's<br>Satellites at<br>4h 45m |
|---|-------|-----------|----------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------|
|   |       |           |                                                                                        | h n                | 1                                                         |
|   | Sun.  | 1         |                                                                                        | 10 30              | 0 41203                                                   |
| Ð | Mon.  | 2         | 7h 7m Moon F.Q.; 21h $Q$ in Aphelion                                                   |                    | 42013                                                     |
|   | Tues. | 3         |                                                                                        |                    | 43102                                                     |
|   | Wed.  | 4         | · · · · · · · · · · · · · · · · · · ·                                                  | 7 20               | 0 43012                                                   |
|   | Thur. | <b>5</b>  | $8h \circ \emptyset \odot$ Superior                                                    |                    | 4320*                                                     |
|   | Fri.  | 6         | -                                                                                      |                    | 4130*                                                     |
|   | Sat.  | 7         |                                                                                        | 4 10               | 0 40123                                                   |
|   | Sun.  | 8         | 1h 50m σΨC, Ψ0° 19' S.; 17h σ Ϩ δ, Ϩ 0° 42' S                                          |                    | 12403                                                     |
|   | Mon.  | 9         |                                                                                        |                    | 20143                                                     |
| E | Tues. | 10        | 9h 21m F.M                                                                             | 1 00               | 0 31024                                                   |
|   | Wed.  | 11        |                                                                                        |                    | 30124                                                     |
|   | Thur. | 12        | 8h of ô O                                                                              | 21 50              | 0 32104                                                   |
|   | Fri.  | 13        |                                                                                        |                    | dO4**                                                     |
|   | Sat.  | 14        | 9h 41m $\sigma' \flat \mathbb{Q}$ , $\flat$ 2° 44′ S                                   |                    | 01324                                                     |
|   | Sun.  | 15        |                                                                                        | 18 4               | 0 12043                                                   |
|   | Mon.  | 16        |                                                                                        |                    | 20143                                                     |
| Ø | Tues. | 17        | 10h & in Q; 12h 22m Moon L.Q                                                           |                    | 14302                                                     |
|   | Wed.  | 18        |                                                                                        | 15 30              | 0 43012                                                   |
|   | Thur. | 19        | 1h 56m of 24 ( , 24 2° 6′ S                                                            |                    | $4321\mathrm{O}$                                          |
|   | Fri.  | 20        | 22h 13m ⊙enters Ŷ, Spring commences                                                    |                    | 43201                                                     |
|   | Sat.  | 21        | $5h \circ \varphi \otimes , \varphi \otimes  47' S$                                    | 12 10              | 0 4032*                                                   |
|   | Sun.  | 22        | $2h \notin$ in Perihelion                                                              |                    | d41O3                                                     |
|   | Mon.  | 23        | 11h 32m ♂ Ŝ @, Ŝ 2° 40′ N.; 16h 29m ♂ ♀ @, ♀                                           |                    |                                                           |
|   |       |           | 2° 6′ N                                                                                |                    | 42013                                                     |
| 0 | Tues. | <b>24</b> | 9h 3m N.M.                                                                             | 90                 | 0 d4102                                                   |
|   | Wed.  | 25        | 3h ♀ Greatest Hel. Lat. S.; 13h 40m ♂ ♥ @, ♥ 6°                                        |                    |                                                           |
|   |       |           | 51′ N                                                                                  |                    | 3012*                                                     |
|   | Thur. | 26        |                                                                                        |                    | 32104                                                     |
|   | Fri.  | 27        |                                                                                        | 5 5                | 0 32014                                                   |
|   | Sat.  | 28        | 21h 12m ♂ ♂ € , ♂ 6° 0′ N                                                              |                    | O324*                                                     |
|   | Sun.  | 29        | · · · · · · · · · · · · · · · · · · ·                                                  |                    | 10234                                                     |
|   | Mon.  | 30        | 19h & Greatest Elong. E., 18° 58'                                                      | $2 \ 4$            | 0 20134                                                   |
|   | Tues. | 31        | -                                                                                      |                    | 10234                                                     |
| _ | Tues. | 31        |                                                                                        |                    | 10234                                                     |

Explanation of symbols and abbreviations on page 4.

### THE SKY FOR APRIL, 1925

The Sun.—During April the sun's R.A. increases from 0h 40m to 2h 31m and its Decl. from 4° 16' N to 14° 51' N. The equation of time changes from +4m 12s to -2m 51s (see page 6). For the length of daylight in various latitudes, consult page 13. On the 20th the sun enters the second spring sign, Taurus.

The Moon.—For its phases and its conjunctions with the planets, see opposite page. On April 14 it occults a star in Sagittarius and on the 17th one in Capricornus (see page 8).

Mercury on the 15th is in R.A. 1 h 49m, Decl.  $13^{\circ} 52'$  N, and transits at 12.17 (L.M.T.). For the first few days of the month the planet should be easily seen in the west just after sunset (see last month's notes), but it will not be visible during the rest of the month as it comes into inferior conjunction with the sun on the 18th (see opposite page).

Venus on the 15th is in R.A. 1h 31m, Decl.  $8^{\circ}$  14' N, and transits at 11.54 (L.M.T.). It reaches superior conjunction with the sun on the 24th, after which it is an evening star, but altogether too close to the sun to be observed.

Mars on the 15th is in R.A. 4h 52m, Decl. 23° 41' N, and it passes the meridian at 15.19 (L.M.T.). Its stellar magnitude is 1.7 and it is still in Taurus. On the 7th it is 4° north of Aldebaran, whose magnitude is 1.1, or about  $1\frac{3}{4}$  times as bright. These two bodies resemble each other in general appearance, though one is a small planet comparatively near to us and the other is a great sun far in the depths of space.

Jupiter on the 15th is in R.A. 19h 33m, Decl. 21° 44' S, and crosses the meridian at 6.01 (L.M.T.). On the 11th it is in quadrature with the sun, being 90° west of that body. It is a bright morning star, in the constellation Sagittarius.

Saturn on the 15th is in R.A. 14h 42m, Decl.  $13^{\circ}$  0' S, and it transits the meridian at 1.12 (L.M.T.). It is approaching opposition to the sun which occurs early in May. Its stellar magnitude is 0.4 and consequently its brightness is 12 per cent. greater than a month ago.

Uranus on the 15th is in R.A. 23h 37m, Decl.  $3^{\circ}$  19' S, and it transits at 10.04 (L.M.T.). It is a morning star, rising about two hours before the sun.

Neptune on the 15th is in R.A. 9h 30m, Decl.  $15^{\circ} 11'$  N, and transits at 19.56 (L.M.T.). It retrogrades all month.

For further information regarding the planets, especially Uranus and Neptune, with maps of their paths, see pages 22 to 26.
# APRIL

# ASTRONOMICAL PHENOMENA

Minima of Algol Configurations

(75th Meridian Time, Hours Numbering from Midnight)

|   |       |           |                                                                                                                                                     | h  | m  |       |
|---|-------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-------|
| Ð | Wed.  | 1         | 3h 12m Moon F.Q.; 8h & Greatest Hel. Lat. N.;                                                                                                       |    |    |       |
|   |       |           | 19h 👌 in Aphelion                                                                                                                                   | 23 | 30 | 30124 |
|   | Thur. | 2         | •••••••••••••••••••••••••••••••••••••••                                                                                                             |    |    | 31204 |
|   | Fri.  | 3         |                                                                                                                                                     |    |    | 32401 |
|   | Sat.  | 4         | 9h 9m $\sigma' \Psi \mathbb{G}$ , $\Psi 0^{\circ} 24' $ S                                                                                           | 20 | 20 | 41032 |
|   | Sun.  | 5         |                                                                                                                                                     |    |    | 40123 |
|   | Mon.  | 6         | $5h 24 in $ <sup><math>\circ</math></sup>                                                                                                           |    |    | 4203* |
|   | Tues. | 7         |                                                                                                                                                     | 17 | 10 | 4103* |
| Ľ | Wed.  | 8         | 7h & Stationary; 22h 33m F.M                                                                                                                        |    |    | 43012 |
|   | Thur. | 9         |                                                                                                                                                     |    |    | 43120 |
|   | Fri.  | 10        | 14h 16m $\sigma \flat \mathbb{G}$ , $\flat 2^{\circ} 32' S$                                                                                         | 14 | 00 | 34201 |
|   | Sat.  | 11        | $10h \square 20 \dots$                                                                                                                              |    |    | 1042* |
|   | Sun.  | 12        |                                                                                                                                                     |    |    | 01243 |
|   | Mon.  | 13        |                                                                                                                                                     | 10 | 50 | 2034* |
|   | Tues. | 14        |                                                                                                                                                     |    |    | 1034* |
| C | Wed.  | 15        | 12h 27m of 24 (f), 24 1° 40′ S.; 18h 40m Moon L.Q                                                                                                   |    |    | 30124 |
|   | Thur. | 16        |                                                                                                                                                     | 7  | 30 | 31204 |
|   | Fri.  | 17        |                                                                                                                                                     |    |    | 32014 |
|   | Sat.  | 18        | 12h $\checkmark \& \bigcirc \bigcirc$ Inferior; 16h $\checkmark \& \bigcirc \bigcirc \bigcirc \bigcirc$ , $\& \Im \circ O' \land \bigcirc \bigcirc$ |    |    | 1024* |
|   | Sun.  | 19        | 21h 18m ♂ Ô €, Ô 2° 52′ N                                                                                                                           | 4  | 20 | O4123 |
|   | Mon.  | 20        |                                                                                                                                                     |    |    | 42103 |
|   | Tues. | 21        |                                                                                                                                                     |    |    | d42O3 |
| 0 | Wed.  | 22        | 4h 52m ♂ 𝔅 𝔅 , 𝔅 5° 57′ N.; 18h 0m ♂ 𝔅 𝔅 , 𝔅 4° 12′                                                                                                 |    |    |       |
|   |       |           | N.; 21h 28m N.M.                                                                                                                                    | 1  | 10 | 43012 |
|   | Thur. | 23        | $20h \circ \bigcirc \bigcirc$ Superior                                                                                                              |    |    | d4310 |
|   | Fri.  | <b>24</b> | 20h \varphi in \vartial                                                                                                                             | 22 | 00 | 43201 |
|   | Sat.  | 25        |                                                                                                                                                     |    |    | 41302 |
|   | Sun.  | 26        | 19h 40m $\sigma \sigma^{3}$ ( , $\sigma^{3}$ 4° 56′ N                                                                                               |    |    | 40123 |
|   | Mon.  | 27        | ·                                                                                                                                                   | 18 | 50 | 24103 |
|   | Tues. | <b>28</b> |                                                                                                                                                     |    |    | 20143 |
|   | Wed.  | 29        |                                                                                                                                                     |    |    | 3024* |
| Ð | Thur. | 30        | 19h \ Stationary; 20h \ Stationary; 22h 20m Moon                                                                                                    |    |    |       |
| - |       |           | F.Q                                                                                                                                                 | 15 | 40 | 31024 |

### THE SKY FOR MAY, 1925

The Sun.—During May the sun's R.A. increases from 2h 31m to 4h 33m and its Decl. from 14° 51' N to 21° 57' N. The equation of time increases from 2m 51s to a maximum of 3m 48s on the 14th, and then falls to 2m 30s on the 31st (see page 6). For change in the length of the day, see page 14. On the 21st the sun enters Gemini, the third sign of the zodiac.

The Moon.—For its phases and its conjunctions with the planets, see opposite page. On May 1 it occults the planet Neptune (see page 8).

Mercary on the 15th is in R.A. 1h 51m, Decl. 7° 51' N, and transits at 10.20 (L.M.T.). During the first part of the month the planet is separating from the sun and it reaches greatest elongation west on the 16th. At that time its distance from the sun is  $25^{\circ}$  50', which is much greater than at the easterly elongation on March 31. But it cannot be seen as a morning star so well as on the previous elongation when it was an evening star. This is due to the small inclination of the ecliptic to the horizon in the east at sunrise and the consequent small altitude of the planet. But it should be visible under favourable atmospheric conditions. (See page 22).

Venus on the 15th is in R.A. 3h 51m, Decl. 19° 55' N, and transits at 12.20 (L.M.T.). It is an evening star and improving its position for observation, but still too close to the sun to be seen, except towards the end of the month. Its stellar magnitude is -3.4 on May 31.

*Mars* on the 15th is in R.A. 6h 16m, Decl.  $24^{\circ} 37'$  N, and it crosses the meridian at 14.45 (L.M.T.), setting about 73/4 hours later. It is thus easily visible still as an evening star, but as its stellar magnitude is now only 1.9 it is not a prominent object. It is in the constellation Gemini.

Jupiter on the 15th is in R.A. 19h 37m, Decl. 21° 39' S, and it transits the meridian at 4.08 (L.M.T.). On the 10th it reaches a stationary point and begins to move westward amongst the stars, *i.e.*, to retrograde, which it continues to do until September 9th. Stellar magnitude -2.0; a bright morning star.

Saturn on the 15th is in R.A. 14h 34m, Decl.  $12^{\circ}$  20' S, and it crosses the meridian at 23.01 (L.M.T.). It reaches opposition to the sun on the 1st, at which time it rises in the east as the sun sets in the west, and so is visible all night. Being nearest to us now its brightness is greatest, its stellar magnitude being 0.3, the same as that of Rigel.

Uranus on the 15th is in R.A. 23h 41m, Decl.  $2^{\circ}$  49' S, and it transits at 8.04 (L.M.T.). It is favourably placed for observation as a morning star.

Neptune on the 15th is in R.A. 9h 29m, Decl.  $15^{\circ} 11'$  N, and transits at 17.58 (L.M.T.). It comes to a stationary point on the 1st and from that date is moving eastward amongst the stars.

For further information regarding the planets, especially *Uranus* and *Neptune*, with maps of their paths, see pages 22 to 26.

# MAY

ASTRONOMICAL PHENOMENA

Minima of Algol onfigurations of Jupiter's Satellites at 2h 15m

(75th Meridian Time, Hours Numbering from Midnight)

|   |       |           |                                                                                             | h        | m         |            |
|---|-------|-----------|---------------------------------------------------------------------------------------------|----------|-----------|------------|
|   | Fri.  | 1         | 17h $\circ^{o}\mathfrak{b}\odot$ ; 17h 5m $\circ' \Psi \mathbb{G}$ , $\Psi 0^{\circ}$ 38' S |          |           | 32014      |
|   | Sat.  | <b>2</b>  |                                                                                             |          |           | 3104*      |
|   | Sun.  | 3         |                                                                                             | 12       | 30        | 01324      |
|   | Mon.  | 4         |                                                                                             |          |           | 12034      |
|   | Tues. | <b>5</b>  | $2h \notin$ in Aphelion                                                                     |          |           | 20143      |
|   | Wed.  | 6         |                                                                                             | 9        | <b>20</b> | dO32*      |
|   | Thur. | 7         | 19h 55m $\sigma' \flat \mathbb{G}$ , $\flat$ 2° 30' S                                       |          |           | d34O2      |
| E | Fri.  | 8         | 8h 43m F.M                                                                                  |          |           | 432O1      |
|   | Sat.  | 9         |                                                                                             | 6        | 10        | 4310*      |
|   | Sun.  | 10        | 13h 24 Stationary; 20h $\Box \Psi \odot$                                                    |          |           | 4O312      |
|   | Mon.  | 11        |                                                                                             |          |           | 412O3      |
|   | Tues. | 12        | 20h 0m $\sigma' 24$ (G , $241^{\circ} 24'$ S                                                | <b>3</b> | 00        | 42013      |
|   | Wed.  | 13        |                                                                                             |          |           | 41032      |
|   | Thur. | 14        |                                                                                             | 23       | 40        | d34O2      |
| Œ | Fri.  | 15        | 0h 46m Moon L.Q.                                                                            |          |           | 32014      |
|   | Sat.  | 16        | 6h & Greatest Elong. W., 25° 50′                                                            |          |           | 3104*      |
|   | Sun.  | 17        | 4h 48m ♂ Ĝ € , Ĝ 3° 8′ N                                                                    | 20       | 30        | O3124      |
|   | Mon.  | 18        |                                                                                             |          |           | 12O34      |
|   | Tues. | 19        |                                                                                             |          |           | 20134      |
|   | Wed.  | 20        | $5h 19m \checkmark \emptyset ( , \emptyset 1^{\circ} 52' N.; 10h \heartsuit in \Omega$      | 17       | 20        | 10234      |
|   | Thur. | 21        |                                                                                             |          |           | 30124      |
| ۲ | Fri.  | 22        | 10h 48m N.M                                                                                 |          |           | 3204*      |
|   | Sat.  | 23        | 1h 48m of $\mathbb{Q}\mathbb{G}$ , $\mathbb{Q}$ 4° 27′ N                                    | 14       | 10        | 3421O      |
|   | Sun.  | <b>24</b> |                                                                                             |          |           | $4012^{*}$ |
|   | Mon.  | 25        | 10h ♀ Greatest Hel. Lat. S.; 17h 7m ♂ ♂ € , ♂ 3° 29′                                        |          |           |            |
|   |       |           | N                                                                                           |          |           | d41O3      |
|   | Tues. | 26        |                                                                                             | 11       | 00        | 42013      |
|   | Wed.  | 27        |                                                                                             |          |           | 41023      |
|   | Thur. | <b>28</b> |                                                                                             |          |           | 43012      |
|   | Fri.  | <b>29</b> | 1h 1m $\checkmark \Psi \mathbb{C}$ , $\Psi 0^{\circ}$ 54' S                                 | 7        | 50        | 432O*      |
| D | Sat.  | 30        | 15h 4m Moon F.Q.                                                                            |          |           | d342O      |
|   | Sun.  | 31        | •••••••••••••••••••••••••••••••••••••••                                                     |          |           | 012**      |
|   |       |           |                                                                                             |          |           |            |

### THE SKY FOR JUNE, 1925

The Sun.—During June the sun's R.A. increases from 4h 33m to 6h 38m, and its Decl. rises from  $21^{\circ}$  57' N on the 1st to its maximum  $23^{\circ}$  27' on the 21st. On that date the sun reaches the summer solstice and enters the first summer sign of the zodiac, Cancer. The duration of daylight is then the longest, but it does not change appreciably for several days before and after this date (see page 15). The Decl. falls to 23° 10' on the 30th. The increase in the equation of time, taken with the decreasing length of daylight, causes the local mean time of sunset to appear constant for several days at the end of June and the beginning of July.

*The Moon.*—For its phases and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 5h 8m, Decl.  $23^{\circ}$  14' N, and transits the meridian at 11.35 (L.M.T.). It reaches superior conjunction with the sun on the 20th and so is not well situated for observation during the month.

Venus on the 15th is in R.A. 6h 34m, Decl.  $24^{\circ} 12'$  N, and transits the meridian at 13.02 (L.M.T.). The planet now sets one hour after the sun, to an observer in latitude  $45^{\circ}$  N, and so is a fine evening star.

Mars on the 15th is in R.A. 7h 41m, Decl.  $22^{\circ} 40'$  N, and it crosses the meridian at 14.08 (L.M.T.). At that time it is  $5\frac{1}{2}^{\circ}$  south of Pollux. Magnitude of Pollux, 1.2; of Mars, 2.0 or only one-half as bright as Pollux.

Jupiter on the 15th is in R.A. 19h 29m, Decl.  $22^{\circ} 2'$  S, and transits the meridian at 1.58 (L.M.T.). Its position now is 8m of time or  $2^{\circ}$  of angle west of its position one month ago, and it is somewhat brighter, having a magnitude of -2.2.

Saturn on the 15th is in R.A. 14h 27m, Decl. 11° 50' S, and it crosses the meridian at 20.52 (L.M.I.). It is still retrograding and its brightness is slowly diminishing, being now back to 0.6. It is a good evening star and is well situated for observation.

Uranus on the 15th is in R.A. 23h 44m, Decl.  $2^{\circ} 32'$  S, and it transits at 6.16 (L.M.T.). It is in quadrature with the sun on the 17th—that is, it is  $90^{\circ}$  from the sun then. It is well placed for observation as a morning star.

Neptune on the 15th is in R.A. 9h 31m, Decl.  $15^{\circ} 2'$  N, and transits at 15.58 (L.M.T.).

For further information regarding the planets, especially Uranus and Neptune, with maps of their paths, see pages 22 to 26.

| _  | (75t  | Minima of<br>Algol | Configurations<br>of Jupiter's<br>Satellites at<br>1h 0m                                    |           |       |
|----|-------|--------------------|---------------------------------------------------------------------------------------------|-----------|-------|
|    |       |                    |                                                                                             | h m       |       |
|    | Mon.  | 1                  | •••••••••••••••••••••••••••••••••••••••                                                     | 4 40      | 10243 |
|    | Tues. | 2                  | • • • • • • • • • • • • • • • • • • • •                                                     |           | 20134 |
|    | Wed.  | 3                  |                                                                                             |           | 1034* |
|    | Thur. | . 4                | $2h 49m \sigma \rho @, \rho 2^{\circ} 41' S$                                                | 1 30      | 30124 |
| 6  | Fri.  | 5                  |                                                                                             |           | 32104 |
| e  | 9Sat. | 5                  | 16h 48m F.M.                                                                                | $22 \ 20$ | 32014 |
|    | Sun.  | (                  | •••••••••••••••••••••••••••••••••••••••                                                     |           | 3024* |
|    | Trues | ð                  | 11 = 50 - 20   A = 0   10 = 0   C                                                           | 10.00     | 10423 |
|    | Tues. | 10                 | $1n \text{ 59m } 0.240, 21^{\circ} 26, 5$                                                   | 19 00     | 24013 |
|    | Thum  | 10                 | •••••••••••••••••••••••••••••••••••••••                                                     |           | 4103* |
|    | Thur. | 11                 | •••••••••••••••••••••••••••••••••••••••                                                     | 15 50     | 43012 |
| Ø  | Sat   | 12                 | $7h 44m M_{000} I 0 \cdot 10h 8 = 0 \cdot 11h 91m - 1/2 \pi$                                | 19 90     | 43120 |
| ¢. | Sat.  | 10                 | A 3° 23′ N                                                                                  |           | 42901 |
|    | Sun   | 14                 | 0 0 20 N                                                                                    |           | 40201 |
|    | Mon   | 15                 |                                                                                             | 19 40     | 4002  |
|    | Tues  | 16                 | 22h □ ♠ ⊙                                                                                   | 12 40     | 94019 |
|    | Wed.  | 17                 | 22n 🖂 0 O                                                                                   |           | 12013 |
|    | Thur. | 18                 | 1h 8 in Perihelion                                                                          | 0 30      | 12040 |
|    | Fri.  | 19                 |                                                                                             | 3 30      | 31204 |
|    | Sat.  | 20                 | $0h \sigma \vartheta \odot Superior$                                                        |           | 32014 |
| 0  | Sun.  | 21                 | 1h 17m N.M.: 4h 36m $\sigma \otimes \mathbb{G}$ . $\otimes$ 4° 8′ N.: 17h 50m               |           | 02011 |
|    |       |                    | $\bigcirc$ enters $\heartsuit$ , Summer commences                                           | 6 20      | 31024 |
|    | Mon.  | 22                 | 13h 13m $\sigma' \oplus \mathbb{G}$ , $\oplus$ 2° 49' N                                     | 0 -0      | dO324 |
|    | Tues. | 23                 | $3h \varphi$ in Perihelion: 12h 53m $\sigma \sigma^2 \mathbb{G}$ . $\sigma^2 1^\circ 49' N$ |           | 20134 |
|    | Wed.  | 24                 | ·····                                                                                       | 3 10      | 12043 |
|    | Thur. | 25                 | 8h 41m $\sigma' \Psi \mathbb{G}$ , $\Psi 1^{\circ} 7' S$                                    |           | dO312 |
|    | Fri.  | <b>26</b>          | •••••                                                                                       |           | d4310 |
|    | Sat.  | <b>27</b>          |                                                                                             | 0 00      | 43201 |
|    | Sun.  | <b>28</b>          | 8h & Greatest Hel. Lat. N                                                                   |           | 43102 |
| Ð  | Mon.  | <b>29</b>          | 4h 43m Moon F.Q                                                                             | 20 50     | 40132 |
|    | Tues. | 30                 | 22h & Stationary                                                                            |           | 42O3* |
|    |       |                    |                                                                                             |           |       |

The Sun.—During July the sun's R.A. increases from 6h 38m to 8h 43m, and its Decl. decreases from  $23^{\circ} 10'$  N to  $18^{\circ} 13'$  N. The equation of time increases from 3m 28s on the first to 6m 20s on the 26th and then falls to 6m 12s on the 31st (see page 7). On the 23rd the sun enters Leo, the second summer sign of the zodiac. For changes in the length of the day, see page 16. The earth is in aphelion on the 3rd, being then 94,452,000 miles distant from the sun. There is an annular eclipse of the sun July 20-21, visible in the South Pacific Ocean.

The Moon.—For its phases and its conjunctions with the planets, see opposite page. On the 6th it occults a star in Sagittarius, on the 10th two in Aquarius and on the 14th one in Cetus (see page 8).

Mercury on the 15th is in R.A. 9h 15m, Decl.  $16^{\circ} 58'$  N, and transits the meridian at 13.44 (L.M.T.). It steadily separates eastward from the sun until the 28th when it reaches its greatest elongation,  $27^{\circ}$  11'. This is a favourable time to observe the planet, though not so good as at the elongation in March (see page 22). For ten days before greatest elongation until about a week after it the planet should be visible in the western sky just after sunset. On the 11th and again on the 30th Mercury and Venus are in conjunction, while on the former date Mars is also in conjunction with these planets (see opposite page).

Venus on the 15th is in R.A. 9h 10m, Decl.  $17^{\circ}$  59' N, and transits at 13.37 (L.M.T.). It is a fine evening star and, to a person in latitude 45° N, sets at 8.53 (L.M.T.). Its stellar magnitude is -3.3 and it is steadily increasing in brightness.

*Mars* on the 15th is in R.A. 8h 59m, Decl.  $18^{\circ} 19'$  N, and it crosses the meridian at 13.28 (L.M.T.), setting 7h 18m later. Its stellar magnitude is now 2.0 or only a little brighter than Polaris. It is in the constellation Cancer.

Jupiter on the 15th is in R.A. 19h 14m, Decl.  $22^{\circ}$  36' S, and it transits the meridian at 23.40 (L.M.T.). On the 10th it is in opposition to the sun, under which circumstances it rises in the east as the sun sets in the west and so is visible all night long. At this time its brightness is greatest, its stellar magnitude being -2.3 and so it is 1.9 times as bright as Sirius or 9 times as bright as Vega, which is seen in the sky at the same time as Jupiter.

Saturn on the 15th is in R.A. 14h 24m, Decl. 11° 47' S, and it crosses the meridian at 18.52 (L.M.T.). It reaches a stationary point on the 12th, when it begins to move eastward amongst the stars again. Its stellar magnitude is now 0.7, a little fainter than Procyon. It is still favourably situated for observation.

Uranus on the 15th is in R.A. 23h 44m, Decl.  $2^{\circ}$  33' S, and it transits at 4.14 (L.M.T.). It is retrograding slowly and is favourably situated for observation as a morning star.

Neptune on the 15th is in R.A. 9h 34m, Decl.  $14^{\circ} 45'$  N, and transits at 14.03 (L.M.T.).

For further information regarding the planets, especially Uranus and Neptune, and maps of their paths, see pages 22 to 26.

|   | (75th  | Me       | <b>JULY</b><br>ASTRONOMICAL PHENOMENA<br>ridian Time, Hours Numbering from Midnight)                                                                                                                                                                                                                                       | Minima of | Algol   | Configurations | of Jupiter's | Oh 0m    |
|---|--------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|----------------|--------------|----------|
|   | W/1    | -        | 101.07 /h /h . 09.50/0                                                                                                                                                                                                                                                                                                     |           | h       | m              |              |          |
|   | Wed.   | 1        | $10h 27m \sigma P (0, P 2° 56' S$                                                                                                                                                                                                                                                                                          | ·         |         |                | 4210         | D3       |
|   | Thur.  | 2        | 1h Φ!= A=h-1!==                                                                                                                                                                                                                                                                                                            | ·         | 17      | 40             | 401          | 32       |
|   | FTI.   | ত<br>⊿   | In $\oplus$ in Aphelion                                                                                                                                                                                                                                                                                                    | •         |         |                | 3140         | )2       |
| 6 | Sat.   | 4 5      | 22h 54m E M                                                                                                                                                                                                                                                                                                                | ·         |         | ~~             | 320          | 14       |
| Q | Mon    | 0<br>6   | 250 $34\text{m}$ F.M                                                                                                                                                                                                                                                                                                       | •         | 14      | 20             | 310          | 24       |
|   | Tues   | 7        | /ii 20iii () 4@, 21 43 5                                                                                                                                                                                                                                                                                                   | ·         |         |                | 012          | 1™<br>∩∡ |
|   | Wed    | 8        |                                                                                                                                                                                                                                                                                                                            | • .       | 11      | 10             | 490          | 54<br>94 |
|   | Thur   | 9        | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                    | • •       | 11      | 10             | 0120         | 04<br>04 |
|   | Fri.   | 10       | 5h $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ · 18h 32m $\mathcal{O}$ $\mathcal{A}$ $\mathcal{A}$ 3° 31' N · 21h $\mathcal{O}$ 80                                                                                                                                                                                           | •         |         |                | 015          | 24       |
|   |        | 10       | $8 0^{\circ} 6' S$ : 22h $\sqrt{8} \sigma^{2} 8 0^{\circ} 15' N \cdot 23h \sigma^{2} \sigma^{2}$                                                                                                                                                                                                                           | ,         |         |                |              |          |
|   |        |          | $Q = 0^{\circ} 22' N_{\odot}$                                                                                                                                                                                                                                                                                              | ,         |         |                | 310          | 74       |
|   | Sat.   | 11       |                                                                                                                                                                                                                                                                                                                            | •         | 8       | 00             | 320          | 14       |
| ¢ | Sun.   | 12       | 15h b Stationary: 16h 34m Moon L.O.                                                                                                                                                                                                                                                                                        |           | Ű       | 00             | 3140         | )*       |
|   | Mon.   | 13       | ·····                                                                                                                                                                                                                                                                                                                      |           |         |                | 4012         | 2*       |
|   | Tues.  | 14       | 22h Q Greatest Hel. Lat. N                                                                                                                                                                                                                                                                                                 |           | 4       | 50             | 4210         | -<br>)3  |
|   | Wed.   | 15       |                                                                                                                                                                                                                                                                                                                            |           |         |                | d420         | )3       |
|   | Thur.  | 16       |                                                                                                                                                                                                                                                                                                                            |           |         |                | 4012         | 23       |
|   | Fri.   | 17       |                                                                                                                                                                                                                                                                                                                            |           | 1       | 40             | 4310         | )2       |
|   | Sat.   | 18       |                                                                                                                                                                                                                                                                                                                            |           |         |                | 4320         | )1       |
|   | Sun.   | 19       | $1h \circ \& \Psi, \& 0^{\circ} 6' N$                                                                                                                                                                                                                                                                                      | 2         | $2^{2}$ | 30             | 3412         | 0        |
| ۲ | Mon.   | 20       | 14h ♂ ♀ Ψ, ♀ 1° 19' N.; 16h 40m N.M.; ⊙ Annulan                                                                                                                                                                                                                                                                            | r         |         |                |              |          |
|   |        |          | Eclipse invisible in Canada                                                                                                                                                                                                                                                                                                |           |         |                | 3012         | *        |
|   | Tues.  | 21       | $19h \notin in \mathcal{C} \dots \dots$                                                                                                                                                                              |           |         |                | 1203         | 34       |
|   | Wed.   | 22       | 7h 4m $\checkmark \checkmark \checkmark \circlearrowright \circlearrowright \lor \checkmark \lor \circlearrowright $ | ;         |         |                |              |          |
|   |        |          | $21h 40m \circ \mathcal{Q}$ , $\mathcal{Q} 0^{\circ} 10' S$                                                                                                                                                                                                                                                                | 1         | 9       | 20             | 2013         | 34       |
|   | Thur.  | 23       | $1h \ 30m \ o' \ \emptyset \ (I, \ \emptyset \ 2^\circ \ 15' \ S$                                                                                                                                                                                                                                                          |           |         |                | O234         | *        |
|   | Fri.   | 24       |                                                                                                                                                                                                                                                                                                                            |           |         |                | 3102         | 24       |
|   | Sat.   | 25       |                                                                                                                                                                                                                                                                                                                            | 1         | 6       | 10             | 3201         | .4       |
|   | Sun.   | 26       |                                                                                                                                                                                                                                                                                                                            |           |         |                | 312C         | 94       |
| ъ | Mon.   | 27       |                                                                                                                                                                                                                                                                                                                            |           |         |                | 3012         | 24       |
| Ð | Tues.  | 28       | 11h $\phi$ Greatest Elong. E. 27° 11′; 18h 22m $\sigma \phi \mathbb{G}$                                                                                                                                                                                                                                                    | ,         | _       |                |              |          |
|   | 117- 1 | 90       | $P = 3^{\circ} T = 5.; 15h = 23m Moon F.Q$                                                                                                                                                                                                                                                                                 | 1         | 3 (     | 00             | d104         | :3       |
|   | wed.   | 29       | 11 (20 2 00 14/0 01 / 700                                                                                                                                                                                                                                                                                                  |           |         |                | 2401         | .3       |
|   | Thur.  | 3U<br>91 | In $\sigma \downarrow \downarrow \downarrow$ , $\downarrow 3^{\circ} 14'$ S.; $3h \sigma \sigma' \downarrow \downarrow$ , $\sigma' 0^{\circ} 52'$ N                                                                                                                                                                        |           | ~       | -              | 4102         | 3        |
|   | F T1.  | 31       | 12n 🔲 p 🖯                                                                                                                                                                                                                                                                                                                  |           | 9       | 50             | 4130         | 2        |

### THE SKY FOR AUGUST, 1925

The Sun.—During August the sun's R.A. increases from 8h 43m to 10h 39m, and its Decl. decreases from  $18^{\circ} 13'$  N to  $8^{\circ} 34'$  N. The equation of time falls from 6m 12s to 0m 12s (see page 7). For changes in the length of daylight, see page 17. On the 23rd the sun enters the third summer sign of the zodiac, Virgo.

The Moon.—For its phases and its conjunctions with the planets, see opposite page. On the 4th it occults a star in Capricornus, on the 5th another star in Capricornus, on the 10th a star in Cetus and on the 29th a star in Sagittarius (see page 8). On August 4 there is a partial eclipse of the moon, visible in the Pacific Ocean and the countries bordering on it (see page 26).

*Mercury* on the 15th is in R.A. 10h 35m, Decl.  $4^{\circ}_{..}$  10' N, and transits the meridian at 13.01 (L.M.T.). For a few days at the beginning of the month it is visible as an evening star (see last month's notes), and then it moves in towards the sun, reaching inferior conjunction on the 25th.

Venus on the 15th is in R.A. 11h 33m, Decl.  $4^{\circ} 9'$  N, and it crosses the merician at 13.59 (L.M.T.) and sets about 6h 17m later (to an observer in latitude  $45^{\circ}$  N). It is a beautiful evening star, of stellar magnitude -3.4.

Mars on the 15th is in R.A. 10h 16m, Decl.  $11^{\circ}$  55' N, and it crosses the meridian at 12.43 (L.M.T.). On the 10th it passes Regulus being only 43' north. On the 13th it is in conjunction with the sun, after which it becomes a morning star. During this month the planet is not suitably placed for observation.

Jupiter on the 15th is in R.A. 18h 59m, Decl.  $23^{\circ}$  3' S, and it transits the meridian at 21.24 (L.M.T.). It is still retrograding, but is moving westward more slowly than a month ago. It is a beautiful evening star, of magnitude -2.2, just north of the "inverted sauce-pan" in Sagittarius.

Saturn on the 15th is in R.A. 14h 28m, Decl. 12° 13' S, and it crosses the meridian at 16.54 (L.M.T.) and sets, to an observer in latitude 45° N, about 5h 10m later. It is thus in a favourable position for observation still. Stellar magnitude 0.8; slightly fainter than a month ago.

Uranus on the 15th is in R.A. 23h 42m, Decl.  $2^{\circ}$  50' S, and it transits at 2.10 (L.M.T.). It is well placed for observation as a morning star.

Neptune on the 15th is in R.A. 9h 39m, Decl.  $14^{\circ} 24'$  N, and transits at 12.05 (L.M.T.).

For further information regarding the planets, especially Uranus and Neptune, and maps of their paths, see pages 22 to 26.

|     | (75th | Me        | <b>AUGUST</b><br>ASTRONOMICAL PHENOMENA<br>ridian Time, Hours Numbering from Midnight)                 | Minima of | Algol    | Configurations | of Jupiter's<br>Satellites at | 22h 45m    |
|-----|-------|-----------|--------------------------------------------------------------------------------------------------------|-----------|----------|----------------|-------------------------------|------------|
| _   |       |           |                                                                                                        |           | h        | m              |                               |            |
| :   | Sat.  | 1         | $1h \notin in Aphelion$                                                                                | •         |          |                | 4321                          | 0          |
| :   | Sun.  | <b>2</b>  | 12h 55m $\checkmark$ 24 $\textcircled{0}$ , 24 $\textcircled{2}^{\circ}$ 4' S                          |           |          |                | 430                           | 12         |
|     | Mon.  | 3         | •••••••••••••••••••••••••••••••••••••••                                                                |           | 6        | 30             | 410                           | 23         |
| ®'  | Tues. | 4         | ${\mathbb G}$ , Partial Eclipse, Beginning only visible in Western                                     | ı         |          |                |                               |            |
|     |       |           | Canada (see p. 26); 6h 59m F.M                                                                         | •         |          |                | 240                           | 13         |
|     | Wed.  | 5         | •••••••••••••••••••••••••••••••••••••••                                                                | •         |          |                | 1043                          | 3*         |
|     | Thur. | 6         | •••••••••••••••••••••••••••••••••••••••                                                                | •         | 3        | 20             | 0312                          | 24         |
| ]   | Fri.  | 7         | 2h 56m ♂ 🏵 🕼 , 👌 3° 29′ N                                                                              | •         |          |                | 3204                          | <b>1</b> * |
|     | Sat.  | 8         | •••••••••••••••••••••••••••••••••••••••                                                                |           |          |                | 3210                          | )4         |
|     | Sun.  | 9         | 1h d'in Aphelion                                                                                       | •         | 0        | 10             | 3012                          | 24         |
|     | Mon.  | 10        | 14h & Stationary                                                                                       |           |          |                | 1023                          | 34         |
| ¢ ' | Tues. | 11        | 4h 11m Moon L.Q                                                                                        | . 2       | 21       | 00             | 2013                          | 34         |
|     | Wed.  | 12        |                                                                                                        | •         |          |                | 1043                          | 3*         |
|     | Thur. | 13        |                                                                                                        | •         |          |                | 4013                          | 32         |
| ]   | Fri.  | 14        | •••••••••••••••••••••••••••••••••••••••                                                                | . 1       | 7        | 50             | 4320                          | )*         |
| :   | Sat.  | 15        | $12h \checkmark \Psi \odot \dots$                                                                      |           |          |                | 4321                          | 0          |
| :   | Sun.  | 16        |                                                                                                        |           |          |                | 4301                          | 12         |
|     | Mon.  | 17        |                                                                                                        | . 1       | 4        | 40             | 4102                          | 2*         |
| ,   | Tues. | 18        |                                                                                                        |           |          |                | 4201                          | 13         |
| •   | Wed.  | 19        | 0h 15m ♂ Ψ€, Ψ 1° 18′ S.; 8h 15m N.M.; 9h ♂ ឱ ♂                                                        | ,         |          |                |                               |            |
|     |       |           | ♀ 6° 13′ S.; 22h 46m ♂♀€ , ♀ 7° 46′ S                                                                  |           |          |                | 412C                          | )3         |
| ,   | Thur. | 20        | 0h 19m ♂ ♂ ₵ , ♂ 1° 37′ S                                                                              | . 1       | 1        | 30             | 4013                          | 32         |
| ]   | Fri.  | 21        | 10h & Greatest Hel. Lat. S                                                                             |           |          |                | 3124                          | 0          |
| 5   | Sat.  | 22        | 0° 46m ♂♀€,♀ 3° 42′ S                                                                                  |           |          |                | d320                          | )4         |
|     | Sun.  | 23        |                                                                                                        |           | 8        | 20             | 3012                          | 24         |
|     | Mon.  | <b>24</b> |                                                                                                        |           |          |                | 1024                          | <b>1</b> * |
|     | Tues. | 25        | 2h 46m $\sigma' \flat \mathbb{G}$ , $\flat$ 3° 9' S.; 4h $\sigma' \circlearrowright \bigcirc$ Inferior |           |          |                | 2013                          | 34         |
| ď   | Wed.  | <b>26</b> | 23h 46m Moon F.Q.                                                                                      |           | <b>5</b> | 10             | 1203                          | 34         |
|     | Thur. | 27        | · · · · · · · · · · · · · · · · · · ·                                                                  |           |          |                | 0132                          | 24         |
| ]   | Fri.  | <b>28</b> |                                                                                                        |           |          |                | d310                          | )4         |
| 5   | Sat.  | 29        | 19h 2m of 24 ( , 24 2° 14' S                                                                           |           | 1        | 50             | 3201                          | 14         |
| 5   | Sun.  | 30        |                                                                                                        |           |          |                | 3402                          | 2*         |
|     |       |           |                                                                                                        |           |          |                |                               |            |

#### THE SKY FOR SEPTEMBER, 1925

The Sun.—During September the sun's R.A. increases from 10h 39m to 12h 27m, and its Decl. changes from  $8^{\circ}$  34' N to  $2^{\circ}$  54' S. The equation of time becomes zero on the 1st and then increases to 10m 4s. For the change in the length of daylight, see page 18. On the 23rd the sun crosses the equator going southward and enters the first autumn sign of the zodiac, Libra.

The Moon.—For its phases and its conjunctions with the planets, see opposite page. On the 2nd-3rd it occults a star in Aquarius, on the 11th a star in Gemini, on the 22nd a star in Libra, and on the 28th two stars in Capricornus (see page 8).

Mercury on the 15th is in R.A. 10h 30m, Decl.  $10^{\circ} 42'$  N, and transits the meridian at 10.54 (L.M.T.). The planet was in inferior conjunction with the sum on August 25, and from that date gradually separates from the sun, reaching greatest elongation,  $17^{\circ} 57'$  west, on the 11th. It should be easily seen as a morning star. At sunrise the planet, to a person in northern middle latitudes, is about 16° above the horizon in a direction slightly north of the east point of the horizon. If a field-glass is convenient, use it to locate the planet, though it should be easy to find it with the naked eye. (See page 22).

Venus on the 15th is in R.A. 13h 48m, Decl.  $11^{\circ} 34'$  S, and transits at 14.13 (L.M.T.). It is a beautiful evening star and is increasing in brightness. Stellar magnitude -3.5.

*Mars* on the 15th is in R.A. 11h 30m, Decl.  $4^{\circ}$  18' N, and it crosses the meridian at 11.54 (L.M.T.). It is thus a morning star still near the sun and not suitably placed for observation.

Jupiter on the 15th is in R.A. 18h 56m, Decl.  $23^{\circ}$  10' S, and crosses the meridian at 19.19 (L.M.T.). It ceased to retrograde on the 9th and now is slowly advancing eastward amongst the stars in Sagittarius. A fine evening star, of magnitude -2.0.

Saturn on the 15th is in R.A. 14h 37m, Decl.  $13^{\circ}$  2' S, and it crosses the meridian at 15.00 (L.M.T.). It sets 5 hours later to an observer in latitude 45° N, or about 2 hours after sunset. Stellar magnitude, 0.9.

Uranus on the 15th is in R.A. 23h 37m, Decl.  $3^{\circ}$  18' S, and transits at 0.04 (L.M.T.). It is in opposition with the sun on the 16th, and so is visible all night.

Neplune on the 15th is in R.A. 9h 43m, Decl. 14° 3' N, and transits at 10.15 (L.M.T.).

For further information regarding the planets, especially Uranus and Neptune, and maps of their paths, see pages 22 to 26.

| _  |       |                |                                                                                     |                    |                                                            |
|----|-------|----------------|-------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------|
|    | (75tl | n M            | SEPTEMBER<br>ASTRONOMICAL PHENOMENA<br>eridian Time, Hours Numbering from Midnight) | Minima of<br>Algol | Configurations<br>of Jupiter's<br>Satellites at<br>12h 15m |
| -  |       |                |                                                                                     | h m                |                                                            |
|    | Tues. | 1              |                                                                                     |                    | 42013                                                      |
| (U | Wed.  | $\overline{2}$ | 14h 53m F.M.                                                                        |                    | 42103                                                      |
| Ŭ  | Thur. | 3              | 0h ♀ Stationary: 11h 55m ♂ Ô @ . Ô 3° 22' N                                         | 19 30              | 40123                                                      |
|    | Fri.  | 4              | ·····                                                                               |                    | 41302                                                      |
|    | Sat.  | 5              |                                                                                     |                    | 43201                                                      |
|    | Sun.  | 6              |                                                                                     | 16 20              | 3410*                                                      |
|    | Mon.  | 7              |                                                                                     |                    | d3O42                                                      |
|    | Tues. | 8              | $23h \heartsuit in \heartsuit \ldots$                                               |                    | 20134                                                      |
| đ  | Wed.  | 9              | 2h 2l Stationary: 10h & in $\Omega$ : 19h 12m Moon L.O                              | 13 10              | 21034                                                      |
| -  | Thur. | 10             | 19h & Greatest Elong. W., 17° 57'                                                   |                    | O1234                                                      |
|    | Fri.  | 11             |                                                                                     |                    | 13024                                                      |
|    | Sat.  | 12             | · · · · · · · · · · · · · · · · · · ·                                               | 10 00              | 32014                                                      |
|    | Sun.  | 13             | 7h ♂ ♂ ⊙                                                                            |                    | 3104*                                                      |
|    | Mon.  | 14             | Oh $\emptyset$ in Perihelion                                                        |                    | 30124                                                      |
|    | Tues. | 15             | 8h 54m σ ΨC, Ψ1° 25′ S                                                              | $6\ 50$            | $2043^{*}$                                                 |
|    | Wed.  | 16             | 11h 50m ♂ 𝔅 𝔅 , 𝔅 1° 30′ S.; 17h ♂ ♂ ⊙                                              |                    | 24103                                                      |
| 6  | Thur. | 17             | 17h 32m of of C, of 3° 6' S.; 23h 12m N.M                                           |                    | 40123                                                      |
|    | Fri.  | 18             | · · · · · · · · · · · · · · · · · · ·                                               | 3 40               | d41O2                                                      |
|    | Sat.  | 19             | · · · · · · · · · · · · · · · · · · ·                                               |                    | 43201                                                      |
|    | Sun.  | 20             |                                                                                     |                    | 43120                                                      |
|    | Mon.  | 21             | 0h 44m ♂ ♀ €, ♀ 6° 8′ S.; 12h 29m ♂ b €, b 3° 3′ S                                  | 0 30               | 43012                                                      |
|    | Tues. | 22             | · · · · · · · · · · · · · · · · · · ·                                               |                    | 42O3*                                                      |
|    | Wed.  | 23             | 8h 44m $\odot$ enters $\simeq$ , Autumn commences                                   | 21 10              | 24103                                                      |
|    | Thur. | <b>24</b>      | 7h & Greatest Hel. Lat. N                                                           |                    | O4123                                                      |
| Ð  | Fri.  | 25             | 6h 51m Moon F.Q.                                                                    |                    | 10324                                                      |
|    | Sat.  | 26             | 2h 25m of 24 <sup>(C</sup> ), 24 <sup>2</sup> ° 4' S.; 21h of 2b, 2 3° 20' S        | 18 0               | 32014                                                      |
|    | Sun.  | 27             | · · · · · · · · · · · · · · · · · · ·                                               |                    | 31204                                                      |
|    | Mon.  | 28             | •                                                                                   |                    | 30124                                                      |
|    | Tues, | <b>29</b>      | $19h \circ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                    | $14\ 50$           | 104*                                                       |
|    | Wed.  | 30             | 20h 8m ơ<br>${\mathfrak S}{\mathfrak C}$ ,<br>${\mathfrak S}$ 3° 18′ N              |                    | d2O34                                                      |
|    |       |                |                                                                                     |                    |                                                            |

### THE SKY FOR OCTOBER, 1925

The Sun.—During October the sun's R.A. increases from  $12h \ 27m$  to  $14h \ 23m$ , and its Decl. increases from  $2^{\circ} \ 54' \ S$  to  $14^{\circ} \ 12' \ S$ . On the 23rd the sun enters the second autumnal sign of the zodiac, Scorpio. The equation of time rises from 10m 4s to 16m 20s, to be subtracted from apparent or sun-dial time (see page 7). For the change in the length of daylight, see page 19.

The Moon.—For its phases and its conjunctions with the planets, see opposite page. On the 4th it occults a star in Cetus, on the 9th a star in Gemini and on the 11th a star in Cancer (see page 8).

Mercury on the 15th is in R.A. 13h 42m, Decl.  $10^{\circ}$  15' S, and transits at 12.08 (L.M.T.). The planet comes into superior conjunction with the sun on the 7th and so is too near the sun for observation during the month.

Venus on the 15th is in R.A. 16h 9m, Decl. 23° 7' S, and transits at 14.35 (L.M.T.) and sets about 4h 20m later (to a person in latitude  $45^{\circ}$  N). It is a splendid evening star and in a telescope shows a phase about like the moon eight days old. Its stellar magnitude is -3.6.

Mars on the 15th is in R.A. 12h 41m, Decl.  $3^{\circ} 33'$  S and it crosses the meridian at 11.07 (L.M.T.). It is still rather near the sun for observation as a morning star, rising only about 40 minutes before sunrise.

Jupiter on the 15th is in R.A. 19h 4m, Decl. 23° 0' S, and crosses the meridian at 17.29 (L.M.T.). Still a fine evening star, of magnitude -1.8.

Saturn on the 15th is in R.A. 14h 49m, Decl.  $14^{\circ}$  3' S, and it transits the meridian at 13.15 (L.M.T.). It sets one hour after the sun and is too close to the sun for satisfactory observation.

Uranus on the 15th is in R.A. 23h 33m, Decl.  $3^{\circ} 45'$  S, and it transits at 21.58 (L.M.T.). It is well placed for observation.

Neptune on the 15th is in R.A. 9h 46m, Decl.  $13^{\circ}$  46' N, and transits at 8.13 (L.M.T.).

For further information regarding the planets, especially *Uranus* and *Neptune*, and maps of their paths, see pages 22 to 26.

| (75 N                                                                 | Minima of                                                                                    | Algol | Configurations<br>of Jupiter's<br>Satellites at<br>20h 0m |                                                                        |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------|------------------------------------------------------------------------|
| Thur.<br><sup>(2)</sup> Fri.<br>Sat.<br>Sun.<br>Mon.<br>Tues.<br>Wed. | 1<br>2 0h 23m F.M<br>3<br>4<br>5<br>6<br>7 $3h  egrevity \ O \ Superior; 14h \ \Box 2 \ O \$ |       | h<br>11<br>8                                              | m<br>0243*<br>40 d1032<br>43201<br>43210<br>30 43012<br>4102*<br>42013 |

⊙Sat.

|   | Thur. | 8         |                                                                                                        | 5  | 20 | 403** |  |
|---|-------|-----------|--------------------------------------------------------------------------------------------------------|----|----|-------|--|
| Ø | Fri.  | 9         | 13h 34m Moon L.O.                                                                                      |    |    | 41032 |  |
|   | Sat.  | 10        | ~                                                                                                      |    |    | 32401 |  |
|   | Sun.  | 11        |                                                                                                        | 2  | 10 | 32104 |  |
|   | Mon   | 12        | 18h 5m ~ Wa W1° 39' S                                                                                  | -  | 10 | 30124 |  |
|   | Tuos  | 12        | 13h $O$ in Aphelian                                                                                    | 92 | 00 | 12094 |  |
|   | Wed   | 14        | 10n ‡ m Aphenon                                                                                        | 20 | 00 | 10024 |  |
|   | weu.  | 14        |                                                                                                        |    |    | 20134 |  |
|   | Thur. | 15        |                                                                                                        |    |    | 1034* |  |
| _ | Fri.  | 16        | 11h $39m \circ \circ' (1, \circ' 4^{\circ} 12' S)$                                                     | 19 | 50 | dO234 |  |
|   | Sat.  | 17        | 13h 6m N.M.; 18h $\emptyset$ in $\heartsuit$ ; 23h 53m $\checkmark \emptyset \mathbb{Q}$ , $\emptyset$ |    |    |       |  |
|   |       |           | 5° 22′ S                                                                                               |    |    | 23014 |  |
|   | Sun.  | 18        | •••••••••••••••••••••••••••••••••••••••                                                                |    |    | 32104 |  |
|   | Mon.  | 19        | 0h 25m $\checkmark b \mathbb{G}$ , b 2° 55′ S                                                          | 16 | 40 | 34012 |  |
|   | Tues. | <b>20</b> | 22h 48m ♂ ♀ €, ♀ 6° 18′ S                                                                              |    |    | 41302 |  |
|   | Wed.  | 21        | ·                                                                                                      |    |    | 42013 |  |
|   | Thur. | 22        |                                                                                                        | 13 | 30 | 41203 |  |
|   | Fri.  | 23        | 12h 7m $\checkmark 2   \emptyset \rangle 2   1^\circ 37' S$                                            |    |    | d4023 |  |
| Ð | Sat   | 24        | 13h 38m MoonF $O$                                                                                      |    |    | d420* |  |
|   | Sun   | 25        |                                                                                                        | 10 | 20 | 43910 |  |
|   | Mon   | 20        | •••••••••••••••••••••••••••••••••••••••                                                                | 10 | 20 | 94091 |  |
|   | mon.  | 40        | 01 /8L 8 99 17/ C                                                                                      |    |    | 34021 |  |
|   | Tues. | 21        | $9n \circ \varphi \varphi, \varphi \rightarrow 17$ S                                                   |    |    | 31402 |  |
|   | Wed.  | 28        | Uh $Q$ in Aphelion; 2h 28m $O \otimes Q$ , $S 3^{\circ} 23' \dots$                                     | 7  | 10 | 20134 |  |
|   | Thur. | 29        | •••••••••••••••••••••••••••••••••••••••                                                                |    |    | 21034 |  |
|   | Fri.  | 30        |                                                                                                        |    |    | 01234 |  |

Explanation of symbols and abbreviations on page 4.

31 12h 17m F.M..... 4 00 dO34\*

### THE SKY FOR NOVEMBER, 1925

The Sun.—During November the sun's R.A. increases from 14h 23m to 16h 26m, and its Decl. changes from 14° 12′ S to 21° 42′ S. On the 23rd the sun enters Sagittarius, the third autumnal sign of the zodiac. The equation of time on the 3rd rises to a maximum of 16m 23s, to be subtracted from apparent time—that is, the sun dial is that amount ahead of the mean time clock (see page 7). For the changes in the length of daylight see page 20.

The Moon.—For its phases and its conjunctions with the planets, see opposite page. On the 27th it occults a star in Cetus and on the 28th another star in the same constellation (see page 8).

Mercury on the 15th is in R.A. 16h 46m, Decl.  $24^{\circ}$  55' S, and transits at 13.10 (L.M.T.). On the 22nd the planet reaches greatest elongation, being then  $22^{\circ}$  3' east of the sun. This is not a very favourable time to observe Mercury as an evening star, as at sunset the planet is about  $42^{\circ}$  south of west and about  $12^{\circ}$  above the horizon. (See page 22).

Venus on the 15th is in R.A. 18h 42m, Decl.  $26^{\circ}$  12' S, and transits at 15.06 (L.M.T.). On the 28th it attains its greatest easterly elongation from the sun, namely 47° 17'. At this time its phase is like a half-moon. It is a fine evening star, of magnitude -4.0.

*Mars* on the 15th is in R.A. 13h 57m, Decl. 11° 21' S, and it crosses the meridian at 10.21 (L.M.T.). It is in Virgo, about  $10^{\circ}$  east of Spica, which star it passed on the 1st at a distance of  $3^{\circ}$  north.

Jupiter on the 15th is in R.A. 19h 23m, Decl.  $22^{\circ} 27'$  S, and it transits the meridian at 15.47 (L.M.T.). It is now moving steadily eastward in the constellation Sagittarius and is a good evening star but setting at 20.10 (L.M.T.) to a person in latitude 45° N. Stellar magnitude, -1.6, the same as that of Sirius.

Saturn on the 15th is in R.A. 15h 3m, Decl.  $15^{\circ} 8'$  S, and it transits the meridian at 11.27 (L.M.T.). It is in conjunction with the sun on the 9th, after which it is a morning star; but it is too close to the sun during the month for observation.

Uranus on the 15th is in R.A. 23h 30m, Decl.  $4^{\circ} 1'$  S, and transits at 19.53 (L.M.T.). It is well placed for observation.

Neptune on the 15th is in R.A. 9h 48m, Decl.  $13^{\circ} 37'$  N, and transits at 6.13 (L.M.T.).

For further information regarding the planets, especially Uranus and Neptune, and maps of their paths, see pages 22 to 26.

### NOVEMBER

### ASTRONOMICAL PHENOMENA

Configuration of Jupiter's Satellites at

Minima of Algol

(75th Meridian Time, Hours Numbering from Midnight)

|   |       |          |                                                                                                                 | h        | m  |       |
|---|-------|----------|-----------------------------------------------------------------------------------------------------------------|----------|----|-------|
|   | Sun.  | 1        |                                                                                                                 |          |    | 32104 |
|   | Mon.  | <b>2</b> |                                                                                                                 |          |    | 3014* |
|   | Tues. | 3        |                                                                                                                 | 0        | 50 | 31024 |
|   | Wed.  | 4        | $20h \circle Greatest Hel. Lat. S $                                                                             |          |    | 2014* |
|   | Thur. | 5        |                                                                                                                 | 21       | 30 | 21403 |
|   | Fri.  | 6        |                                                                                                                 |          |    | 40123 |
|   | Sat.  | 7.       |                                                                                                                 | •        |    | 41023 |
| Œ | Sun.  | 8        | 10h 13m Moon L.Q                                                                                                | 18       | 20 | d423O |
|   | Mon.  | 9        | 3h 8n $\mathcal{O} \Psi \mathbb{Q}$ , $\Psi 1^{\circ}$ 56' S.; 18h $\mathcal{O} \mathfrak{b} \odot \dots \dots$ |          |    | 430** |
|   | Tues. | 10       |                                                                                                                 |          |    | 43102 |
|   | Wed.  | 11       |                                                                                                                 | 15       | 10 | 4201* |
|   | Thur. | 12       |                                                                                                                 |          |    | 42103 |
|   | Fri.  | 13       |                                                                                                                 |          |    | 0123* |
|   | Sat.  | 14       | 7h 14m $\sigma' \sigma^{7} \mathbb{C}$ , $\sigma' 4^{\circ} 43' S$                                              | 12       | 00 | 10234 |
|   | Sun.  | 15       | 14h 49m $\circ \flat \mathbb{G}$ , $\flat 2^{\circ} 49' S$                                                      |          |    | 23014 |
|   | Мон.  | 16       | 1h 58m N.M                                                                                                      |          |    | 3204* |
|   | Tues. | 17       | 9h $\emptyset$ Greatest Hel. Lat. S.; 10h $\Box \Psi \odot$ ; 15h 45m                                           |          |    |       |
|   |       |          | ơ⊈@,₿ 5° 59′ S                                                                                                  | 8        | 50 | 31024 |
|   | Wed.  | 18       |                                                                                                                 |          |    | 32014 |
|   | Thur. | 19       | 15h 49m of $\mathbb{Q}^{\mathbb{Q}}$ , $\mathbb{Q}$ 4° 15′ S                                                    |          |    | 21034 |
|   | Fri.  | 20       | 1h $22m \circ 24$ (G), $241^{\circ} 2' S$                                                                       | <b>5</b> | 40 | O2143 |
|   | Sat.  | 21       |                                                                                                                 |          |    | 10423 |
| Ð | Sun.  | 22       | 8h & Greatest Elong. E. 22° 3'; 21h 6m Moon F.Q.                                                                |          |    | 24301 |
|   | Mon.  | 23       | •••••••••••••••••••••••••••••••••••••••                                                                         | <b>2</b> | 30 | 43210 |
|   | Tues. | 24       | 7h 21m $\circ \circ \mathbb{C}$ , $\circ \circ 3^{\circ} 36'$ N                                                 |          |    | d43O2 |
|   | Wed.  | 25       |                                                                                                                 | 23       | 20 | d4301 |
|   | Thur. | 26       | $3h \circ \varphi 24, \varphi 2^{\circ} 39' S$                                                                  |          |    | 42103 |
|   | Fri.  | 27       | 14h $\Psi$ Stationary; 19h $\Im$ Greatest Elong. E. 47° 17'                                                     |          |    | 40213 |
|   | Sat.  | 28       |                                                                                                                 | 20       | 00 | 41023 |
| ~ | Sun.  | 29       |                                                                                                                 |          |    | 43201 |
| Ľ | Mon.  | 30       | 3h 11m F.M                                                                                                      |          |    | 32104 |

The Sun.—During December the sun's R.A. increases from 16h 26m to 18h 43m, and its Decl. reaches a maximum value of  $23^{\circ} 27'$  S on the 22nd. This is the time of the winter solstice and the sun enters the first of the winter signs of the zodiac, Capricornus. It is then vertical to points on the tropic of Capricorn on the earth. From this time it slowly moves northward, the daylight period being the shortest and changing very little for several days before and after the solstice (see page 21). The equation of time changes from 11m 12s watch slow to 3m 12s watch fast (see page 7).

*The Moon.*—For its phases and its conjunctions with the planets, see opposite page.

*Mercury* on the 15th is in R.A. 16h 53m, Decl. 19° 57' S, and crosses the meridian at 12.57 (L.M.T.). On the 11th the planet comes to inferior conjunction with the sun. It then separates from the sun and reaches greatest elongation, 22° 36' west, on the last day of the year. At sunrise the planet is about 14° above the horizon in a direction  $45^{\circ}$  south of east, and it should be visible without difficulty. A field glass will be useful to locate it. (See page 22).

Venus on the 15th is in R.A. 20h 48m, Decl. 10° 54' S, and transits at 15.13 (L.M.T.) and sets about 4h 35m later (to a person in latitude  $45^{\circ}$  N). It is gradually assuming the crescent shape and is becoming brighter. On December 31 its stellar magnitude is -4.4.

Mars on the 15th is in R.A. 15h 16m, Decl.  $17^{\circ} 47'$  S, and crosses the meridian at 9.42 (L.M.T.). It is in the constellation Libra and about as bright as Polaris.

Jupiter on the 15th is in R.A. 19h 49m, Decl. 21° 31' S, and transits the meridian at 14.14 (L.M.T.). It sets about  $4\frac{1}{2}$  hours later or 2h 20m after the sun, as seen by a person in latitude 45° N. Its stellar magnitude is -1.5, and at the end of the year it is just entering the constellation Capricornus.

Saturn on the 15th is in R.A. 15h 17m, Decl.  $16^{\circ} 2'$  S, and it crosses the meridian at 9.43 (L.M.T.). It is now about 6° east of Alpha Librae, rises about 5 o'clock a.m., and can easily be observed as a morning star. Its stellar magnitude is 0.8.

Uranus on the 15th is in R.A. 23h 30m, Decl.  $4^{\circ}$  1' S, and it transits at 17.55 (L.M.T.). It is well placed for observation as an evening star.

Neptune on the 15th is in R.A. 9h 48m, Decl.  $13^{\circ} 39'$  N, and transits at 4.15 (L.M.T.).

For further information regarding the planets, especially *Uranus* and *Neptune*, and maps of their paths see pages 22 to 26.

|   | (75tl                                          | ı M                           | <b>DECEMBER</b><br>ASTRONOMICAL PHENOMENA<br>eridian Time, Hours Numbering from Midnight).                                                                                                                                                                                                 | Minima of<br>Algol | Configurations | of Jupiter's                              | J8h 0m                           |
|---|------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-------------------------------------------|----------------------------------|
|   | Tues.<br>Wed.<br>Thur.<br>Fri.<br>Sat.<br>Sun. | $1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6$  | 12h & Stationary; 17h & Stationary<br>9h & in ω; 11h 8m σ ΨC, Ψ2° 11' S                                                                                                                                                                                                                    | h<br>16<br>13      | m<br>50<br>40  | 301<br>302<br>210<br>013<br>102<br>203    | 24<br>4*<br>34<br>4*<br>34<br>14 |
| ¢ | Mon.<br>Tues.<br>Wed.<br>Thur.<br>Fri.<br>Sat. | 7<br>8<br>9<br>10<br>11<br>12 | 7h 11m Moon L.Q.<br>Oh ♀ in Perihelion; 11h ♂♀⊙Inferior.                                                                                                                                                                                                                                   | 10<br>7            | 30<br>20       | 3210<br>301<br>3410<br>4210<br>401<br>410 | 04<br>42<br>02<br>03<br>3*<br>23 |
| 0 | Sun.<br>Mon.<br>Tues.<br>Wed.<br>Thur.         | 13<br>14<br>15<br>16<br>17    | 4h 14m $\sigma' \sigma' (0, \sigma' 4^{\circ} 35' S.; 6h 40m \sigma' p' (0, p' 2^{\circ} 45' S.; 22h \Box \diamond \circ \circ23h 33m \sigma' \notin (0, \phi' 0^{\circ} 5' S.)13h \sigma' \sigma' b, \sigma' 1^{\circ} 47' S.; 14h 5m N.M.18h 44m \sigma' \Im (0, \chi 0^{\circ} 25' S.)$ | 4<br>1             | 10<br>00       | 420<br>4321<br>430<br>3410<br>d20         | 31<br>10<br>12<br>02             |
| Ð | Fri.<br>Sat.<br>Sun.<br>Mon.<br>Tues.          | 18<br>19<br>20<br>21<br>22    | <ul> <li>21h 9m ♂ ♀ ((), ♀ 0° 9′ S</li></ul>                                                                                                                                                                                                                                               | 21<br>18           | 50<br>40       | 2014<br>102<br>2013<br>2310               | 43<br>34<br>34<br>04             |
| - | Wed.<br>Thur.<br>Fri.<br>Sat.                  | 23<br>24<br>25<br>26<br>27    | Moon F.Q.                                                                                                                                                                                                                                                                                  | 15                 | 30             | 302<br>310<br>230<br>204<br>410<br>d40    | 14<br>24<br>14<br>3*<br>23       |
| Ľ | Mon.<br>Tues.<br>Wed.<br>Thur.                 | 27<br>28<br>29<br>30<br>31    | 21h 1m F.M                                                                                                                                                                                                                                                                                 | 9                  | 00             | 4213<br>4302<br>4310<br>4230              | 13<br>30<br>21<br>02<br>01       |

## PHENOMENA OF JUPITER'S SATELLITES, 1925

E-Eclipse, O-occultation, T-transit, S-shadow, D-disappearance, R-reappearance, I-ingress, e-egress. The Roman numerals denote the satellites. Eastern Standard Time, hours numbering from Midnight.

| _                                               |                            |                                                                                                                                                                |                                                                                     |                                                                                                                      |                                                                                                                                             |                                                                           |                                                                         |                                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                            |
|-------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                 |                            |                                                                                                                                                                | FI                                                                                  | EBRUA                                                                                                                | RY                                                                                                                                          | •                                                                         |                                                                         |                                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                               | JUNE                                                                                                          |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                            |
| d<br>2<br>9<br>10<br>16<br>17                   | h<br>6<br>6<br>5<br>6<br>5 | m<br>29<br>9<br>24<br>36<br>5<br>16<br>14                                                                                                                      | Sat.H<br>I<br>I<br>III<br>III<br>III<br>I<br>I                                      | Phen. d<br>Se 18<br>SI<br>OR 19<br>Se 25<br>TI<br>ED<br>ED 26                                                        | h<br>5<br>5<br>5<br>5<br>6<br>4                                                                                                             | m \$<br>17<br>38<br>31<br>23<br>24<br>0<br>53                             | Sat.<br>II<br>IV<br>IV<br>I<br>II<br>II<br>II                           | Phen.<br>Te<br>Te<br>ER<br>TI<br>TI<br>Se<br>OR                                        | d<br>1<br>3<br>5<br>6                | $^{h}_{2}\\ {}^{4}_{1}\\ {}^{4}_{1}\\ {}^{2}_{3}\\ {}^{3}_{22}$                                                                                                                                                                                                                                                                           | m<br>27<br>12<br>2<br>9<br>17<br>3<br>32<br>37                                                                                                         | $\begin{array}{c} \text{Sat.I}\\ \text{II}\\ \text{II}\\ \text{II}\\ \text{I}\\ \text{I}\\ \text{I}\\ \text{I}\\ \text{I}\\ \text{I}\\ \text{I}\\ \text{I}\\ \text{I}\\ \text{I} \end{array}$ | Phen. d<br>SI 18<br>TI<br>OR<br>ED<br>SI 19<br>TI 21<br>Se<br>ED                                              | h<br>1<br>21<br>23<br>0<br>2<br>23<br>23<br>23                                                  | m<br>21<br>32<br>57<br>38<br>41<br>25<br>33<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sat.F<br>III<br>III<br>II<br>II<br>I<br>I<br>I<br>I<br>I                                    | hen.<br>Se<br>TI<br>Se<br>ED<br>SI<br>SI                                   |
|                                                 |                            |                                                                                                                                                                |                                                                                     | MARC                                                                                                                 | Н                                                                                                                                           |                                                                           |                                                                         |                                                                                        |                                      | $22 \\ 0$                                                                                                                                                                                                                                                                                                                                 | $     40 \\     46 \\     20   $                                                                                                                       | I                                                                                                                                                                                             | OR 22<br>Te                                                                                                   | $\frac{1}{2}$                                                                                   | 49<br>15<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I<br>I                                                                                      | Se<br>Te                                                                   |
| 4<br>6<br>12<br>13                              | 555544                     | $59 \\ 1 \\ 28 \\ 24 \\ 35 \\ 52$                                                                                                                              | II<br>III<br>I<br>III<br>I<br>I<br>I                                                | SI 20<br>OD<br>OR 21<br>ED 24<br>ED 25<br>Se 28<br>29                                                                | $     \begin{array}{c}       4 \\       5 \\       5 \\       3 \\       3 \\       3 \\       3 \\       4     \end{array} $               | $32 \\ 43 \\ 16 \\ 21 \\ 26 \\ 40 \\ 7 \\ 7 \\ 22$                        | I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | SI<br>TI<br>OR<br>TI<br>OD<br>ED<br>SI<br>Se<br>Te                                     | 9<br>10<br>11<br>13<br>14            | 0<br>3<br>2<br>3<br>0<br>2<br>3<br>0<br>2<br>3<br>0<br>3<br>0<br>3<br>0<br>3<br>0<br>3<br>0<br>3                                                                                                                                                                                                                                          |                                                                                                                                                        |                                                                                                                                                                                               | SI<br>ED<br>OR 25<br>Te<br>Te<br>SI<br>TI 26<br>ED<br>OR                                                      | 23<br>21<br>21<br>1<br>2<br>3<br>23<br>0<br>2<br>2<br>2<br>21                                   | $     \begin{array}{r}       33 \\       17 \\       48 \\       1 \\       0 \\       29 \\       31 \\       12 \\       14 \\       56 \\       1   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IV<br>IV<br>IV<br>III<br>III<br>II<br>II<br>II                                              | Se TI<br>Te<br>SI<br>TI<br>SI<br>SI<br>SI<br>SI<br>SI<br>SI<br>SI<br>SI    |
|                                                 |                            |                                                                                                                                                                |                                                                                     | APRII                                                                                                                |                                                                                                                                             |                                                                           |                                                                         |                                                                                        | 15                                   |                                                                                                                                                                                                                                                                                                                                           | 55<br>31                                                                                                                                               | I                                                                                                                                                                                             | Se 29<br>Te                                                                                                   | 1                                                                                               | $27 \\ 43 \\ 43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I                                                                                           | SI                                                                         |
| 5<br>6<br>11<br>12                              | 2<br>4<br>5<br>3<br>5<br>4 | $47 \\ 2 \\ 0 \\ 37 \\ 3 \\ 40$                                                                                                                                | I<br>I<br>I<br>I<br>III<br>I                                                        | SI 21<br>TI<br>Se<br>OR 22<br>OR 23<br>SI                                                                            | $2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 2$                                                                                                                | $17 \\ 15 \\ 31 \\ 52 \\ 46 \\ 51$                                        | I<br>I<br>I<br>I<br>II<br>II                                            | TI<br>Se<br>Te<br>OR<br>TI<br>Se                                                       | 17<br>18                             | $21 \\ 1 \\ 22 \\ 0 \\ 22 \\ 22 \\$                                                                                                                                                                                                                                                                                                       | $51 \\ 47 \\ 2 \\ 10 \\ 12 \\ 26 $                                                                                                                     |                                                                                                                                                                                               | OR<br>ED<br>SI<br>TI 30<br>Se<br>Te                                                                           | $3 \\ 4 \\ 22 \\ 1 \\ 1 \\$                                                                     | 43<br>0<br>48<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I<br>I<br>I                                                                                 | Se<br>Te<br>ED<br>OR                                                       |
| 14<br>16                                        | 222                        | $\frac{39}{41}$                                                                                                                                                | I<br>II                                                                             | Te 25<br>ED 27<br>Te 28                                                                                              | 4<br>3<br>9                                                                                                                                 | $\frac{25}{56}$                                                           | III<br>IV                                                               | ED<br>ED                                                                               |                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                               | JULY                                                                                                          | •                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                            |
| 18<br>20                                        | 3<br>3                     | 40<br>49                                                                                                                                                       | ÎII                                                                                 | ER<br>ED 29<br>30                                                                                                    | $     \frac{4}{2}     3     2   $                                                                                                           | 8<br>35<br>44<br>48                                                       | Î<br>III<br>I<br>II                                                     | TI<br>Te<br>OR<br>SI                                                                   | 3                                    | 2 $2$ $3$ $23$ $0$                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                        | II<br>IV<br>II<br>II                                                                                                                                                                          | SI 20<br>TI<br>ED<br>OR<br>OR                                                                                 | $0\\3\\20\\20\\20\\22$                                                                          | 59<br>11<br>3<br>34<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IV<br>III<br>II<br>II                                                                       | ER<br>OD<br>TI<br>SI                                                       |
|                                                 |                            |                                                                                                                                                                |                                                                                     | MAY                                                                                                                  |                                                                                                                                             |                                                                           |                                                                         |                                                                                        |                                      | 3                                                                                                                                                                                                                                                                                                                                         | 21<br>27                                                                                                                                               | Į                                                                                                                                                                                             | SI<br>TI 22                                                                                                   |                                                                                                 | 18<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ÎÎ                                                                                          | Se                                                                         |
| 2<br>6<br>7<br>13<br>14<br>15<br>16<br>17<br>18 | 2122312230123120323        | $\begin{array}{r} 15\\ 25\\ 5\\ 44\\ 1\\ 301\\ 41\\ 9\\ 59\\ 24\\ 9\\ 15\\ 23\\ 52\\ 12\\ 9\\ 581\\ 54\\ 51\\ 54\\ 54\\ 54\\ 54\\ 54\\ 54\\ 54\\ 54\\ 54\\ 54$ | II<br>III<br>IV<br>IV<br>III<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | OR 21<br>Se<br>ED 22<br>Te<br>TI<br>Se 23<br>Te<br>SI 24<br>ED<br>ER<br>SI 25<br>TI<br>Se 29<br>OR<br>OR<br>OR<br>CD | $\begin{array}{r} 3\\ 4\\ 0\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 0\\ 1\\ 23\\ 23\\ 23\\ 0\\ 1\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23$ | 24 $410$ $456$ $321$ $456$ $321$ $455$ $500$ $333$ $152$ $247$ $393$ $54$ |                                                                         | SI<br>TI<br>ED<br>OR<br>ER<br>OR<br>SI<br>TI<br>Se<br>ED<br>SI<br>TI<br>Se<br>Te<br>OR | 7<br>8<br>11<br>12<br>13<br>14<br>15 | $\begin{array}{c} 0\\ 3\\ 21\\ 21\\ 0\\ 0\\ 21\\ 22\\ 1\\ 23\\ 3\\ 20\\ 23\\ 23\\ 1\\ 2\\ 20\\ 23\\ 23\\ 1\\ 2\\ 20\\ 23\\ 23\\ 1\\ 2\\ 20\\ 23\\ 23\\ 1\\ 2\\ 20\\ 23\\ 23\\ 1\\ 2\\ 20\\ 23\\ 23\\ 1\\ 2\\ 20\\ 23\\ 23\\ 1\\ 2\\ 20\\ 23\\ 23\\ 1\\ 2\\ 20\\ 23\\ 20\\ 23\\ 20\\ 23\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20$ | $\begin{array}{c} 4\\ 2\\ 5\\ 5\\ 5\\ 6\\ 9\\ 9\\ 4\\ 3\\ 5\\ 4\\ 3\\ 4\\ 3\\ 4\\ 3\\ 4\\ 5\\ 5\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$ |                                                                                                                                                                                               | ED<br>OR<br>SI 3<br>TI<br>Se<br>OD 27<br>ER<br>OD 28<br>ER<br>Te<br>Se<br>OD 30<br>TI<br>SI<br>Te<br>Se<br>OD | $ \begin{array}{c} 1\\22\\1\\20\\21\\22\\22\\22\\23\\1\\1\\20\\0\\19\\21\\22\\23\end{array} $   | $39 \\ 41 \\ 8 \\ 21 \\ 44 \\ 18 \\ 9 \\ 13 \\ 25 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 32 \\ 57 \\ 57 \\ 57 \\ 57 \\ 57 \\ 57 \\ 57 \\ 5$ | I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | SIDR<br>ODE SI e e e E I ST e e E I ST E E E E E E E E E E E E E E E E E E |
|                                                 | 20                         |                                                                                                                                                                | 1 V                                                                                 | 31                                                                                                                   | 0<br>3<br>3<br>3                                                                                                                            | 17<br>8<br>36<br>52                                                       | III<br>IV<br>III<br>III                                                 | ED<br>OR<br>ER<br>OD                                                                   | 16<br>19                             | $     \begin{array}{c}       20 \\       23 \\       20 \\       20 \\       1     \end{array} $                                                                                                                                                                                                                                          | $     \begin{array}{r}       37 \\       21 \\       19 \\       29 \\       1     \end{array} $                                                       | I<br>I<br>I<br>II                                                                                                                                                                             | ER<br>Te 31<br>Se<br>OD                                                                                       | $     \begin{array}{c}       23 \\       23 \\       0 \\       1 \\       21     \end{array} $ | $     \begin{array}{r}       18 \\       48 \\       19 \\       21 \\       39 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             | Te<br>Se<br>Se<br>ER                                                       |

|                     |                                                                                      |                                  | A                             | UGUS                                   | Т                                |                                                                                                       |                              |                                  | SEPTEMBER—Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                         |                            |                                                       |                                  |                                                                                                 |                                  |                                  |
|---------------------|--------------------------------------------------------------------------------------|----------------------------------|-------------------------------|----------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------|-------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|
| d<br>4<br>5<br>6    | $^{h}_{0}$<br>1<br>22<br>2                                                           | m S<br>34<br>45<br>45<br>10      | Sat.P<br>II<br>II<br>II<br>II | hen. d<br>TI 21<br>SI<br>ER<br>OD 22   | h<br>20<br>21<br>22<br>0         | m Sa<br>13<br>4<br>57<br>11                                                                           | at. P<br>II<br>II<br>II<br>I | hen.<br>SI<br>Se<br>OD           | 1 d<br>15<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h<br>20<br>22<br>19                          | m :<br>0<br>6<br>17                     | Sat.P<br>II<br>I<br>I      | hen. d<br>Se<br>ER 30<br>Se                           | h<br>22<br>19<br>20<br>21        | m Sa<br>36<br>34<br>52<br>50                                                                    | t. P<br>II<br>I<br>I<br>I        | hen.<br>Te<br>TI<br>SI<br>Te     |
| 7                   | $     \begin{array}{r}       23 \\       23 \\       23 \\       1     \end{array} $ | 18<br>19<br>57<br>33             |                               | TI<br>SI<br>Te                         | 1<br>21<br>22<br>23              | $     \begin{array}{r}       4 \\       19 \\       17 \\       35 \\       35 \\       \end{array} $ | IV<br>I<br>I<br>I            | TI<br>SI<br>Te                   | OCTOBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                                         |                            |                                                       |                                  |                                                                                                 |                                  |                                  |
|                     | $1 \\ 2 \\ 20 \\ 23$                                                                 | 58<br>14<br>37<br>34             | III<br>I<br>I<br>I            | SI 23<br>Se<br>OD 24<br>ER             | 0<br>21<br>20<br>23              | 33<br>52<br>11<br>34                                                                                  | I<br>I<br>III<br>III         | Se<br>ER<br>OD<br>OR             | 1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19<br>20<br>18<br>21                         | 50<br>24<br>21<br>42                    | II<br>I<br>IV<br>IV        | ER 16<br>ER<br>TI<br>Te 17                            | 19<br>20<br>21<br>18             | $12 \\ 11 \\ -29 \\ 2$                                                                          | I<br>I<br>I<br>III               | SI<br>Te<br>Se<br>SI             |
| 8<br>12             | $     \begin{array}{r}             20 \\             20 \\           $               | $1 \\ 43 \\ 1 \\ 22$             | I<br>I<br>II                  | Te 25<br>Se 28<br>OD<br>F B            | $0 \\ 20 \\ 22 \\ 23$            | $   \begin{array}{r}     10 \\     45 \\     48 \\     27   \end{array} $                             | III<br>II<br>II              | ED<br>TI<br>SI<br>Te             | 6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18<br>22<br>21<br>18                         | 54<br>18<br>29<br>45                    |                            | OD<br>OR<br>TI<br>OD 23                               | 18<br>19<br>21                   | 43<br>40<br>31<br>52                                                                            | I<br>II<br>III                   | ER<br>Se<br>Se                   |
| 14                  | $20 \\ 0 \\ 1 \\ 20 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$               | 7<br>27<br>5                     | IV<br>IV<br>I                 | Te 29<br>SI 30<br>TI                   | 23<br>0<br>19                    | 9<br>12<br>58                                                                                         | I<br>I<br>II                 | ŤĬ<br>SI<br>ER                   | 9<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18<br>19<br>19                               | 14<br>33<br>52                          | Î<br>I<br>IV               | Te<br>Se 24<br>ER                                     | 21<br>19<br>19                   | 8<br>29<br>45                                                                                   | Î<br>II<br>II                    | SI<br>SI<br>Te                   |
| 15                  | 20<br>22<br>1<br>20                                                                  | 22<br>23<br>28<br>21             | I<br>I<br>I                   | OD<br>ER<br>SI 31                      | 20<br>22<br>23<br>19             | 20<br>7<br>47<br>52                                                                                   | ÎV<br>I<br>I                 | Se<br>ER<br>Te                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19<br>20                                     | 39<br>40                                | I                          | 0D<br>0D<br>25<br>31                                  | 20<br>20<br>17<br>19             | $     \begin{array}{r}       23 \\       38 \\       53 \\       4 \\       4     \end{array} $ | I<br>I<br>I<br>I                 | ER<br>Se<br>OD                   |
| 16<br>17            | 21<br>22<br>19<br>20                                                                 | 38<br>57<br>3                    | I<br>I<br>III                 | Se<br>ER<br>OR                         | 20<br>23                         | 47                                                                                                    | İII                          | OD                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                         | N                          | <br>OVEMI                                             | BER                              | 40                                                                                              |                                  | ===                              |
| 19                  | 20<br>23<br>23                                                                       | 36<br>23                         |                               | ER<br>OD                               |                                  |                                                                                                       |                              |                                  | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18<br>19<br>19                               | 36<br>49<br>44                          | I<br>I<br>II               | Te(16<br>Se 17<br>ER 18                               | 17<br>18<br>19                   | $     \begin{array}{r}       31 \\       10 \\       20     \end{array} $                       | I<br>I<br>II                     | OD<br>Se<br>Se                   |
|                     |                                                                                      |                                  | SE                            | PTEM                                   | BER                              | Ł                                                                                                     |                              |                                  | 4<br>5<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $19 \\ 18 \\ 18 \\ 18$                       | 45<br>59<br>19                          | III<br>IV<br>I             | ER 22<br>SI 23<br>TI 24                               | $17 \\ 19 \\ 17$                 | 39<br>31<br>48                                                                                  | III<br>I<br>I                    | Se<br>OD<br>SI                   |
| 4<br>6<br>7         | 21<br>23<br>22<br>22<br>22                                                           | 24<br>10<br>16<br>36             |                               | Se 18<br>TI 20<br>OD 21<br>ER 22       | 20<br>22<br>23<br>19             | 56<br>29<br>11<br>40<br>51                                                                            |                              | TI<br>OD<br>TI<br>ER<br>SI       | 9<br>11<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19<br>18<br>19<br>20<br>18                   | 28<br>57<br>10<br>13<br>0               | I<br>I<br>III<br>III<br>IV | SI<br>ER 25<br>OR 29<br>ED<br>OD 30                   | 19<br>19<br>17<br>18<br>17       |                                                                                                 | I<br>II<br>III<br>III<br>IV      | Te<br>SI<br>Te<br>SI<br>OR       |
| '                   | 19<br>20<br>20<br>21                                                                 | 27<br>22<br>36<br>42             | IV<br>I<br>I                  | OR<br>SI<br>Te                         | 20<br>20<br>22<br>18             | 3<br>28<br>36                                                                                         |                              | Te<br>OD<br>Se                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                         | DI                         | ECEMI                                                 | BER                              |                                                                                                 |                                  |                                  |
| 8<br>11<br>13<br>14 | 22<br>20<br>20<br>21<br>19<br>21<br>22<br>22                                         | 10<br>30<br>59<br>57<br>18<br>32 |                               | ER<br>Te<br>SI 24<br>OD 29<br>TI<br>SI | 19<br>21<br>21<br>19<br>20<br>22 | 55<br>12<br>52<br>54<br>10<br>21                                                                      | Î<br>IV<br>II<br>III<br>I    | Te<br>Se<br>ED<br>TI<br>ED<br>OD | $     \begin{array}{c}       1 \\       2 \\       6 \\       9 \\       10 \\       11       \\       11       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       \\       1       1       \\       1       \\       1       1       \\       1       1       \\       1       1       \\       1       1       \\       1       1       1       1       1       $ | 18<br>19<br>18<br>18<br>18<br>17<br>18<br>17 | $51 \\ 11 \\ 51 \\ 2 \\ 39 \\ 25 \\ 52$ |                            | TI 17<br>ER<br>TI 18<br>OD 20<br>Te 24<br>Se 28<br>OD | 17<br>18<br>17<br>17<br>18<br>17 | $24 \\ 3 \\ 29 \\ 49 \\ 5 \\ 50$                                                                | I<br>I<br>II<br>III<br>III<br>II | TI<br>SI<br>ER<br>Te<br>OD<br>TI |

### **METEORS** AND SHOOTING STARS

On almost any clear night any one observing the sky for a few minutes will see one or more shooting stars. They are particularly numerous during the autumn months, and on account of the rotation of the earth are better seen during the early morning hours than in the evening.

At certain times there are striking displays, located in particular portions of the sky. These are considered to be due to *meteor swarms*. The principal ones are given in the following table.

| Name of Shower      | Duration        | Greatest<br>Display | R<br>R. | adiant<br>A. | Point<br>De | cl. |
|---------------------|-----------------|---------------------|---------|--------------|-------------|-----|
|                     |                 |                     | h       | m            |             | 6   |
| Quadrantids         | Dec. 28-Jan. 9  | Jan. 3              | 15      | 20           | +           | 53  |
| Aurigids            | Feb. 7-23       | Feb. 10             | 5       | 0            | +           | 41  |
| Lyrids              | April 16-22     | April 21            | 18      | 4            | +           | 33  |
| <b>η A</b> quarids  | April 29-May 8  | May 4-6             | 22      | 32           | -           | 2   |
| Herculids           | May 13-29       | May 24              | 16      | 36           | +           | 30  |
| Scorpiids           | May-June July   | lune 4              | 16      | 48           | -           | 21  |
| Sagittids           | June-July       | July 28             | 20      | 12           | +           | 24  |
| Capricornids        | July-Aug.       | July 22             | 20      | 20           | -           | 12  |
| ð Áquarids          | July 18-Aug. 12 | July 28-31          | 22      | 36           | - 1         | 11  |
| <b>α β</b> Perseids | July-AugSept.   | Aug. 16             | 3       | 12           | +           | 43  |
| Perseids            | July 8-Aug. 25  | Aug. 11-12          | 3       | 4            | +           | 57  |
| Draconis            | Aug. 18-25      | Aug. 23             | 10      | 24           | +           | 61  |
| e Perseids          | AugSept.        | Sept. 15            | - 5     | -7           | +           | 35  |
| A 1 11 1            | (AugSeptOct.    | Sept. 21            | 2       | 4            | +           | 10  |
| Arietids            | SeptOct.        | Oct. 15             | 2       | 4            | i i         | - 9 |
| Orionids            | Oct. 0-20       | Oct. 19             | 6       | 8            | +           | 15  |
| " Ursids Mai.       | OctNovDec.      | Nov. 16-25          | 10      | 16           | +           | - 5 |
| Taurids             | November        | Nov 21              | 4       | 12           | -<br>-      | 22  |
| Leonids             | Nov. 0.20       | Nov 14-15           | 10      |              |             | - 3 |
| Andromedes          | Nov 20-20       | Nov 20.22           |         | 40           |             | ~3  |
| Geminids            | Dec. $1-14$     | Dec. 11             | 7       | 12           | +           | 43  |

Of these the chief ones are the Perseids, the Leonids and the Andromedes.

The Perseids furnish an annual display of considerable strength, and are perhaps the best known of all. The swarm appears to have an orbit identical with that of the great Comet 1862 III., the period of which is 120 years.

The Leonids follow in the orbit of Tempel's Comet of 1866, of period 33 years.

The Andromedes are thought to be remnants of Biela's Comet. They were especially numerous in 1872, 1885, 1898, but in recent years have not been so prominent.

The above table was prepared for the HANDBOOK by Mr. W. F. Denning, F.R.A.S., of Bristol, England; and for further interesting information regarding this subject (and almost any other subject in which the amateur is interested) reference may be made to his *Telescopic Work for Starlight Evenings*.

|                      | Mean I<br>from | Distance<br>Sun      | Sidereal ]            | Period | Mean         | Mass   | Density     | Volume          | Avial               |
|----------------------|----------------|----------------------|-----------------------|--------|--------------|--------|-------------|-----------------|---------------------|
| Name                 | ⊕ = 1          | Millions<br>of Miles | Mean<br>Solar<br>Days | Years  | ter<br>Miles | ⊕ =1   | Water<br>=1 | ⊕<br><b>≡</b> 1 | Rotation            |
| ğ Mercury            | 0.387          | 36.0                 | 87.97                 | 0.24   | 3009         | 0.0556 | 4.7(?)      | 0.055           | 88d                 |
| q Venus              | 0.723          | 67.2                 | 224.70                | 0.62   | 7575         | 0.817  | 4.94        | 0.88            | 225d                |
| ⊕ Earth              | 1.000          | 92.9                 | 365.26                | 1.00   | 7917.8       | 1.000  | 5.55        | 1.000           | 23h 56m 4s          |
| oً <sup>-</sup> Mars | 1.524          | 141.5                | 686.97                | 1.88   | 4216         | 0.108  | 3.92        | 0.151           | 24h 37m 23s         |
| 24 Jupiter           | 5.203          | 483.3                | 4332.58               | 11.86  | 86728        | 318.4  | 1.32        | 1314            | 9h 55m ±            |
| <b>b</b> Saturn      | 9.539          | 886.1                | 10759.2               | 29.46  | 72430        | 95.2   | 0.72        | 765             | 10h 14m ±           |
| Ô Uranus             | 19.191         | 1782.8               | 30685.9               | 84.02  | 30878        | 14.6   | 1.22        | 59              | 10h 45m ±           |
| ₩ Neptune            | 30.071         | 2973.4               | 60187.6               | 164.79 | 32932        | 16.9   | 1.11        | 72              | ۰.                  |
| © Sun                |                | :                    | :                     | :      | 864392       | 333400 | 1.39        | 1301100         | 25d 7h 48m±         |
| Moon.                | From $\oplus$  | ) 238,857<br>mls.    | 27.32                 | 0.075  | 2160         | 0.0123 | 3.39        | 0.020           | 27d 7h 43m<br>11.5s |

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

# SATELLITES OF THE SOLAR SYSTEM

\_

|            | Name              | STRLLAR<br>MAGNITUDE. | Mean<br>Distance<br>in Miles | S<br>d.  | IDE<br>PEI<br>h. | REA<br>RIOI<br>m. | L<br>)<br>8. | Discoverer    | Dat         | E      |  |  |
|------------|-------------------|-----------------------|------------------------------|----------|------------------|-------------------|--------------|---------------|-------------|--------|--|--|
| <b>.</b>   |                   |                       |                              |          |                  |                   |              | -             |             |        |  |  |
|            |                   |                       | TE                           | IE       | E/               | AR]               | H            |               |             |        |  |  |
|            | The Moon          |                       | 238,840                      | 27       | 7                | 43                | 11           | 1             |             |        |  |  |
|            |                   |                       |                              |          |                  |                   |              |               |             |        |  |  |
|            |                   |                       |                              | M        | AK               | 5.                |              |               |             |        |  |  |
| 1.         | Phobos            | 14                    | 5,850                        |          | 7                | 39                | 15           | Asaph Hall    | Aug. 17,    | 1877   |  |  |
| 2.         | Deimos            | 13                    | 14,000                       | 1        | 0                | 17                | 54           | Asaph Hall    | Aug. 11,    | 18//   |  |  |
|            |                   |                       | J                            | UP       | ITI              | ER                |              |               |             |        |  |  |
| 5.         | (Nameless).       | 13                    | 112,500                      |          | 11               | 57                | 23           | Barnard       | Sept. 9.    | 1892   |  |  |
| 1.         | Ìo                | 6 <del>1</del>        | 261,000                      | 1        | 18               | 27                | 33           | Galileo       | Jan. 7,     | 1610   |  |  |
| 2.         | Europa            | $6\frac{1}{2}$        | 415,000                      | 3        | 13               | 13                | 42           | Galileo       | Jan. 8,     | 1610   |  |  |
| 3.         | Ganymede .        | 67                    | 664,000                      | 10       | 3                | 42                | 33           | Galileo       | Jan. 7,     | 1610   |  |  |
| 4.         | (Mansto)          |                       |                              | 10       | 10               | 3Z                | 11           | Gameo         | Jan. 7,     | 1010   |  |  |
| 0.<br>7    | (Nameless).       | 14                    | 7,572,000                    |          | 200'<br>176.     | 00 (<br>67 /      | 1.           | Perrine       | Dec.<br>Ian | 1005   |  |  |
| 8          | (Nameless).       | 17                    | 15 600 000                   | 4        | 780              | 07 0<br>0 A       | 1.           | Melotte       | Jan.        | 1903   |  |  |
| 9.         | (Nameless).       | 19                    | 18,900,000                   |          | 3 y              | ears              |              | Nicholson     | July        | 1914   |  |  |
|            | SATURN            |                       |                              |          |                  |                   |              |               |             |        |  |  |
| 1.         | Mimas             | 15                    | 117.000                      |          | 22               | 37                | 6            | W. Herschel   | July 18     | 1789   |  |  |
| 2.         | Enceladus.        | 14                    | 157.000                      | 1        | 8                | 53                | 7            | W. Herschel   | Aug. 29.    | 1789   |  |  |
| 3.         | Tethys            | 11                    | 186,000                      | 1        | 21               | 18                | <b>26</b>    | J. D. Cassini | Mar. 21,    | 1684   |  |  |
| 4.         | Dione             | 11                    | 238,000                      | 2        | 17               | 41                | 9            | J. D. Cassini | Mar. 21,    | 1684   |  |  |
| 5.         | Rhea              | 10                    | 332,000                      | 4        | 12               | 25                | 12           | J. D. Cassini | Dec. 23,    | 1672   |  |  |
| <u>6</u> . | Titan             | 16                    | 771,000                      | 15       | 22               | 41                | 23           | Huygens       | Mar. 25,    | 1655   |  |  |
| 1.<br>8    | In yperion        | 10                    | 2 225 000                    | 21<br>70 | 07               | 39<br>54          | 17           | I D Cassini   | Sept. 10    | 1671   |  |  |
| 9          | Phoebe            | 17                    | 8,000,000                    | 10       | 546              | 3.5               | d.           | W.H.Pickering | 189         | 8 1071 |  |  |
| 10.        | Themis            | 17                    | 906,000                      | 20       | 20               | 24                | 0            | W.H.Pickering | 190         | 5      |  |  |
|            |                   |                       |                              |          | A 387            | ***               |              | -             |             |        |  |  |
|            |                   |                       | 100.000                      | UR       | AN               | 05                |              |               |             |        |  |  |
| 1.         | Ariel             | 15                    | 120,000                      | 2        | 12               | 29                | 21           | Lassell       | Oct. 24,    | 1851   |  |  |
| 2.         | Umbriel           | 10                    | 273,000                      | 4        | ა<br>16          | 21                | 31           | W Herschol    | UCt 24,     | 1801   |  |  |
| а.<br>4    | Oberon            | 14                    | 365.000                      | 13       | 11               | 7                 | 29<br>6      | W. Herschel   | Jan. 11.    | 1787   |  |  |
|            | 0.000000000000000 |                       |                              |          |                  |                   | -1           |               |             | 2,0,   |  |  |
|            |                   |                       | N                            | EP       | 10               | NE                | ,<br>        | <b></b> .     |             |        |  |  |
| <u>1.</u>  | (Nameless).       | 13                    | 221,500                      | 5        | 21               | 2                 | 44           | Lassell       | Oct. 10,    | 1846   |  |  |

#### **DOUBLE STARS**

Close scrutiny of the sky reveals the fact that many of the stars are composed of two or more components, that is, they are *double* or *multiple* stars. Over 15,000 such objects have been discovered.

A star may appear double in two ways. First, one may just happen to be nearly in line with the other as seen from the earth. Second, the two bodies may be physically connected, each revolving about their common centre of gravity. The former are called *optical doubles*, the latter *binary stars*. In the course of time the binaries exhibit a change in the distance between the components and also in the direction of the line joining them, that is, in the position angle.

While the close pairs require a large instrument for their detection, there are many within the range of small instruments. Such observations also allow one to determine the quality of the instrument employed. It has been found that a telescope having an objective 1 inch in diameter should be able to distinguish two stars 4''.56 apart, and the resolving power is inversely proportional to the diameter of the objective. Thus a telescope of 3-inch aperture should separate stars 1/3 of 4''.56, or 1''.52 apart; for one of aperture 10 inches, stars 1/10 of 4''.56, or 0''.45 apart should be seen separate; and so on. With the Yerkes refractor, of aperture 40 inches, a double star with distance 0''.11 can be detected.

In choosing a double star for testing a telescope care should be taken not to select a binary, with varying distance between its components.

The stars in the following short lists can be identified from almost any star atlas, and observation of them will prove of great interest to the amateur.

| Star                                                                                                                                     | Mags.                                                    | Dist.                              | Star                                                                                                                                               | Mags.                                                                              | Dist.                             |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------|
| $\begin{array}{c} \text{Mizar}\\ \text{Castor}\\ \gamma \text{ Virginis .}\\ \gamma \text{ Arietis}\\ \zeta \text{ Aquarii} \end{array}$ | 2.4, 4.0<br>2.5, 3.0<br>3.0, 3.2<br>4.2, 4.5<br>3.5, 4.4 | $14.5 \\ 5.6 \\ 5.0 \\ 8.9 \\ 3.5$ | $\begin{array}{c} \gamma \text{ Leonis}\\ \beta \text{ Scorpii}\\ \theta \text{ Serpentis.}\\ 44i \text{ Boötis}\\ \pi \text{ Boötis} \end{array}$ | $\begin{array}{c} 2.5, 4.0\\ 2.5, 5.5\\ 4.4, 6.0\\ 5.0, 6.0\\ 4.3, 6.0\end{array}$ | 3.0<br>13.0<br>21.0<br>4.8<br>6.0 |

I. THE MOST LUMINOUS PAIRS

|           | Star        | Magnitudes  | Distance    | Colors                |
|-----------|-------------|-------------|-------------|-----------------------|
| Y         | Andromedæ   | 2.2, 5.5    | 10          | Orange, Green.        |
| a         | CanumVenat. | 3.2, 5.7    | 20          | Gölden, Lilac.        |
| ß         | Cvgni       | 3.3, 5.5    | 34          | Golden, Sapphire.     |
| ε         | Boötis      | 2.4, 6.5    | 2.9         | Golden, Sapphire.     |
| 95        | Herculis    | 5.5. 5.8    | 6           | Golden, Azure.        |
| a         | Herculis    | 4, 5.5      | 4.7         | Ruby, Emerald.        |
| γ         | Delphini    | 3.4, 5      | 11          | Golden, Bluish Green. |
| 32        | Eridani     | 4.7, 7      | 6.7         | Topaz, Bright Green.  |
| ε         | Hydræ       | 3.5, 7.5    | 3.5         | Yellow, Blue.         |
| ζ         | Lyræ        | 4.5, 5.5    | 44          | Yellow, Green.        |
| i         | Cancri      | 4.5, 5      | 30          | Pale Orange, Blue.    |
| 0         | Cygni       | 4.3,7.5,5.5 | 337.8,106.8 | Yellow, Blue.         |
| <b>24</b> | Coma Beren  | 5.6, 7      | 21          | Orange, Lilac.        |
| 0         | Cephei      | 5.4, 8      | 2.5         | Golden, Azure.        |
| 94        | Aquarii     | 5.5, 7.5    | 11          | Rose, Greenish.       |
| 39        | Ophiuchi    | 5.7, 7.5    | 12          | Yellow, Blue.         |
| 41        | Aquarii     | 5.8, 8.5    | 4.8         | Yellow Topaz, Blue.   |
| <b>2</b>  | Canum Venat | 6, 9        | 11          | Golden, Azure         |
| 52        | Cygni       | 4.6, 9      | 7           | Orange, Blue.         |
| 55        | Piscium     | 6, 9        | 6           | Orange, Blue.         |
| κ         | Geminorum   | 3.8, 9      | 9           | Orange, Blue.         |
| ρ         | Orionis     | 5.1, 9      | 6.8         | Orange, Blue.         |
| 54        | Hydræ       | 5.2, 8      | 9           | Yellow, Violet.       |
| η         | Persei      | 4.2, 8.5    | 28          | Yellow, Blue.         |
| φ         | Draconis    | 4.8, 6      | 31          | Yellow, Lilac.        |
| 0         | Draconis    | 4.7, 8.5    | 32          | Golden, Lilac.        |
| η         | Cassiopeiæ  | 4.7,7       | 5.7         | Golden, Purple.       |
| 23        | Orionis     | 5.4,7       | 32          | White, Blue.          |
| $\delta$  | Herculis    | 3.6, 8      | 18          | White, Violet.        |
| 0         | Capricorni  | 6.3, 7      | 22          | Bluish.               |
| 17        | Virginis    | 6.5,7       | 20          | Rose.                 |
| ۶         | Boötis      | 4.5, 6.5    | 4.2         | [ Reddish Yellow.     |

II, THE FINEST COLORED PAIRS

The colors given above are according to Flammarion. For slight variations and also for a much longer list consult Webb's "Celestial Objects."

### VARIABLE STARS

The study of variable stars is especially suited to amateur observers. In it they can make observations of permanent scientific value, since all the brighter and more interesting objects are within the range of modest instruments. An ordinary field glass or a small telescope is all that is required.

In recent years there has been organized the American Association of Variable Star Observers, with a working membership of about 70, and reports of observations are published monthly in *Popular Astronomy*. The recording secretary is Howard O. Eaton, 428 Lake St., Madison, Wis., and additional observers are desired.

The novae or "new" stars comprise one class of variables, and all the recent brighter objects of this sort have been discovered by amateurs. The longperiod variable Omicron Ceti, or *Mira*, was discovered by Fabricius in 1596, while Algol, the best-known variable of short-period, was discovered by Goodricke, a deaf mute, in 1783.

Several attempts have been made to classify the variable stars; but a scientific system of classification, in harmony with the chief deductions of theory as well as the facts of observation, is still wanting. The best known system is that formulated by Professor E. C. Pickering in 1880, and reproduced (with slight additions) in his "Provisional Catalogue of Variable Stars" (1903). This includes five classes, two of which are subdivided, as follows:—

|                                                                  | EXAMPLES    |
|------------------------------------------------------------------|-------------|
| I. New or temporary stars                                        | Nova, 1572  |
| II. Variables of long period:                                    |             |
| a. Ordinary stars of this class                                  | Ceti        |
| b. Stars subject to "occasional sudden and irregular out-        |             |
| bursts of light which gradually diminishes"                      | U Geminorum |
| III. "Variables of small range or irregular variation, according |             |
| to laws as yet unknown"a                                         | Orionis     |
| IV. Variables of short period:                                   |             |
| a. "Ordinary" cases $\delta$                                     | Cephei      |
| b. Stars with "minima successively bright and faint" $\beta$     | Lyræ        |
| V. Stars of the Algol type $\beta$                               | Persei      |

| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limiting<br>Mags.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                   | CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Discoverer                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| U       Cephei $o$ Ceti $\rho$ Persei $\beta$ Persei (Algol) $\lambda$ Tauri $\lambda$ Tauri $\lambda$ Tauri $\lambda$ Tauri $\kappa$ Eridani         RW       Tauri         RW       Tauri         R       Leporis $a$ Orionis $\gamma$ Geminorum         T       Monocerotis $\zeta$ Geminorum         R       Canis Maj         S       Cancri         S       Cancri         S       Antliæ         W       Ursæ         M       Ursæ $\alpha$ Herculis $\alpha$ Herculis $\omega$ Libræ $\alpha$ Herculis $\beta$ Lyræ $\chi$ Cygni $\gamma$ Aquilæ         Sagittæ       14 | $\begin{array}{c} \text{Mags.} \\ \hline \\ 7.0-9.2 \\ 1.7-9.5 \\ 3.4-4.2 \\ 8.6-9.1 \\ 2.1-3.2 \\ 8.1-(2.5 \\ 8-11 \\ 6-8.7 \\ 1-1.4 \\ 5.8-12.3 \\ 3.2-4.2 \\ 5.7-6.8 \\ 3.2-4.2 \\ 5.7-6.8 \\ 3.2-4.2 \\ 5.7-6.8 \\ 3.2-4.2 \\ 5.7-6.3 \\ 8.0-10.2 \\ 6.3-6.8 \\ 7.9-8.6 \\ 4.6-10.5 \\ 3.5-9.7 \\ 5.0-6.2 \\ 3.1-3.9 \\ 6.0-6.7 \\ 4.4-5.4 \\ 4.8-7.8 \\ 3.4-4.1 \\ 4.5-13.5 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-7.5 \\ 5.5-6.1 \\ 10.7-11.6 \\ 5.5-7.5 \\ 5.5-6.1 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.5-7.5 \\ 5.$ | $\begin{array}{c} \textbf{A}  \textbf{EROP}\\ \hline \textbf{A}  \textbf{A}  \textbf{A}  \textbf{A} \\ \textbf{B}  \textbf{B}  \textbf{B} \\ \textbf{C}  \textbf{C}  \textbf{C} \\ \textbf{C}  \textbf{C}  \textbf{C} \\ \textbf{C}  \textbf{C} \\ \textbf{C}  \textbf{C} \\ \textbf{C}  \textbf{C} \\ \textbf{C} $ | m.           49.6           52.2           27.2           41.5           15.8           37.8           46.8           0.2           51.4           7.7           17.1           59.2           14.0           11.8           14.2 | V.<br>HI.<br>HI.<br>V.<br>V.<br>H.<br>HI.<br>V.<br>V.<br>HI.<br>HI.<br>HI.<br>V.<br>V.<br>HI.<br>HI.<br>V.<br>V.<br>HI.<br>HI.<br>V.<br>V.<br>HI.<br>HI.<br>V.<br>V.<br>V.<br>HI.<br>HI.<br>HI.<br>V.<br>V.<br>V.<br>V.<br>H.<br>HI.<br>HI.<br>V.<br>V.<br>V.<br>V.<br>H.<br>HI.<br>HI.<br>V.<br>V.<br>V.<br>V.<br>H.<br>HI.<br>HI.<br>V.<br>V.<br>V.<br>V.<br>H.<br>HI.<br>HI.<br>HI.<br>HI.<br>V.<br>V.<br>V.<br>H.<br>HI.<br>HI.<br>HI.<br>HI.<br>V.<br>V.<br>V.<br>H.<br>HI.<br>HI.<br>HI.<br>HI.<br>HI.<br>HI.<br>HI.<br>HI.<br>HI. | W. Ceraski                    |
| $\delta$ Cephei<br>U Pegasi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7-4.6<br>9.3-9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 8<br>0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.7<br>59.7                                                                                                                                                                                                                      | IV.<br>IV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Goodricke1784<br>Chandler1894 |

### THE DISTANCES OF THE STARS

The measurement of the distances of the stars is one of the most important problems in astronomy. Without such information it is impossible to form any idea as to the magnitude of our universe or the distribution of the various bodies in it.

The parallax of a star is the apparent change of position in the sky which the star would exhibit as one would pass from the sun to the earth at a time when the line joining earth to sun is at right angles to the line drawn to the star; or, more accurately, it is the angle subtended by the semi-major axis of the earth's orbit when viewed perpendicularly from the star. Knowing the parallax, the distance can be deduced at once.

For many years attempts were made to measure stellar parallaxes, but without success. The angle to be measured is so exceedingly small that it was lost in the unavoidable instrumental and other errors of observation. The first satisfactory results were obtained by Bessel, who in 1838, by means of a heliometer, succeeded in determining the parallax of 61 Cygni, a 6th magnitude star with a proper motion of 5'' a year. On account of this large motion the star was thought to be comparatively near to us, and such proved to be the case. At about the same time Henderson, at the Cape of Good Hope, from meridian-circle observations, deduced the parallax of Alpha Centauri to be  $0^{\prime\prime}.75$ . For a long time this was considered to be the nearest of all the stars in the sky, but in 1913 Innes, director of the Union Observatory, Johannesburg, South Africa, discovered a small 11th mag. star, 2° 13' from Alpha Centauri, with a large proper motion, and which proved to have a parallax of  $0^{\prime\prime}.78$ . Its brightness is only 1/20,000that of Alpha Centauri and the mass of the body is the least known. In 1916 Barnard discovered an 11th mag. star in Ophiuchus with a proper motion of  $10^{\prime\prime}$  per year, the greatest on record, and its parallax is about  $0^{\prime\prime}.6$ . It is believed to be next to Alpha Centauri in distance from us.

The distances of the stars are so enormous that a very large unit has to be chosen to express them. The one generally used is the light-year, that is, the distance travelled by light in a year, or  $186,000x60x60x24x365\frac{1}{4}$  miles. A star whose parallax is 1" is distant 3.26 light years; if the parallax is 0".1, the distance is 32.6 l.-y.; if the parallax is 0".27 the distance is  $3.26 \div .27 = 12$  l.-y. In other words, the distance is inversely proportional to the parallax. In recent years the word *parsec* has been introduced to express the distances of the stars. A star whose distance is 1 parsec is such that its *par*-allax is 1 sec-ond. Thus 1 parsec is equivalent to 3.26 l.-y., 10 parsecs = 32.6 l.-y., etc.

In later times much attention has been given to the determination of parallaxes, chiefly by means of photography, and now several hundred are known with tolerable accuracy.

| values obtained.         | I    | R.A.          | Dec     | 1. (            | Vis. Mag. |          | Distance     |
|--------------------------|------|---------------|---------|-----------------|-----------|----------|--------------|
| Name                     | (1   | 900)          | (190    | 0)              | Harvard   | Parallax | Light Years  |
|                          | h    | m             | ,       | "               |           | "        |              |
| Prox. Cen                | 14   | 22.9          | -62     | 15              | 10.5      | 0.802    | 4.06         |
| * αCentauri              | 14   | 32.8          | -60     | 25              | 0.33      | .759     | 4.30         |
| Barnard                  | 17   | 52.9          | +4      | 28              | 9.67      | . 533    | 6.12         |
| Lal. 21185               | 10   | 57.9          | +36     | 38              | 7.60      | .403     | 8.09         |
| * αCan. Mai              | 6    | 40.7          | -16     | 35              | -1.58     | .376     | 8.67         |
| Innes                    | 11   | 12.0          | -57     | <b>2</b>        | (12)      | .339     | 9.62         |
| C.Z. 5h 243              | 5    | 7.7           | -44     | 59              | 8.3       | .319     | 10.22        |
| $\tau$ Ceti              | 1    | 39.4          | -16     | 28              | 3.65      | .318     | 10.25        |
| * aCan Min               | 7    | 34 1          | +5      | 29              | 0.48      | .312     | 10.45        |
| «Frid                    | 3    | $28^{\circ}2$ | - 9     | 48              | 3.81      | .311     | 10.48        |
| *61 Cygni                | 21   | 24            | +38     | 15              | 5.57      | 306      | 10.65        |
| Lac 9352                 | 22   | 59 4          | -36     | $\overline{26}$ | 7.44      | .292     | 11.16        |
| * \$2308                 | 118  | 41 8          | +59     | $\overline{29}$ | 9 33      | .287     | 11.36        |
| <u>6Indi</u>             | 21   | 55 7          | -57     | $\overline{12}$ | 4.74      | .284     | 11.48        |
| * Groom 34               | 1    | 12 5          | +43     | $\bar{27}$      | 7 98      | 281      | 11.60        |
| * Krüger 60              | 22   | 24.5          | +57     | 12              | 9 64      | 262      | 12.44        |
| Lac 8760                 | 21   | 11 4          | -39     | 15              | 6 65      | 251      | 12,99        |
| $\Omega_{0}$ Arg 17415-6 | 17   | 37 0          | +68     | $\frac{10}{26}$ | 9.2       | 247      | 13.20        |
| Van Mannen               | 1 1  | 12 0          | $\pm 4$ | 55              | 12.3      | 246      | 13 25        |
| Could 32416              | 22   | 50 5          | -37     | 51              | 8.5       | 203      | 15 87        |
|                          | 10   | 15 0          | 1 8     | 36              | 0.5       | 200      | 16 30        |
| $\Omega^2$ Erid          | 19   | 10.7          | -7      | 10              | 4 48      | 198      | 16.5         |
| *70 Oph                  | 10   | 10.7          | $\pm 2$ | 21              | 4.28      | 192      | 17 0         |
| Candoba 22416            | 10   | 50 5          | -37     | 51              | 8.3       | 191      | 17 1         |
| 100003 32410             | 20   | 09.0          | -36     | 91              | 5 34      | 100      | 17.2         |
| +HK //03                 | 20   | 49 0          | -50     | 17              | 2 64      | 184      | 17 7         |
| $\eta_{\text{Cassiop}}$  | 1 22 | 40.0          | +57     | 59              | 0.04      | 183      | 17.8         |
| Alb. 8104                | 10   | 44.0<br>20 C  |         | 04<br>90        | 0.7       | 189      | 17.0         |
| $\sigma$ Drac            | 19   | 34.0          | +09     | 29              | 4.10      | 177      | 10 1         |
| HR 8832                  | 23   | 8.0           | + 30    | 01<br>90        | 5.00      | 175      | 19.4         |
| * HR 6410                | 117  | 11.0          | -40     | 34              | 5.00      | 174      | 10.0         |
| * A Upn                  | 17   | 9.2           | -20     | 41              | 5.29      | 174      | 10.7         |
| * HR 6420                | 11   | 12.1          | -04     | 00              | 0.09      | 159      | 91 5         |
| eEria                    | 11   | 10.9          | -43     | 21              | 4.50      | 150      | 21.5         |
| * $\xi$ Urs. Maj         | 11   | 12.9          | +32     | 0               | 4.41      | 149      | 21.7         |
| δErid                    | 3    | 38.5          | -10     | 41              | 0.14      | 194      | 23.0         |
| * aLyrae                 | 18   | 33.0          | +38     | 41              | 0.14      | 104      | 24.0         |
| BHyari                   |      | 20.5          | -11     | 49              | 2.90      | 190      | 24.0         |
| $\alpha$ Pis. Aus        | 122  | 52.1          | -30     | 41              | 1.29      | .120     | 20.0         |
| XDrac                    | 18   | 44.9<br>27 F  | +12     | 41              | 3.09      | 116      | 20.1         |
| • (Herc                  | 10   | 37.0          | +01     | 47              | 3.00      | 116      | 20.1         |
| $\mu$ Herc               |      | 42.0          | +21     | 41              | 0.40      | 100      | 20.1         |
| βLeonis                  | 11   | 44.0          | +10     | 40              | 2.23      | 105      | 29.9         |
| aBootis                  | 14   |               | +19     | 42              | 0.24      | 105      | 01.1         |
| $\beta$ Virg             | 11   | 45.5          | + 2     | 20              | 0.80      | 103      | 01.1         |
| BCan. Ven                | 12   | 29.0          | +41     | 24              | 4.54      | 104      | 90.9         |
| * 85 Peg                 | 23   | 50.8          | +20     | 34              | 0.80      | .101     | 04.0         |
| $\beta$ Gemin            |      | 39.2          | +28     | 10              | 1.21      | .095     | 54.5         |
| α l'auri                 | 4    | 30.2          | +10     | 18              | 1.00      | .004     | 51 9         |
| • aAurigae               | 1 5  | 9.3           | +45     | 04<br>07        | 0.21      | .000     | 01.0<br>79 E |
| a Leonis                 | 110  | 3.0           | +12     | 21              | 1.34      | .040     | 70 5         |
| aErid                    |      | 34.0          | -57     | 40              | 0.00      | .041     | 19.0         |
| • Urs. Min               |      | 22.6          | +88     | 40              |           | .041     | 19.0         |
| aCentauri                | 13   | 56.8          | -59     | 53              | 0.86      | .027     | 120.7        |
| aOrionis                 | 5    | 49.8          | +7      | 23              | 0.92      | .022     | 148.2        |
| aScorp                   | 16   | 23.3          | -26     | 13              | 1.22      | .019     | 171.0        |
| aCygni                   | 20   | 38.0          | +44     | 35              | 1.33      | .012     | 271.7        |
| aCarinae                 | 6    | 21.7          | -52     | 38              | -0.86     | .007     | 465.7        |

The following list, prepared by Mr. J. A. Pearce, gives some of the latest values obtained.

\*Double or multiple star; magnitude of brighter component given.

### THE BRIGHTEST STARS

### Their Magnitudes, Types, Proper Motions, Distances and Radial Velocities

### Prepared by W. E. HARPER

The accompanying table contains the chief known facts regarding 260 stars brighter than apparent magnitude 3.51 as listed in *Harvard Annals*, Volume 50. The position of the star for 1900 is given in the second and third columns. The fourth and fifth columns give the apparent visual magnitude and type taken from the same publication. In a few cases the type is changed to conform with a later determination.

The parallaxes are taken from Schlesinger's Advance Copy of Catalogue of Parallaxes, 1924 Edition, and for such stars the proper motions are copied from the same source. The remaining proper motions were computed using the abbreviated  $\mu_{\alpha}$  and  $\mu_{\delta}$  as they appeared in the HANDBOOK for 1915, where this table first appeared, and are not necessarily correct to the third decimal place. Three or four spectroscopic parallaxes have been added to those given in Schlesinger's catalogue. The small letter s following the parallax indicates a spectroscopic determination has also been made. The distance is also given in light years in the eighth column as to the lay mind that seems a fitting unit. The absolute magnitude or the magnitude the star would appear to have if it were at a distance of 32.6 light years is given in the ninth column. At that distance the sun would appear as a star of magnitude 5.5. The radial velocities taken from Voûte's list supplemented from our observatory card catalogue is given in the last column. Those starred indicate that the star is a spectroscopic binary for which the velocity of the system is given. Where only the whole number appears the velocity may be regarded as approximate. There are 74 starred out of 235 radial velocities set down or one in three of the bright stars is a spectroscopic binary.

|                                                               | Star                                                | R A 1900 | 0001                             | Decl. 1900                                                     |                            | Mag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Type                        | Proper<br>Motion                          | Parallax                               | Distance in<br>Light Years         | W                                                                                        | Rad. Vel.                                        |
|---------------------------------------------------------------|-----------------------------------------------------|----------|----------------------------------|----------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------|----------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------|
| $\alpha$ An<br>$\beta$ Cas<br>$\gamma$ Peg<br>$\beta$ Hy      | dromedae<br>ssiopeiae<br>gasi<br>dri                | h<br>0   | m<br>3<br>4<br>8<br>20           | $^{\circ}$<br>+28<br>+58<br>+14<br>-77                         | '<br>32<br>36<br>38<br>49  | 2.2<br>2.4<br>2.9<br>2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aop<br>F5<br>B2<br>G0       | .207<br>.561<br>.010<br>2.243             | <br>.071 s<br>                         | 46                                 | 1.7                                                                                      | -13.0*<br>+12.8<br>+ 7. *<br>+22.2               |
| $\alpha$ Pho<br>$\delta$ An<br>$\alpha$ Cas<br>$\beta$ Cet    | oenicis<br>dromedae<br>ssiopeiae<br>ti              |          | 20<br>21<br>34<br>35<br>39<br>51 | -42 + 30 + 55 - 18 + 60                                        | 51<br>19<br>59<br>32       | $2.4 \\ 3.5 \\ 2.2 - 2.8 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 $ | K0<br>K2<br>K0<br>K0        | .446<br>.167<br>.062<br>.230              | .026 s<br>.016 s<br>.042 s             | 125<br>204<br>78<br>91             | $ \begin{array}{c} 0.6 \\ -1.8 \\ 0.3 \\ 0.0 \end{array} $                               | $+75.8^{*}$<br>- 5. *<br>- 3.0<br>+13.5<br>- 4.7 |
| $\beta$ Pho<br>$\beta$ And<br>$\delta$ Case                   | oenicis<br>dromedae<br>ssiopeiae                    | 1        | 2<br>4<br>19                     | +00<br>-47<br>+35<br>+59                                       | 11<br>15<br>5<br>43        | $ \begin{array}{c} 2.2 \\ 3.4 \\ 2.4 \\ 2.8 \\ 2.1 \\ 0.1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K0<br>M0<br>A5              | .031<br>.042<br>.219<br>.306              | .030<br>.045 s                         | 72                                 | 0.0                                                                                      | -0.6<br>-2.<br>+9.                               |
| $\gamma$ Pho<br>a Eri<br>$\epsilon$ Cas<br>$\beta$ Ari        | sae Minoris<br>penicis<br>dani<br>ssiopeiae<br>etis |          | 23<br>24<br>34<br>47<br>49       | $+88 \\ -43 \\ -57 \\ +63 \\ +20$                              | 40<br>50<br>44<br>11<br>19 | $2.1 \\ 3.4 \\ 0.6 \\ 3.4 \\ 2.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K5<br>B5<br>B3<br>A5        | .043<br>.222<br>.093<br>.043<br>.150      | .007 s<br>.049 s<br>.001 s<br>.064 s   | 400<br><br>67<br>3260<br>51        | $\begin{vmatrix} -3.7\\ -1.0\\ -6.6\\ 1.7 \end{vmatrix}$                                 | +26. *<br>-7.4<br>-0.6*                          |
| a Hy<br>  γ An<br>a Ari<br>β Tri                              | dri<br>dromedae<br>etis<br>anguli                   | 2        | 56<br>58<br>2<br>4               | -62 + 41 + 22 + 34                                             | 3<br>51<br>59<br>31        | $\begin{array}{c} 3.0\\ 2.3\\ 2.2\\ 3.1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F0<br>K0<br>K2<br>A5        | .256<br>.073<br>.242<br>.161              | .007 s<br>.033 s<br>.014               | 466<br>99<br>262                   | -3.5<br>-0.2<br>-1.2                                                                     | -5.<br>-10.9<br>-14.3                            |
| o Cen<br>$  \theta$ Eri<br>a Cen<br>$\gamma$ Pen              | ti<br>dani<br>ti<br>rsei                            |          | 14<br>54<br>57<br>58             | $ \begin{array}{r} -3 \\ -40 \\ +3 \\ +53 \\ +28 \end{array} $ | 26<br>42<br>42<br>7        | $   \begin{array}{r}     1.7 - 9.6 \\     3.4 \\     2.8 \\     3.1 \\     2.4 4 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M6e<br>A2<br>M1<br>Gp       | .239<br>.071<br>.080<br>.012              | .062<br><br>.011 s<br>.012 s           | 53<br><br>296<br>272               | 0.7<br>-2.0<br>-1.5                                                                      | +63.9<br>+20.<br>-25.8<br>+ 2. *                 |
| $\beta$ Per<br>$\beta$ Per<br>$\alpha$ Per<br>$\delta$ Per    | rsei<br>rsei<br>rsei                                | 3        | 2<br>17<br>36                    | +38<br>+40<br>+49<br>+47                                       | 21<br>34<br>30<br>28       | 3.4-4.2<br>0.1-3.2<br>1.9<br>3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B8<br>F5<br>B5              | .011<br>.041<br>.047                      | .038 s<br>.015 s<br>.005 s             | 217<br>652                         | $-2.2 \\ -3.4$                                                                           | +23.0<br>+ 5. *<br>- 2.4<br>+ 0.7                |
| $  \eta Ta  \zeta Per  \gamma Hy    \epsilon Per  \gamma Eri$ | uri<br>rsei<br>dri<br>rsei<br>dani                  |          | 41<br>48<br>49<br>51<br>53       | +23 +31 -74 +39 -13                                            | 48<br>55<br>33<br>43<br>47 | 3.0<br>2.9<br>3.2<br>3.0<br>3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B5p<br>B1<br>Ma<br>B1<br>K5 | . 053<br>. 023<br>. 128<br>. 041<br>. 133 | .007 s<br>003 s<br><br>012 s<br>.018 s | 466<br>3260 :<br><br>3260 :<br>181 | $   \begin{array}{r}     -2.8 \\     -7.1 \\     \\     -7.0 \\     -0.5   \end{array} $ | +15.<br>+21.2<br>+16.8<br>*<br>+62.2             |
| λ Ta<br>a Re                                                  | uri<br>ticuli                                       | 4        | 55<br>13                         | +12 -62                                                        | 12<br>43                   | 3.3-4.2<br>3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B3<br>G5                    | . 015<br>. 069                            | 008                                    | 3260 :                             | -6.7                                                                                     | +13.6*<br>+35.4                                  |

|             | Star               | D A 1000 | ODAT WW   | Decl. 1900 |           | Mag.       | Type      | Proper<br>Motion | Parallax  | Distance in<br>Light Years | М         | Rad. Vel.   |
|-------------|--------------------|----------|-----------|------------|-----------|------------|-----------|------------------|-----------|----------------------------|-----------|-------------|
| -           | Tauri              | h        | m         | 0          | 10        |            | 175       | 205              | 057       |                            | 0.1       |             |
| a           | Dometric           | 4        | 30        | +10        | 10        | 1.1        | N0-       | . 205            | .037 s    | 57                         | -0.1      | + 54.5      |
| u<br>3      | Doradus            |          | 32        | - 55       | 10        | 3.0        | RUD       | .003             | 190 -     |                            |           | +20.        |
| π.          | Auring             |          | 44        | + 0        | 41        | 3.3        | F 8       | .474             | .130 S    | 24                         | 4.0       | +24.7       |
| l           | Aurigae            |          | 50        | +33        | 41        | 2.9        | KZ        | .030             | .018 s    | 181                        | -0.8      | +18.0       |
| e           | Aurigae            |          | 99        | +43        | 41        | 3.4-4.1    | гэр       | .015             | .002 s    | 1030                       | -5.0      | - 9. *      |
| η           | Aurigae            | 5        | 0         | +41        | 6         | 3.3        | B3        | . 082            | .014 s    | 233                        | -1.0      | + 3.0       |
| e           | Leporis            |          | 1         | -22        | 30        | 3.3        | K5        | .074             | .022 s    | 148                        | 0.0       | + 1.1       |
| β           | Eridani            |          | 3         | - 5        | 13        | 2.9        | A3        | .117             | .052 s    | 63                         | 1.5       | - 8.        |
| μ           | Leporis            |          | 8         | -16        | 19        | 3.3        | A0p       | . 053            |           |                            |           | +28.0       |
| a           | Aurigae            |          | 9         | +45        | 54        | 0.2        | GO        | .439             | .075 s    | 43                         | -0.4      | +30.2*      |
| Ϊβ          | Orionis            |          | 10        | - 8        | 19        | 0.3        | B8p       | . 005            | . 006     | 543                        | -5.8      | +22.6*      |
| 1n          | Orionis            |          | 19        | - 2        | <b>29</b> | 3.4        | B1        | . 000            |           |                            |           | $+35.5^{*}$ |
| γ           | Orionis            |          | 20        | + 6        | 16        | 1.7        | B2        | .019             | .019 s    | 172                        | -1.9      | +19.        |
| β           | Tauri              |          | <b>20</b> | +28        | 31        | 1.8        | B8        | . 180            | .024 s    | 136                        | -1.3      | +11.        |
| β           | Leporis            |          | <b>24</b> | -20        | 50        | 3.0        | G0        | . 095            | .004 s    | 815                        | -4.0      | -13.7       |
| δ           | Orionis            |          | 27        | - 0        | 22        | 2.4        | B0        | .006             | .009 s    | 362                        | -2.8      | +17.6*      |
| a           | Leporis            |          | <b>28</b> | -17        | 54        | 2.7        | F0        | . 006            | .014 s    | 233                        | -1.6      | +24.6       |
| 111         | Orionis            |          | 31        | - 5        | 59        | 2.9        | Qe5       | . 000            |           |                            |           | +21.3*      |
| e           | Orionis            | ł        | 31        | - 1        | 16        | 1.8        | B0        | .004             | .005 s    | 652                        | -3.7      | +26.3       |
| ζ           | Tauri              |          | 32        | +21        | 5         | 3.0        | B3p       | .028             | 001 s     | 3260 :                     | -7.2      | +16.4*      |
| 115         | Orionis            |          | 36        | - 2        | 0         | 1.8        | BO        | .012             | — . 019 s | 3260 :                     | -8.2      | +17.9       |
| a           | Columbae           |          | 36        | -34        | 8         | 2.8        | B5p       | .040             |           | ,                          | 1         |             |
| κ           | Orionis            |          | 43        | - 9        | <b>42</b> | 2.2        | B0        | . 009            | .029 s    | 112                        | 2.5       | +19.        |
| β           | Columbae           |          | 47        | -35        | 48        | <b>3.2</b> | K0        | . 397            |           |                            |           | +89.2       |
| a           | Orionis            |          | 50        | + 7        | <b>23</b> | 1.0-1.4    | M1        | .032             | .017 s    | 192                        | -2.8      | +21.3*      |
| β           | Aurigae            |          | 52        | +44        | 56        | 2.1        | A0p       | .046             | .034 s    | 96                         | -0.2      | -19. *      |
| 0           | Aurigae            |          | 53        | +37        | 12        | 2.7        | A0p       | .106             | .016 s    | 204                        | -1.3      | +28.5       |
|             | <b>C</b> ·         |          | •         |            |           |            |           |                  |           |                            |           |             |
| η           | Geminorum          | 6        | .9        | +22        | 32        | 3.2 - 4.2  | M2        | .062             | .014 s    | 233                        | -1.1      | +20. *      |
| μ           | Geminorum          |          | 17        | +22        | 34        | 3.2        | M3        | .129             | .016 s    | 204                        | -0.8      | +55.2       |
| ρ           | Can. Majoris       |          | 18        | -17        | 54        | 2.0        | BI        | .003             | .012 s    | 272                        | -2.6      | +33. *      |
| a           | Carinae            |          | 22        | -52        | 38        | -0.9       | FO        | .022             | .005 s    | 652                        | -7.4      | +20.2       |
| γ           | Geminorum          |          | 32        | +16        | 29        | 1.9        | AO        | .066             | .043 s    | 76                         | 0.1       | -12.3*      |
| V           | ruppis<br>Cominent |          | 35        | -43        | 6         | 3.2        | B8        | .020             |           |                            |           | +26.0*      |
| e<br>ح      | Geminorum          |          | 38        | +25        | 14        | 3.2        | 65        | .020             | .007 s    | 466                        | -2.6      | + 9.5       |
| <b>ζ</b>    | Geminorum          |          | 40        | +13        | 0         | 3.4        | FD        | .230             | .048 s    | 68                         | 1.8       | +26.7       |
| 11 <b>a</b> | Can. Majoris       |          | 41        | -16        | 35        | -1.6       | AU        | 1.315            | .371 s    | 9                          | 1.2       | - 7.4*      |
| α           | FICIOFIS<br>Duppis |          | 41        | -01        | 20        | <u>ປ.ປ</u> | AD<br>IZO | .271             | •••••     |                            | • • • • • |             |
| au          | ruppis             | 1        | 47        | -50        | 30        | 1 2.8      | INU .     | 094              | ۰         | 1                          | 1         | 1+37. *     |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 1           |            |               | 1         |      |                  |           | 1                          |          | (               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|------------|---------------|-----------|------|------------------|-----------|----------------------------|----------|-----------------|
| $ \begin{array}{                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Star                           | R.A. 1900   | Decl. 1900 |               | Mag.      | Type | Proper<br>Motion | Parallax  | Distance in<br>Light Years | W        | Rad. Vel.       |
| 33520401.43301.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.00 <td>  ε Can. Majoris</td> <td>h m<br/>6 55</td> <td>-28</td> <td>′<br/>50<br/>43</td> <td>1.6</td> <td>B1</td> <td>.000</td> <td></td> <td></td> <td></td> <td>+28.2<br/>+ 6.8*</td>                                                                                                                                                                                                                                                                                                                                                                                 | ε Can. Majoris                 | h m<br>6 55 | -28        | ′<br>50<br>43 | 1.6       | B1   | .000             |           |                            |          | +28.2<br>+ 6.8* |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o <sup>2</sup> Can. Majoris    | 59          | -23        | 41            | 3.1       | B5p  | .000             |           |                            | <b>,</b> |                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | δ Can. Majoris                 | 74          | -26        | 14            | 2.0       | G2p  | . 005            | . 010     | 326                        | -2.9     | +34. *          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L <sup>2</sup> Puppis          | 10          | -44        | <b>29</b>     | 3.4 - 6.2 | Md   | .334             |           |                            |          | +52.6           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\pi$ Puppis                   | 14          | -36        | 55            | 2.7       | K5   | . 012            |           |                            |          | +16.3           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\beta$ Can. Minoris           | 22          | + 8        | <b>29</b>     | 3.1       | B8   | . 063            | . 020 s   | 163                        | -0.4     |                 |
| $ \begin{array}{                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sigma$ Puppis                | 26          | -43        | 6             | 3.3       | K5   | . 192            |           |                            |          | +87.3           |
| $a_1$ Geminorum $28 + 32$ $6$ $2.8$ $A0$ $.209$ $\dots$ $\dots$ $-1.0^*$ $a$ Can, Minoris $39 + 28$ $16$ $1.2$ $K0$ $.623$ $.101$ s $32$ $1.2 + 3.6$ $\beta$ Geminorum $39 + 28$ $16$ $1.2$ $K0$ $.623$ $.101$ s $32$ $1.2 + 3.6$ $\gamma$ Puppis $45 - 24$ $3.5$ $G6p$ $.007$ $.003$ s $1087$ $-4.2 + 4.2$ $\gamma$ Puppis $3 - 24$ $2.9$ $F5$ $.097$ $.028$ s $116$ $0.1 + 46.$ $  \gamma$ Velorum $6 - 47$ $3.2.2$ $Oap$ $.000$ $\dots$ $\dots$ $\dots$ $  \epsilon$ Carinae $8.20 - 59$ $11.7$ $K0$ $.032$ $\dots$ $\dots$ $+11.7$ $\sigma$ Urs. Majoris $22 + 61.3$ $3.5$ $G0$ $.166$ $004$ s $3260: -6.5 + 20.3$ $  e$ Hydrae $41 + 6.47$ $3.5$ $F8$ $.193$ $.015$ s $217$ $-0.6 + 37.2^*$ $\delta$ Velorum $9.4 - 43.2$ $2.2$ $K5$ $.022$ <td< td=""><td>  a2 Geminorum</td><td>28</td><td>+32</td><td>6</td><td>2.0</td><td>A0</td><td>. 201</td><td>.077 s</td><td>42</td><td>1.4</td><td><math>+ 6.2^{*}</math></td></td<>                                                                                                                                                                                                                                                                       | a2 Geminorum                   | 28          | +32        | 6             | 2.0       | A0   | . 201            | .077 s    | 42                         | 1.4      | $+ 6.2^{*}$     |
| a       Can. Minoris $34 + 5 29$ $0.5$ F5 $1.242$ $.312 s$ $10$ $3.0 - 4.3$ $\beta$ Geminorum $39 + 28 16$ $1.2$ $K0$ $.623$ $.101 s$ $32$ $1.2 + 3.6$ $\xi$ Puppis $45 - 24 37$ $3.5$ $G6p$ $.007$ $.003 s$ $1087 - 4.2 + 4.2$ $\beta$ Puppis $3 - 24 1$ $2.9$ $F5$ $.097$ $.028 s$ $116$ $0.1 + 46.$ $\gamma$ Puppis $3 - 24 1$ $2.9$ $F5$ $.097$ $.028 s$ $116$ $0.1 + 46.$ $\gamma$ Velorum $6 - 47 3 2.2$ $Oap$ $.000$ $$ $$ $+11.7$ $\sigma$ Urs. Majoris $22 + 61 3$ $3.5$ $G0$ $.166004 s$ $3260 - 6.5 + 20.3$ $  e$ Hydrae $41 + 6 47$ $3.5$ $F8$ $193$ $.015 s$ $217 - 0.6 + 37.2 s$ $\delta$ Velorum $42 - 54 20$ $2.0$ $A0$ $.093$ $$ $$ $$ $\lambda$ Velorum $9 - 4 - 43 2$ $2.2 2$ $K5$ $.022$ $$ $$ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>a</b> 1 Geminorum           | 28          | +32        | 6             | 2.8       | A0   | .209             |           |                            |          | - 1.0*          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a Can. Minoris                 | 34          | + 5        | 29            | 0.5       | F5   | 1.242            | . 312 s   | 10                         | 3.0      | - 4.3           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\boldsymbol{\beta}$ Geminorum | 39          | +28        | 16            | 1.2       | K0   | .623             | .101 s    | 32                         | 1.2      | + 3.6           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ξ Puppis                       | 45          | -24        | 37            | 3.5       | G6p  | . 007            | .003 s    | 1087                       | -4.2     | + 4.2           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ζ Puppis                       | 8 0         | -39        | 43            | 2.3       | Od   | . 036            |           |                            |          |                 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\rho$ Puppis                  | 3           | -24        | 1             | 2.9       | F5   | . 097            | .028 s    | 116                        | 0.1      | +46.            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\gamma$ Velorum               | 6           | -47        | 3             | 2.2       | Oap  | . 000            |           |                            |          |                 |
| o       Urs. Majoris $22$ $+61$ $3$ $3.5$ $G0$ $.166$ $004$ $s$ $3260$ $-6.5$ $+20.3$ $\delta$ Velorum $42$ $-54$ $20$ $2.0$ $A0$ $.093$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ <t< td=""><td>le Carinae</td><td>8 20</td><td>-59</td><td>11</td><td>1.7</td><td>K0</td><td>.032</td><td></td><td></td><td></td><td>+11.7</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | le Carinae                     | 8 20        | -59        | 11            | 1.7       | K0   | .032             |           |                            |          | +11.7           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o Urs. Majoris                 | 22          | +61        | 3             | 3.5       | G0   | . 166            | – . 004 s | 3260 :                     | -6.5     | +20.3           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | le Hydrae                      | 41          | + 6        | 47            | 3.5       | F8   | . 193            | .015 s    | 217                        | -0.6     | +37.2*          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | δ Velorum                      | 42          | -54        | 20            | 2.0       | A0   | .093             |           |                            |          |                 |
| $\iota$ Urs. Majoris $52$ + 48 26 $3.1$ $A5$ $.500$ $.070 \text{ s}$ $47$ $2.3$ + 8. $\lambda$ Velorum $9$ $4$ - 43 $2$ $2.2$ $K5$ $.022$ $\ldots$ $\ldots$ $+18.8$ $\beta$ Carinae $12$ - 69 $18$ $1.8$ $A0$ $.192$ $\ldots$ $\ldots$ $+13.1$ $\alpha$ Lyncis $15$ + 34 $49$ $3.3$ $K5$ $.214$ $.002 \text{ s}$ $1630$ $-5.1$ $+38.5$ $\kappa$ Velorum $19$ - 54 $35$ $2.6$ $B3$ $.017$ $\ldots$ $+13.1$ $\alpha$ Hydrae $23$ - 8 $14$ $2.2$ $K2$ $.036$ $.006 \text{ s}$ $543$ $-3.9$ $-4.0$ $\theta$ Urs. Majoris $26$ + 52 $8$ $3.3$ $F8p$ $1.096$ $.056 \text{ s}$ $58$ $2.0$ $+15.8$ N Velorum $28$ - 56 $36$ $3.0$ $K5$ $.041$ $\ldots$ $-13.9$ $-13.9$ $\epsilon$ Leonis $40$ + 24 $14$ $3.1$ $G0p$ $.045$ $$ $+13.2$ $-13.9$ <td>۲ Hvdrae</td> <td>50</td> <td>+ 6</td> <td>20</td> <td>3.3</td> <td>K0</td> <td>.101</td> <td>.014 s</td> <td>233</td> <td>-1.0</td> <td>+23.0</td>                                                                                                                                                                                                                                                                                                              | ۲ Hvdrae                       | 50          | + 6        | 20            | 3.3       | K0   | .101             | .014 s    | 233                        | -1.0     | +23.0           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ι Urs. Majoris                 | 52          | +48        | 26            | 3.1       | A5   | . 500            | .070 s    | 47                         | 2.3      | + 8.            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>λ</b> Velorum               | 94          | -43        | 2             | 2.2       | K5   | . 022            |           |                            |          | +18.8           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\beta$ Carinae                | 12          | -69        | 18            | 1.8       | A0   | .192             |           | ÷                          |          | -16.0           |
| a Lyncis15 $+34$ 493.3K5.214.002 s1630 $-5.1$ $+38.5$ $\kappa$ Velorum19 $-54$ 352.6B3.017 $+21.9^*$ a Hydrae23 $-8$ 142.2K2.036.006 s $543$ $-3.9$ $-4.0$ $\theta$ Urs. Majoris26 $+52$ 83.3F8p1.096.056 s582.0 $+15.8$ N Velorum28 $-56$ 363.0K5.041 $-13.9$ $\epsilon$ Leonis40 $+24$ 143.1G0p.045 $001$ s $3260: -6.9$ $+5.1$ $  v$ Carinae45 $-64$ 363.1F0.062 $$ $+13.2$ a Leonis10 $3+12$ 271.3B8.244.058 s560.1 $$ q Carinae14 $-60$ 503.4K5.045 $$ $$ $+9.2$ $  \gamma$ Leonis14 $+20$ 21 $2.3$ K0.347.004 s815 $-4.7$ $-36.$ $\mu$ Urs. Majoris16 $+42$ 0 $3.2$ K5.082.034 s $96$ $0.9$ $-22.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ι Carinae                      | 14          | -58        | 51            | 2.2       | FO   | . 023            |           |                            |          | +13.1           |
| $\kappa$ Velorum       19 $-54$ 35       2.6       B3       .017 $+21.9^*$ $a$ Hydrae       23 $-8$ 14       2.2       K2       .036       .006 s $543$ $-3.9$ $-4.0$ $\theta$ Urs. Majoris       26 $+52$ $8$ $3.3$ $F8p$ $1.096$ .056 s $58$ $2.0$ $+15.8$ N Velorum $28$ $-56$ $36$ $3.0$ $K5$ .041 $-13.9$ $\epsilon$ Leonis $40$ $+24$ $14$ $3.1$ $G0p$ .045 $001$ s $3260: -6.9$ $+5.1$ $  v$ Carinae $45$ $-64$ $36$ $3.1$ $F0$ $.062$ $$ $+13.2$ $a$ Leonis $10$ $3 + 12$ $27$ $1.3$ $B8$ $.244$ $.058$ s $56$ $0.1$ $$ $q$ Carinae $14$ $-60$ $50$ $3.4$ $K5$ $.045$ $$ $+9.2$ $  \gamma$ Leonis $14$ $+20$ $21$ $2.3$ $K0$ $.347$ $.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a Lyncis                       | 15          | +34        | 49            | 3.3       | K5   | .214             | .002 s    | 1630                       | -5.1     | +38.5           |
| a Hydrae       23       -       8       14       2.2       K2       .036       .006 s       543       -3.9       -       4.0 $\theta$ Urs. Majoris       26       +52       8       3.3       F8p       1.096       .056 s       58       2.0       +15.8         N Velorum       28       -56       36       3.0       K5       .041        -13.9 $\epsilon$ Leonis       40       +24       14       3.1       G0p       .045      001 s       3260:       -6.9       + 5.1 $  v$ Carinae       45       -64       36       3.1       F0       .062        +13.2         a Leonis       10       3       +12       27       1.3       B8       .244       .058 s       56       0.1          q Carinae       14       -60       50       3.4       K5       .045        + 9.2 $  \gamma$ Leonis       14       +20       21       2.3       K0       .347       .004 s       815       -4.7       -36. $\mu$ Urs. Majoris       16       +42       0       3.2       K5       .082       .034 s       96<                                                                                                                                                                                                | κ Velorum                      | 19          | -54        | 35            | 2.6       | B3   | .017             |           |                            |          | +21.9*          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a Hydrae                       | 23          | - 8        | 14            | 2.2       | K2   | .036             | .006 s    | 543                        | -3.9     | - <b>4</b> .0   |
| N Velorum       28 $-56$ $3.0$ K5 $.041$ $$ $-13.9$ $\epsilon$ Leonis $40$ $+24$ $14$ $3.1$ $G0p$ $.045$ $001$ s $3260:$ $-6.9$ $+5.1$ $  v$ Carinae $45$ $-64$ $36$ $3.1$ $F0$ $.062$ $$ $$ $+13.2$ $a$ Leonis $10$ $3+12$ $27$ $1.3$ $B8$ $.244$ $.058$ s $56$ $0.1$ $$ $q$ Carinae $14$ $-60$ $50$ $3.4$ $K5$ $.045$ $$ $$ $+9.2$ $  \gamma$ Leonis $14$ $+20$ $21$ $2.3$ $K0$ $.347$ $.004$ s $815$ $-4.7$ $-36.$ $\mu$ Urs. Majoris $16$ $+42$ $0$ $3.2$ $K5$ $.082$ $.034$ s $96$ $0.9$ $-22.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\theta$ Urs. Majoris          | 26          | +52        | 8             | 3.3       | F8p  | 1.096            | .056 s    | 58                         | 2.0      | +15.8           |
| $\epsilon$ Leonis       40       +24       14       3.1       G0p       .045      001 s       3260 :       -6.9       + 5.1 $  v$ Carinae       45       -64       36       3.1       F0       .062         +13.2         a Leonis       10       3 +12       27       1.3       B8       .244       .058 s       56       0.1        +13.2         q Carinae       14       -60       50       3.4       K5       .045        +9.2 $  \gamma$ Leonis       14       +20       21       2.3       K0       .347       .004 s       815       -4.7       -36. $\mu$ Urs. Majoris       16       +42       0       3.2       K5       .082       .034 s       96       0.9       -22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N Velorum                      | 28          | -56        | 36            | 3.0       | K5   | .041             |           |                            |          | -13.9           |
| 10       10       10       12       11       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <t< td=""><td>e Leonis</td><td>40</td><td>+24</td><td>14</td><td>3.1</td><td>G0n</td><td>.045</td><td>- 001 s</td><td>3260:</td><td>-6.9</td><td>+ 5.1</td></t<> | e Leonis                       | 40          | +24        | 14            | 3.1       | G0n  | .045             | - 001 s   | 3260:                      | -6.9     | + 5.1           |
| a Leonis10 $3 + 12$ 271.3B8.244.058 s560.1q Carinae14-60503.4K5.045+ 9.2 $  \gamma$ Leonis14+20212.3K0.347.004 s815-4.7-36. $\mu$ Urs. Majoris16+4203.2K5.082.034 s960.9-22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v Carinae                      | 45          | -64        | 36            | 3.1       | F0   | .062             |           |                            |          | +13.2           |
| q Carinae $14 -60 50$ $3.4$ $K5$ $.045$ $$ $$ $+ 9.2$ $  \gamma$ Leonis $14 +20 21$ $2.3$ $K0$ $.347$ $.004 s$ $815 -4.7 -36.$ $\mu$ Urs. Majoris $16 +42$ $0$ $3.2$ $K5$ $.082$ $.034 s$ $96$ $0.9 -22.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a Leonis                       | 10 3        | +12        | 27            | 1.3       | B8   | .244             | .058 s    | 56                         | 0.1      |                 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g Carinae                      | 14          | -60        | 50            | 3.4       | K5   | . 045            |           |                            |          | + 9.2           |
| $\mu$ Urs. Majoris 16+42 0 3.2 K5 .082 .034 s 96 0.9 -22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $  \gamma$ Leonis              | 14          | +20        | 21            | 2.3       | K0   | .347             | .004 s    | 815                        | -4.7     | -36.            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μ Urs. Majoris                 | 16          | +42        | 0             | 3.2       | K5   | .082             | .034 s    | 96                         | 0.9      | -22.            |

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carinae<br>Carinae                                                                     | · · · · · · · · · · · · · · · · · · ·                  |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------|
| $u$ Ors. Majoris       11 $4$ +45       2 $3.2$ K0       .074 s       44       1. $\psi$ Urs. Majoris       11 $4$ +45       2 $3.2$ K0       .067       .049 s       67       1. $\delta$ Leonis       9       +21 $4$ 2.6       A3       .208       .078 s $42$ 2. $\theta$ Leonis       9       +15       59 $3.4$ A0       .103       .019 s       172       -0. $\lambda$ Centauri       31       -62       28 $3.3$ B9       .046                                                        < | Velorum<br>Hydrae<br>Urs. Majoris<br>Urs. Majoris                                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 1<br>7<br>9*       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                           | Urs. Majoris<br>Leonis<br>Leonis<br>Centauri<br>Leonis<br>Urs. Majoris                 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 4<br>8<br>3        |
| a Crucis $21 - 62 \ 33$ $1.0$ $B1$ $.048$ $.030$ $109$ $-1.0$ $\ \delta$ Corvi $25 - 15 \ 58$ $3.1$ $A0$ $.249$ $.010 \ s$ $326$ $-1.0$ $\gamma$ Crucis $26 - 56 \ 33$ $1.5$ $M6$ $.270$ $$ $$ $\beta$ Corvi $29 - 22 \ 51$ $2.8$ $G5$ $.061$ $.028$ $116$ $0.0$ $a$ Muscae $31 - 68 \ 35$ $2.9$ $B3$ $.038$ $$ $$                                                                                                                                                                               | Centauri<br>Corvi<br>Crucis<br>Urs. Majoris<br>Corvi                                   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | <br>2<br>7         |
| $\gamma$ Centauri   36 - 48 24 2.4 A0 .200                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Crucis<br>Corvi<br>Crucis<br>Corvi<br>Muscae<br>Centauri                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 5<br>5<br>4<br>5   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                           | Virginis<br>Muscae<br>Crucis<br>Urs. Majoris<br>Can. Venat.<br>Virginis                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 0<br>9*<br>0*<br>6 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hydrae<br>Centauri<br>Urs. Majoris<br>Virginis<br>Virginis<br>Centauri<br>Urs. Majoris | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 1<br>0<br>6*<br>6* |

| Star                                                                                                                                                                                                                                                                                                                                                           | R.A. 1900                                                        | Decl. 1900                                                                                                                                                                  | Mag.                                                                                                | Type                                                             | Proper<br>Motion                                                                                                  | Parallax                                       | Distance in<br>Light Years              | M                                              | Rad. Vel.                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| ζ Centauri<br>η Boötis<br>β Centauri                                                                                                                                                                                                                                                                                                                           | h m<br>13 49<br>50<br>57                                         | $   \begin{array}{r}     -46 & 48 \\     +18 & 54 \\     -59 & 53   \end{array} $                                                                                           | 3.1<br>2.8<br>0.9                                                                                   | B2p<br>G0<br>B1                                                  | . 079<br>. 370<br>. 039                                                                                           | . 098 s<br>. 036                               | <br>33<br>91                            | 2.8<br>-1.3                                    | - 0.2*<br>+12.0*                                                                                                           |
| $ \begin{array}{l} \pi \ \text{Hydrae} \\ \theta \ \text{Centauri} \\ a \ \text{Boötis} \\ \gamma \ \text{Boötis} \\ \eta \ \text{Centauri} \\ \ a \ \text{Centauri} \\ a \ \text{Circini} \\ a \ \text{Circini} \\ a \ \text{Lupi} \\ \ \epsilon \ \text{Boötis} \\ \ a^2 \ \text{Librae} \\ \beta \ \text{Urs. Minoris} \\ \beta \ \text{Lupi} \end{array} $ | 14 1<br>11<br>28<br>29<br>33<br>34<br>35<br>41<br>45<br>51<br>52 | $\begin{array}{c} -26 & 12 \\ -35 & 53 \\ +19 & 42 \\ +38 & 45 \\ -41 & 43 \\ -60 & 25 \\ -64 & 32 \\ -46 & 58 \\ +27 & 30 \\ -15 & 38 \\ +74 & 34 \\ -42 & 44 \end{array}$ | $\begin{array}{c} 3.5\\ 2.3\\ 0.2\\ 3.0\\ 2.6\\ 0.3\\ 3.4\\ 2.9\\ 2.7\\ 2.9\\ 2.2\\ 2.8\end{array}$ | K0<br>K0<br>F0<br>B3p<br>G0<br>F0<br>B2<br>K0<br>K2<br>K5<br>B2p | $\begin{array}{r} .165\\ .748\\ 2.287\\ .182\\ .052\\ 3.682\\ .312\\ .036\\ .045\\ .129\\ .028\\ .066\end{array}$ | .080 s<br>.058 s<br>.758<br>.016 s<br>.011 s   | 41<br>56<br><br>4<br><br>204<br><br>296 | -0.3<br>1.8<br><br>4.7<br><br>-1.3<br><br>-2.6 | $\begin{array}{r} +27.6 \\ +1.8 \\ -5.0 \\ -35. \\ 0. \\ +22.2 \\ +7.3 \\ +8. \\ +16.4 \\ -17. \\ +17.0 \\ 0. \end{array}$ |
| κ Centauri<br>σ Librae<br>ζ Lupi                                                                                                                                                                                                                                                                                                                               | 53<br>58<br>15 5                                                 | $ \begin{array}{r} -41 & 42 \\ -24 & 53 \\ -51 & 43 \\                                   $                                                                                  | 3.4<br>3.4<br>3.5                                                                                   | B3<br>M6<br>K0                                                   | .037<br>.094<br>.132                                                                                              | <br>.029 s                                     | <br>112                                 | 0.7                                            | +10. *<br>- 4.2<br>- 9.2                                                                                                   |
| $\gamma$ T Australis<br>$\beta$ Librae<br>$\delta$ Lupi<br>$\gamma$ Urs. Minoris<br>$\iota$ Draconis<br>$\gamma$ Lupi<br>$\gamma$ Core Boreolia                                                                                                                                                                                                                | 10<br>12<br>15<br>21<br>23<br>28                                 | -68 19      -9 1      -40 17      +72 11      +59 19      -40 50      +27 2                                                                                                 | 3.1<br>2.7<br>3.4<br>3.1<br>3.5<br>3.0                                                              | A0<br>B8<br>B2<br>A2<br>K0<br>B3<br>A0                           | . 064<br>. 108<br>. 032<br>. 017<br>. 010<br>. 042<br>160                                                         | <br>.034 s                                     | ·····<br>·····<br>96<br>·····           | 1.2                                            | -38. *<br>- 8.<br>- 10.2                                                                                                   |
| a Cor. Borealis<br>a Serpentis<br>$\beta$ T Australis<br>$\pi$ Scorpii<br>$\delta$ Scorpii                                                                                                                                                                                                                                                                     | 30<br>39<br>46<br>53<br>54                                       | +27 3<br>+ 6 44<br>-63 7<br>-25 50<br>-22 20                                                                                                                                | $2.3 \\ 2.8 \\ 3.0 \\ 3.0 \\ 2.5 $                                                                  | A0<br>K0<br>F0<br>B2p<br>B0                                      | . 160<br>. 142<br>. 440<br>. 042<br>. 042                                                                         | . 046 s '                                      | 02       71                             | 0.9<br>1.1                                     | + 0.4<br>+ 3.3                                                                                                             |
| $ \begin{array}{l}    \beta \ \ {\rm Scorpii} \\ \delta \ \ {\rm Ophiuchi} \\ \epsilon \ \ {\rm Ophiuchi} \\    \sigma \ \ {\rm Scorpii} \\    \eta \ \ {\rm Draconis} \\    \alpha \ \ {\rm Scorpii} \\ \beta \ \ {\rm Herculis} \\ \tau \ \ {\rm Scorpii} \end{array} $                                                                                      | 16 0<br>9<br>13<br>15<br>23<br>23<br>26<br>30                    | $ \begin{array}{r} -19 & 32 \\ -3 & 26 \\ -4 & 27 \\ -25 & 21 \\ +61 & 44 \\ -26 & 12 \\ +21 & 42 \\ -28 & 1 \end{array} $                                                  | $2.8 \\ 3.0 \\ 3.3 \\ 3.1 \\ 2.9 \\ 1.2 \\ 2.8 \\ 2.9$                                              | B1<br>K8<br>K0<br>B1<br>G5<br>M2p<br>K0<br>B0                    | .041<br>.159<br>.088<br>.033<br>.062<br>.032<br>.104<br>.042                                                      | .040 s<br>.046 s<br>.042 s<br>.026 s<br>.030 s | 82<br>71<br><br>78<br>126<br>109        | 1.0<br>1.6<br><br>1.0<br>-1.7<br>0.2           | $\begin{array}{r} -9.5^{*} \\ -19.0 \\ -9.2 \\ +2.0^{*} \\ -13.9 \\ -3.1^{*} \\ -25.5^{*} \\ +1.5 \end{array}$             |

| Star                | R.A. 1900 |                 | Derl 1900 |    | Mag.       | Type      | Proper<br>Motion | Parallax                                | Distance in<br>Light Years | M           | Rad. Vel.    |
|---------------------|-----------|-----------------|-----------|----|------------|-----------|------------------|-----------------------------------------|----------------------------|-------------|--------------|
| 501·1·              | h         | m               | 0         | '  |            |           |                  |                                         |                            |             |              |
| ζ Ophiuchi          | 16        | 32              | -10       | 22 | 2.7        | BO        | . 024            | • • • • • •                             |                            |             | -15.0        |
| C Herculis          |           | 38              | +31       | 47 | 3.0        | G0        | . 601            | .111 s                                  | 29                         | 3.2         | -70. *       |
| a T Australis       |           | 38              | -68       | 51 | 1.9        | K2        | . 034            |                                         |                            |             | - 3.7        |
| ε Scorpii           |           | 44              | -34       | 7  | 2.4        | K0        | . 668            |                                         |                            |             | -2.0         |
| µ¹ Scorpii          |           | 45              | -37       | 53 | 3.1        | B3p       | . 032            | • • • • • •                             |                            |             |              |
| ζ Arae              |           | 50              | -55       | 50 | 3.1        | Ma        | . 047            |                                         |                            |             | - 6.1        |
| $\kappa$ Ophiuchi   |           | 53              | + 9       | 32 | 3.4        | K0        | .296             | .208 s                                  | 116                        | 0.6         | -55.3        |
| η Ophiuchi          | 17        | 5               | -15       | 36 | 2.6        | A0        | . 094            |                                         |                            |             | - 1.1        |
| η Scorpii           |           | 5               | -43       | 6  | 3.4        | F2        | .291             |                                         |                            |             | -28.         |
| ζ Draconis          | 1         | 8               | +65       | 50 | 3.2        | B5        | .023             | .019 s                                  | 172                        | -0.4        | -14.6        |
| a Herculis          | ł         | 10              | +14       | 30 | 3.1-3.9    | M7        | .030             | 002 s                                   | 3260 :                     | -6.9        | -32.4        |
| δ Herculis          |           | 11              | +24       | 57 | 3.2        | A2        | .164             | .029 s                                  | 112                        | 0.5         | -42 *        |
| $\pi$ Herculis      |           | 12              | +36       | 55 | 3.4        | K2        | .021             | .019 s                                  | 172                        | -0.2        | -25 1        |
| $\theta$ Ophiuchi   |           | 16              | -24       | 54 | 3.4        | B3        | .030             |                                         |                            | 0           | - 0.9        |
| $\beta$ Arae        |           | 17              | -55       | 26 | 2.8        | K2        | 035              |                                         |                            |             | - 1 0        |
| v Scorpii           |           | 24              | -37       | 13 | 2.8        | B3        | .040             |                                         |                            |             | 1.0          |
| a Arae              |           | $\overline{24}$ | -49       | 48 | 3 0        | B3n       | 085              | •••••                                   |                            |             |              |
| λ Scorpii           |           | 27              | -37       | 2  | 17         | B2        | 040              | • • • • • •                             |                            |             | 1 *          |
| $\beta$ Draconis    |           | $\frac{-1}{28}$ | +52       | 23 | 3.0        | GO        | 012              | 004 e                                   |                            | _1 0        | - 10.7       |
| θ Scorpii           |           | 30              | -42       | 56 | 2.0        | FO        | 010              | .001 5                                  | 010                        | -4.0        | -19.7        |
| $\alpha$ Ophiuchi   |           | 30              | +12       | 38 | 2.0        | A 5       | 264              | 040 a                                   |                            |             | <b>+</b> 5.  |
| K Scornii           | '         | 36              | -38       | 58 | 2.1        | B9        | . 204            | .0495                                   | 07                         | 0.5         | ••••••       |
| $\beta$ Ophiuchi    |           | 30              | /         | 27 | 2.0        |           | 157              | 094 -                                   | 190                        |             | ••••         |
| 1 Scorpii           |           | 11              | T ±       | 57 | 2.9<br>9.1 | KU<br>E   | .157             | .024 s                                  | 130                        | -0.2        | -11.5        |
| lu Horoulia         |           | 41              | -40       | 47 | 0.1<br>9 5 | rop       | .000             |                                         |                            |             | -27.8        |
| C Seernii           | 1         | 40              | 741       | 4/ | 0.0<br>9.0 | GO<br>IZO | .817             | . 111 s                                 | 29                         | 3.7         | -15.7        |
| u Ochinchi          | '         | 40<br>E 4       | -31       | 1  | 3.4<br>9 r | KZ<br>IZO | .062             |                                         | ••••                       | ••••        | +24.7        |
| V Opniuchi          |           | 04<br>74        | - 9       | 40 | 3.5        | K0        | .118             | .026 s                                  | 126                        | 0.6         | +12.6        |
| γ Draconis          |           | 04<br>70        | +51       | 30 | 2.4        | K5        | .026             | .017 s                                  | 192                        | -1.4        | -27.0        |
| $\gamma$ Sagittarii |           | 59              | -30       | 26 | 3.1        | K0        | .206             | •••••                                   | • • • • •                  |             | +22. *       |
| η Sagittarii        | 18        | 11              | -36       | 48 | 3.2        | M6        | .223             |                                         |                            |             | 0.0          |
| δ Sagittarii        |           | 15              | -29       | 52 | 2.8        | KO        | 042              |                                         |                            |             | -20.2        |
| n Serpentis         | }         | 16              | -2        | 55 | 3.4        | KO        | 898              | 065 s                                   | 50                         | 2 5         | $\pm 0.5$    |
| e Sagittarii        |           | 18              | $-34^{-}$ | 26 | 2.0        | AO        | 139              |                                         | 30                         | 0. س        | -11 0        |
| λ Sagittarii        |           | $22^{-1}$       | -25       | 29 | 29         | KO        | 197              | • • • • • •                             |                            |             | -42.2        |
| a Lyrae             |           | 34              | +38       | 41 | 0 1        | AO        | 3/8              | 194 ~                                   |                            | · · · · · · | 40.4<br>19 0 |
| φSagittarii         |           | 39              | -27       | 6  | 3.3        | R8        | 052              | .12+5                                   | 20                         | 0.0         | -19' *       |
| B Lyrae             |           | 46              | +33       | 15 | 3 4-4 1    | B2n       | 011              | - 014 a                                 | 2260                       | <br>6 6     | ⊤∠u. *<br>*  |
| $\sigma$ Sagittarii |           | 40              | -26       | 25 | 2 1        | B3        | .011             | .014 5                                  | 0200:                      | -0.0        | 1            |
|                     |           | 101             | -0        |    | <i></i>    | 00 1      | .001             | • • • • • • • • • • • • • • • • • • • • |                            |             | I.           |

| Star                                                                                                                                                                                                                                                                                                               | R.A. 1900                                                                               | Decl. 1900                                                                                                                                            | Mag.                                                                                | Type                                                    | Proper<br>Motion                                                                           | Parallax                                                                     | Distance in<br>Light Years                          | W                                                                                 | Rad. Vel.                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| γ Lyrae<br>  ζ Sagittarii                                                                                                                                                                                                                                                                                          | h m<br>18 55<br>56                                                                      | $^{\circ}$ '<br>+32 33<br>-30 1                                                                                                                       | 3.3<br>2.7                                                                          | A0<br>A2                                                | .010<br>.026                                                                               |                                                                              |                                                     |                                                                                   | $\begin{vmatrix} -20. \\ +22 \end{vmatrix}$                                                          |
| τ Sagittarii<br>ζ Aquilae<br>π Sagittarii<br>δ Draconis<br>δ Aquilae<br>  β Cygni<br>γ Aquilae<br>  δ Cygni<br>α Aquilae                                                                                                                                                                                           | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                   | $\begin{array}{r} -27 \ 49 \\ +13 \ 43 \\ -21 \ 11 \\ +67 \ 29 \\ + \ 2 \ 55 \\ +27 \ 45 \\ +10 \ 22 \\ +44 \ 53 \\ + \ 8 \ 36 \end{array}$           | 3.4<br>3.0<br>3.2<br>3.4<br>3.2<br>2.8<br>3.0<br>0.9                                | K0<br>A0<br>F2<br>K0<br>F0<br>K0<br>P<br>K2<br>A0<br>A5 | $\begin{array}{r} .265\\ .103\\ .041\\ .135\\ .267\\ .010\\ .018\\ .067\\ .659\end{array}$ | .040 s<br>.016 s<br>.038 s<br>.057 s<br>.003 s<br>.018 s<br>.038 s<br>.204 s | 82<br>204<br>86<br>57<br>1087<br>181<br>86<br>16    | $ \begin{array}{c} 1.0\\ -1.0\\ 1.1\\ 2.2\\ -4.4\\ -0.9\\ 0.9\\ 2.4 \end{array} $ | +42. *<br>-38.6<br>-10.3<br>+25.1<br>-32. *<br>-23. *<br>-2.1<br>-37.<br>-33.                        |
| $ \begin{array}{l} \theta \hspace{0.1cm} \mbox{Aquilae} \\   \beta \hspace{0.1cm} \mbox{Capricorni} \\ \alpha \hspace{0.1cm} \mbox{Pavonis} \\ \gamma \hspace{0.1cm} \mbox{Cygni} \\ \alpha \hspace{0.1cm} \mbox{Indi} \\ \alpha \hspace{0.1cm} \mbox{Cygni} \\ \epsilon \hspace{0.1cm} \mbox{Cygni} \end{array} $ | $\begin{array}{ccc} 20 & 6 \\ & 15 \\ & 18 \\ & 19 \\ & 31 \\ & 38 \\ & 42 \end{array}$ | $\begin{array}{cccc} - 1 & 7 \\ -15 & 6 \\ -57 & 3 \\ +39 & 56 \\ -47 & 38 \\ +44 & 55 \\ +33 & 36 \end{array}$                                       | 3.43.22.12.33.21.32.6                                                               | A0<br>G0p<br>B3<br>F8p<br>K0<br>A2p<br>K0               | . 035<br>. 042<br>. 090<br>. 006<br>. 072<br>. 004<br>. 485                                | .015 s<br>.005 s<br>002 s<br>.005<br>.041 s                                  | $217 \\ 652 \\ \\ 3260 : \\ \\ 652 \\ 80$           | -0.7<br>-3.3<br>-7.7<br>-5.2<br>0.7                                               | $\begin{array}{r} -29.2^{*} \\ -18.8^{*} \\ + 2.0^{*} \\ - 5.6 \\ - 0.8 \\ - 4. \\ -10. \end{array}$ |
| ζ Cygni<br>a Cephei<br>a Aquarii<br>β Cephei<br>ε Pegasi<br>δ Capricorni<br>γ Gruis                                                                                                                                                                                                                                |                                                                                         | $\begin{array}{r} +29 \ 49 \\ +62 \ 10 \\ -6 \ 1 \\ +70 \ 7 \\ + 9 \ 25 \\ -16 \ 35 \\ -37 \ 50 \end{array}$                                          | 3.42.63.13.32.53.03.2                                                               | K0<br>A5<br>G0<br>B1<br>K0<br>A5<br>A0                  | .061<br>.163<br>.020<br>.013<br>.028<br>.395<br>.108                                       | .024 s<br>.083 s<br>003 s<br>.007 s<br>.002 s<br>.114 s                      | $136 \\ 39 \\ 3260 : \\ 466 \\ 1630 \\ 29 \\ \dots$ | $0.3 \\ 2.2 \\ -6.9 \\ -2.5 \\ -5.9 \\ 3.3 \\ \cdots \cdots$                      | +17. *<br>-30.7<br>+ 6.4<br>-14.1*<br>+ 5.3<br>*<br>- 3.                                             |
| a Aquarii<br>a Gruis<br>a Tucanae<br>$\beta$ Gruis<br>$\eta$ Pegasi<br>aP Australis<br>$\beta$ Pegasi<br>a Pegasi<br>a Pegasi                                                                                                                                                                                      |                                                                                         | $\begin{array}{rrrrr} - & 0 & 48 \\ - & 47 & 27 \\ - & 60 & 45 \\ - & 47 & 24 \\ + & 29 & 42 \\ - & 30 & 9 \\ + & 27 & 32 \\ + & 14 & 40 \end{array}$ | $\begin{array}{c} 3.2 \\ 2.2 \\ 2.9 \\ 2.2 \\ 3.1 \\ 1.3 \\ 2.6 \\ 2.6 \end{array}$ | G0<br>B5<br>K2<br>M6<br>G0<br>A3<br>M3<br>A0            | .009<br>.200<br>.085<br>.122<br>.039<br>.367<br>.235<br>.077                               | .009 s<br>001 s<br>.137<br>.016 s<br>.038 s                                  | 362<br><br>3260:<br>24<br>204<br>86                 | $ \begin{array}{c} -2.0 \\ \dots \\ -6.9 \\ 2.0 \\ -1.4 \\ 0.5 \end{array} $      | + 7.1<br>+41.<br>+ 1.2<br>+ 4.3*<br>+ 6.7<br>+ 8.6<br>+ 4. *                                         |
| $\gamma$ Cephei                                                                                                                                                                                                                                                                                                    | 23 35                                                                                   | +77 4                                                                                                                                                 | 3.4                                                                                 | K1                                                      | .167                                                                                       | .069 s                                                                       | 47                                                  | 2.6                                                                               | -41.6                                                                                                |
| NAME                    | LATITUDE N.                     | Longitude W.      | Feet<br>above<br>Sea Level |
|-------------------------|---------------------------------|-------------------|----------------------------|
|                         | 0 / //                          | 0 / //            |                            |
| Banff Alta              | 51 10                           | 115 35            | 4549                       |
| Barrie Ont              | 44 23                           | 79 41             | 839                        |
| Battleford Sask         | 52 41                           | 108 20            | 1620                       |
| Brandon Man             | 49 51                           | 99 57             | 1176                       |
| Calgary Alta            | 51 02 39 21                     | 7 36 15 1         | 3428                       |
| Charlottetown P.E.I     | 46 14                           | 63 10             | 38                         |
| Collingwood, Ont.       | 44 30                           | 80 15             | 595                        |
| Edmonton, Alta          | 53 31 58.81                     | 113 30 27.0       | 2188                       |
| Father Point, Que       | 48 31                           | 68 19             | 20                         |
| Fort Churchill          | 58 51                           | 94 11             |                            |
| Fort Simpson            | 61 52                           | 121 43            |                            |
| Fredericton, N.B.       | 45 57                           | 66 36             | 164                        |
| Golden, B.C.            | $51 \ 16$                       | 116 55            | 2550                       |
| Gravenhurst, Ont        | 44 54                           | 79 20             | 770                        |
| Guelph, Ont.            | $43 \ 32 \ 43.7$                | 80 15 09.0        | 1063                       |
| Halifax, N.S.           | 44 39                           | 63 36             | 97                         |
| Hamilton, Ont           | 43 16                           | 79 54             | 303                        |
| Herschel Is             | 69 30                           | 139 15            |                            |
| Kingston, Ont           | 44 13                           | 76 29             | 285                        |
| London, Ont             | 42 59                           | 81 13             | 808                        |
| Medicine Hat            | $50 \ 1$                        | 110 37            | 2161                       |
| Moncton, N.B            | 46 9                            | $64 \ 45$         | 50                         |
| Montreal Que            | 45 30 17.0                      | 73 34 39.45       | 187                        |
| New Westminster, B.C    | 49 13                           | $122\ 54$         | 330                        |
| No. West River, Ungava. | $53 \ 31 \ 31.45$               | $60 \ 10 \ 17.85$ | · · · · ·                  |
| Ottawa, Ont             | 45 23 38                        | 75 $42$ $58.20$   | 273.4                      |
| Owen Sound, Ont         | $44 \ 33 \ 56.42$               | 80 56 40.5        | 585                        |
| Peterborough, Ont       | 44 17                           | 78 19             | 722                        |
| Portage la Prairie, Man | 49 58                           | 98 17             | 830                        |
| Port Simpson, B.C.      | 54 34                           | 130 26            | 20                         |
| Prince Albert, Sask     | 53 10                           | 106 0             | 1432                       |
| Quebec, Que             | 46 48                           | 11 13             | 290                        |
| Regina, Sask            | 51 00 11 95                     | 7 59 40 8         | 1502                       |
| Revelstoke, D.C.        | 45 10 00 72                     | 0 02 99.8         | 1005                       |
| St Catharing Ont        | 43 19 00.75                     | 70 17             | 347                        |
| St. John N.B.           | 45 17                           | 66 A              | 70                         |
| St. Johns Nfd           | 47 34                           | 52 42             | 125                        |
| Stratford Ont           | 43 93                           | 81 00             | 1191                       |
| Toronto Ont             | 43 30 35 0                      | 79 23 39 75       | 350                        |
| Vancouver, B.C.         | 49 17 48 0                      | 123 07 05 52      | 11                         |
| Victoria, B.C.          | 48 25 31 38                     | 123 21 42 0       | $\hat{5}\hat{5}$           |
| Windsor, Ont.           | $\frac{10}{42}$ $\frac{20}{20}$ | 83 4              | 625                        |
| Winnipeg, Man           | 49 53 51.53                     | 97 08 23.53       | 751                        |
| York Factory            | 57 00                           | $92\ 28$          | 55                         |

## GEOGRAPHICAL POSITIONS OF SOME POINTS IN CANADA

In above table the longitudes of Calgary and Revelstoke are in h. m. s. In arc the values are  $105^{\circ} 12' 46''.5$  and  $105^{\circ} 25' 27''$  respectively.

## INDEX

| Abbreviations and Symbols4Algol, minima of29, 31Andromedes (meteors)54Anniversaries for 19253Calendar for 192561Double Stars67Eclipses in 192526Ephemeris of the Sun6Festivals and Anniversaries for 19253Geographical Positions of Some Points in Canada71Greek Alphabet4Jupiter's Satellites, configurations of29, 31Jupiter's Satellites, Phenomena of52Leonids (meteors)54Meteors and Shooting Stars54Moon, Phases of the29, 3151Statellites, configurations of29, 3151Moon, Phases of the29, 3151 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algol, minima of29, 3151Andromedes (meteors).54Anniversaries for 1925                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Andromedes (meteors)54Anniversaries for 19253Calendar for 1925cover, pageDistance of Stars61Double Stars57Eclipses in 192526Ephemeris of the Sun6Festivals and Anniversaries for 19253Geographical Positions of Some Points in Canada71Greek Alphabet4Jupiter's Satellites, configurations of29, 31Jupiter's Satellites, Phenomena of52Leonids (meteors)54Meteors and Shooting Stars54Moon, Phases of the29, 3151                                                                                      |
| Anniversaries for 1925.3Calendar for 1925.cover, pageDistance of Stars.61Double Stars.57Eclipses in 1925.26Ephemeris of the Sun6Festivals and Anniversaries for 1925.3Geographical Positions of Some Points in Canada71Greek Alphabet.4Jupiter's Satellites, configurations of.29, 3151Jupiter's Satellites, Phenomena of.52Leonids (meteors).54Meteors and Shooting Stars.54Moon, Phases of the29, 3151                                                                                               |
| Calendar for 1925.cover, page 2Distance of Stars.61Double Stars.57Eclipses in 1925.26Ephemeris of the Sun.6Festivals and Anniversaries for 1925.3Geographical Positions of Some Points in Canada.71Greek Alphabet.4Jupiter's Satellites, configurations of.29, 3151Jupiter's Satellites, Phenomena of.52Leonids (meteors).54Meteors and Shooting Stars.54Moon, Phases of the29, 3151                                                                                                                   |
| Distance of Stars61Double Stars57Eclipses in 192526Ephemeris of the Sun6Festivals and Anniversaries for 19253Geographical Positions of Some Points in Canada71Greek Alphabet4Jupiter's Satellites, configurations of29, 31Jupiter's Satellites, Phenomena of52Leonids (meteors)54Meteors and Shooting Stars54Moon, Phases of the29, 3151                                                                                                                                                               |
| Double Stars57Eclipses in 192526Ephemeris of the Sun6Festivals and Anniversaries for 19253Geographical Positions of Some Points in Canada71Greek Alphabet4Jupiter's Satellites, configurations of29, 3151Jupiter's Satellites, Phenomena of52Leonids (meteors)54Meteors and Shooting Stars54Moon, Phases of the29, 3151                                                                                                                                                                                |
| Eclipses in 1925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ephemeris of the Sun6Festivals and Anniversaries for 1925.3Geographical Positions of Some Points in Canada71Greek Alphabet.4Jupiter's Satellites, configurations of29, 31Jupiter's Satellites, Phenomena of52Leonids (meteors).54Meteors and Shooting Stars.54Moon, Phases of the29, 3151                                                                                                                                                                                                              |
| Festivals and Anniversaries for 1925                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Geographical Positions of Some Points in Canada71Greek Alphabet4Jupiter's Satellites, configurations of29, 31Jupiter's Satellites, Phenomena of52Leonids (meteors)54Meteors and Shooting Stars54Moon, Phases of the29, 3151                                                                                                                                                                                                                                                                            |
| Greek Alphabet.4Jupiter's Satellites, configurations of.29, 31Jupiter's Satellites, Phenomena of.52Leonids (meteors).54Meteors and Shooting Stars.54Moon, Phases of the.29, 3151                                                                                                                                                                                                                                                                                                                       |
| Jupiter's Satellites, configurations of.29, 3151Jupiter's Satellites, Phenomena of.52Leonids (meteors).54Meteors and Shooting Stars.54Moon, Phases of the.29, 3151                                                                                                                                                                                                                                                                                                                                     |
| Jupiter's Satellites, Phenomena of52Leonids (meteors)54Meteors and Shooting Stars54Moon, Phases of the29, 3151                                                                                                                                                                                                                                                                                                                                                                                         |
| Leonids (meteors).54Meteors and Shooting Stars.54Moon, Phases of the29, 3151                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Meteors and Shooting Stars.54Moon, Phases of the29, 3151                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Moon, Phases of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Moon, Occultations of Stars by                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Moon, Eclipses of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Occultation of Stars by the Moon                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Perseids (meteors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Phenomena (conjunctions, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Planets for the Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Preface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Satellites of Jupiter, Configurations of                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Satellites of Jupiter, Phenomena of                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Satellites of the Solar System                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sky for the Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Solar System, Elements of 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Solar System, Satellites of                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Stars, information regarding the brightest                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Stars, the Distance of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Stars, Double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Stars, Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sun, Ephemeris of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sun, Eclipses of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sunrise and Sunset, Explanation of Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sunrise and Sunset, Tables of                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Time, Explanation of Solar and Sidereal                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Variable Stars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



Map showing that portion of the path of totality of the total eclipse of the sun of January 24, 1925, which is on the continent of North America-(By R. M. Motherwell)



50 0

4 .

10 0

20

6



## THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

The Library and the offices of the General Secretary and the General Treasurer are at 198 College Street, Toronto.

Ordinary meetings are held in Toronto in the Physics Building on alternate Tuesdays, beginning in September and continuing to the end of May. In addition, ordinary meetings are at present held at Montreal, Ottawa, Winnipeg and Victoria. The Society also has organizations at Guelph, Hamilton, Peterborough and Regina, but during the war the meetings were discontinued and have not yet been revived.

The Society publishes a monthly JOURNAL, containing each year about 500 pages of interesting articles, and a yearly HANDBOOK of 72 pages, containing information for the amateur observer. Subscription, \$2.00 a year; single copies of the JOURNAL or HANDBOOK, 25 cents.

Membership in the Society is open to anyone interested in Astronomy and many more members are desired. The annual fee of \$2.00 includes subscription to the publications.

For further information apply to the General Secretary, Mr. F. T. Stanford, at the above address.