THE Observer's Handbook FOR 1926

young.

PUBLISHED BY

The Royal Astronomical Society of Canada

EDITED BY C. A. CHANT

EIGHTEENTH YEAR OF PUBLICATION

TORONTO 198 College Street Printed for the Society 1926

		• •	6
- 14	37	4	U

CALENDAR

1926

JANUARY Sun. 3 10 17 24 31 Mon. 4 11 18 25 Wed. 6 13 20 27 Thur. 7 14 21 28 Fri. 1 8 15 22 29 Sat. 2 9 16 23 30	FEBRUARY Sun. 7 14 21 28 Mon. 1 8 15 22 . Tues. 2 9 16 23 . Wed. 3 10 17 24 . Thur. 4 11 18 25 . Fri. 5 12 19 26 . Sat. 6 13 20 27 .							
MAV	JUNE	TITLY	ALICHET					
Mark 1 Sun. 2 9 16 23 30 Mon. 3 10 17 24 31 Tues. 4 11 18 25 Wed. 5 12 19 26 Thur. 6 13 20 27 Fri. 7 14 21 28 Sat. 1 8 15 22 29		JOLY Sun. 4 11 18 25 Mon. 5 12 19 26 Tues. 6 13 20 27 Wed. 7 14 21 28 Thur. 1 8 15 22 29 Fri. 2 9 16 23 30 Sat. 3 10 17 24 31	AUGUSI Sun. 1 8 15 22 29 Mon. 2 9 16 23 30 Tues. 3 10 17 24 31 Wed. 4 11 18 25 Thur. 5 12 19 26 Fri. 6 13 20 27 . Sat. 7 14 21 28 .					
SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER					
Sun. . 5 12 19 26 Mon. . 6 13.20 27 Tues. . 7 14 12 Wed. . 8 15 22 29 Thur. . 9 16 23 30 Fri. . 3 10 17 24 Sat. . 4 11 18 25	Sun. 3 10 17 24 31 Mon. 4 11 18 25 Tues. 5 12 19 26 Wed. 6 13 20 27 Thur. 7 14 21 28 Fri. 1 8 15 22 29 Sat. 2 9 16 23 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sun. . 6 12 19 26 Mon. . 5 13 20 27 Tues. . 7 14 21 28 Wed. . 1 8 15 22 29 Thur. . 2 9 16 23 30 Frd. . . 3 10 17 24 31					

THE Observer's Handbook for 1926

PUBLISHED BY

The Royal Astronomical Society of Canada

Edited by C. A. CHANT

EIGHTEENTH YEAR OF PUBLICATION

TORONTO 198 College Street Printed for the Society 1926

CONTENTS

·-----

Preface	- 1	'	-	-	-	-	-	3
Anniversarie	s and Fe	stivals	-		-	-	-	3
Symbols and	Abbrevi	ations	-	-	-	-	-	4
Solar and Sid	lereal Ti	me	-		-		÷. <u>-</u>	5
Ephemeris of	f the Sun		-	-	-	-	-	6
Occultations	of Fixed	Stars b	y the	e Moon	-	-	-	8
Times of Sur	nrise and	Sunset	-	-	_ '	-	-	8
Planets for t	he Year	-	-	-	-	-	-	22
Eclipses in 19	926	-	•	-	-	-	-	27
The Sky and	Astrono	mical P	heno	mena for	r each I	Month	-	28
Eclipses, etc.	, of Jupit	er's Sa	tellite	s -	-	-	-	52
Meteors and	Shooting	Stars	-	-	-	-	-	54
Elements of	the Solar	Systen	1	-	-	-	-	55
Satellites of t	the Solar	System	1 -	-	-	-	-	56
Double Stars	, with a s	short li	st	-	-	-	-	57
Variable Star	rs, with a	short l	list	-	_	-	-	59
Distances of	the Stars	5	-	-		-	-	61
The Brightes	st Stars, t	heir ma	ignitu	ides, typ	es, prop	ber moti	ons,	
distances a	and radia	l veloci	ties	-	-	-	-	63
Geographical	Position	s of So	me P	oints in	Canad	a -	-	71
Index	-	- ' '	-	-	-	-	-	72

PREFACE

The HANDBOOK for 1926 is similar to that for 1925, which was somewhat larger than those issued for some years before that date. The increase consisted chiefly in a comprehensive table embodying the most important information known regarding 260 of the brightest stars. This table was prepared by Mr. W. E. Harper of the Dominion Astrophysical Observatory, Victoria, B.C. As in past years, Mr. R. M. Motherwell, of the Dominion Observatory, Ottawa, supplies the list of stars occulted by the Moon.

Descriptions of the constellations and also star maps are not included, since fuller information is available in a better form and at a reasonable price in many publications, such as: Young's Uranography (72 c.), Norton's Star Atlas and Telescopic Handbook (10s. 6d.), Olcott's A Field-book of the Stars (\$1.50), or McKready's A Beginner's Star Book (\$5.00).

In the preparation of this HANDBOOK the Editor has been assisted by the two gentlemen named above, by Mr. J. A. Pearce, M.A., of the Dominion Astrophysical Observatory; Mr. J. H. Horning, M.A., of Toronto; and his colleague, Dr. R. K. Young, of the University of Toronto.

The times of the minima of Algol are based upon an observation of Stebbins, J.D. 2422619.7866 (Ap. J., vol. 53, 1921), together with Hellerick's period of 2.86731077 days (A.N., vol. 209, p. 227, 1919). As a check on Chandler's formula, consider two observations:

1. Stebbins (photometer), J.D. 2422619,7866.

C-S = +0.1198 days = 2h 52m 36s.

2. Pearce (visual), J.D. 2423310.8146±0.0010.

C - P = +0.1175 days = 2h 49m 17s.

Chandler's formula should be corrected by -2h 50m. TORONTO, December, 1925.

THE EDITOR.

ANNIVERSARIES AND FESTIVALS, 1926

New Year's DayFri., Jan. 1	Victoria Day				
Epiphany	Trinity Sunday May 30				
Septuagesima SundayJan. 31	Corpus Christi				
Quinquagesima SundayFeb. 14	St. John Baptist Thur., June 24				
Ash WednesdayFeb. 17	Dominion Day Thur., July 1				
St. David Mon., Mar. 1	Labour Day Mon., Sept. 6				
St. Patrick Wed., Mar. 17	St. Michael (Michael-				
Palm Sunday Mar. 28	mas Day)Wed., Sept. 29				
Good FridayApr. 2	All Saints Day Mon., Nov. 1				
Easter SundayApr. 4	First Sunday in Advent Nov. 28				
St. GeorgeFri., Apr. 23	St. Andrew				
Rogation Sunday May 9	Conception DayWed., Dec. 8				
Ascension Day Thur., May 13	St. Thomas Day Tues., Dec. 21				
Pentecost (Whit Sunday) May 23	Christmas DaySat., Dec. 25				
King George V., born June 3, 1865; began to reign May 6, 1910.					
Queen Mary, born May 26, 186	7.				

Prince of Wales, born June 23, 1894.

SYMBOLS AND AEBREVIATIONS

SIGNS OF THE ZODIAC

Υ Aries 0°	Ω Leo120°	オ Sagittarius240 ^c
∀ Taurus30°	\mathfrak{MP} Virgo 150°	o Capricornus 270°
¤ Gemini60°	≏ Libra180°	🗯 Aquarius 300°
\odot Cancer	M Scorpio 210°	\mathcal{H} Pisces

SUN, MOON AND PLANETS

\odot The Sun.	C The Moon generally.	2 Jupiter.
New Moon.	8 Mercury.	b Saturn.
🖸 Full Moon.	♀ Venus.	ි or ඁ
First Quarter	\oplus Earth.	Ψ Neptune.
C Last Quarter.	♂ Mars.	

ASPECTS AND ABBREVIATIONS

o' Conjunction, or having the same Longitude or Right Ascension σ Conjunction, or having the same Longitude or Right Ascension σ Opposition, or differing 180° in Longitude or Right Ascension. \Box Quadrature, or differing 90° in Longitude or Right Ascension. Ω Ascending Node; \Im Descending Node. a or A. R., Right Ascension; δ Declination. h, m, s, Hours, Minutes, Seconds of Time. σ "", Degrees, Minutes, Seconds of Arc.

THE GREEK ALPHABET

Α, α,	Alpha.	Ι,ι,	Iota.	Ρ,ρ,	Rho.
Β, β,	Beta.	Κ, κ,	Kappa.	Σ, σ, ς,	Sigma.
Γ,γ,	Gamma.	Λ, λ,	Lambda.	Τ,τ,	Tau.
$\Delta, \delta,$	Delta.	Μ, μ,	Mu.	Υ, ν,	Upsilon.
Ε, ε,	Epsilon.	Ν, ν,	Nu.	Φ, φ,	Phi.
Ζ,ζ,	Zeta.	Ξ,ξ,	Xi.	Χ, χ,	Chi.
Η, η,	Eta.	0,0,	Omicron.	$\Psi, \psi,$	Psi.
	Theta.	Π,π,	Pi.	Ω, ω,	Omega

In the Configurations of Jupiter's Satellites (pages 29, 31, etc.), O represents the disc of the planet, d signifies that the satellite is on the disc, * signifies that the satellite is behind the disc or in the shadow. Configurations are for an inverting telescope.

SOLAR AND SIDEREAL TIME

In practical astronomy three different kinds of time are used, while in ordinary life we use a fourth.

I. Apparent Time—By apparent noon is meant the moment when the sun is on the meridian, and apparent time is measured by the distance in degrees that the sun is east or west of the meridian. Apparent time is given by the sun-dial.

2. Mean Time—The interval between apparent noon on two successive days is not constant, and a clock cannot be constructed to keep apparent time. For this reason mean time is used. The length of a mean day is the average of all the apparent days throughout the year. The *real sun* moves about the ecliptic in one year; an imaginary mean sun is considered as moving uniformly around the celestial equator in one year. The difference between the times that the real sun and the mean sun cross the meridian (*i. e.* between apparent noon and mean noon) is the equation of time. (See next page).

3. Sidereal Time—This is time as determined from the stars. It is sidereal noon when the Vernal Equinox or First of Aries is on the meridian. In accurate time-keeping the moment when a star is on the meridian is observed and the corresponding mean time is then computed with the assistance of the Nautical Almanac. When a telescope is mounted equatorially the position of a body in the sky is located by means of the sidereal time.

4. Standard Time—In everyday life we use still another kind of time. A moment's thought will show that in general two places will not have the same mean time: indeed, difference in longitude between two places is determined from their difference in time. But in travelling it is very inconvenient to have the time varying from station. For the purpose of facilitating transportation the system of *Standard Time* was introduced in 1883. Within a certain belt approximately 15° wide, all the clocks show the same time, and in passing from one belt to the next the hands of the clock are moved forward or backward one hour.

In Canada we have six standard time belts, as follows; —60th meridian or Atlantic Time, 4h. slower than Greenwich; 75th meridian or Eastern Time, 5h.; 90th meridian or Central Time, 6h.; 105th meridian or Mountain Time, 7h.; 120th meridian or Pacific Time, 8h.; and 135th meridian or Yukon Time, 9h. slower than Greenwich.

1926 EPHEMERIS OF THE SUN AT 0h GREENWICH CIVIL TIME

Date	R.A.	Equation of Time	Declination	Date	R.A.	Equation of Time	Declination
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} {\rm m} & {\rm s} \\ + 3 & 12.1 \\ + 4 & 36.4 \\ + 5 & 57.4 \\ + 7 & 14.4 \\ + 8 & 26.6 \\ + 9 & 33.3 \\ + 10 & 33.9 \\ + 11 & 27.7 \\ + 12 & 14.6 \\ + 12 & 54.1 \\ + 13 & 51.4 \\ + 13 & 51.4 \\ + 14 & 19.7 \\ + 14 & 20.4 \\ + 14 & 19.7 \\ + 14 & 20.4 \\ + 14 & 19.7 \\ + 14 & 20.4 \\ + 14 & 19.7 \\ + 14 & 20.4 \\ + 11 & 24.4 \\ + 12 & 41.4 \\ + 12 & 41.4 \\ + 11 & 24.8 \\ + 10 & 40.9 \\ + 9 & 4.3 \\ + 7 & 19.1 \\ + 6 & 24.5 \\ + 5 & 29.3 \\ + 4 & 34.2 \\ \end{array}$	$\begin{array}{c} & & & & & & & & \\ & -23 & 5 & 2 \\ & -22 & 49 & 26 \\ & -22 & 29 & 45 \\ & -22 & 26 & 4 \\ & -21 & 38 & 29 \\ & -21 & 7 & 9 \\ & -20 & 22 & 9 \\ & -19 & 53 & 41 \\ & -19 & 11 & 52 \\ & -18 & 26 & 54 \\ & -17 & 38 & 55 \\ & -16 & 48 & 8 \\ & -15 & 54 & 41 \\ & -14 & 58 & 58 \\ & -15 & 54 & 41 \\ & -14 & 58 & 10 \\ & -10 & 54 & 18 \\ & -10 & 54 & 18 \\ & -10 & 54 & 18 \\ & -9 & 48 & 56 \\ & -10 & 54 & 18 \\ & -9 & 48 & 56 \\ & -13 & 0 & 20 \\ & -10 & 54 & 18 \\ & -9 & 48 & 56 \\ & -8 & 42 & 14 \\ & -7 & 57 & 7 \\ & -6 & 648 & 35 \\ & -3 & 18 & 28 \\ & -2 & 56 & 22 \\ & +0 & 14 & 47 \\ & +1 & 25 & 45 \\ & +2 & 366 & 24 \\ & +3 & 46 & 33 \\ \end{array}$		$ \begin{array}{c} h \ m \ s \\ 0 \ 45 \ 56 \\ 1 \ 7 \ 501 \\ 1 \ 29 \ 54 \\ 1 \ 41 \ 0 \\ 1 \ 52 \ 10 \\ 2 \ 26 \ 2 \\ 2 \ 37 \ 28 \\ 2 \ 48 \ 52 \ 10 \\ 2 \ 26 \ 2 \\ 2 \ 37 \ 28 \\ 2 \ 48 \ 57 \\ 3 \ 57 \\ 3 \ 57 \\ 3 \ 57 \\ 3 \ 57 \\ 5 \ 13 \ 31 \\ 57 \\ 5 \ 13 \ 31 \\ 57 \\ 5 \ 13 \ 31 \\ 5 \ 50 \\ 5 \ 50 \\ 5 \ 50 \\ 5 \ 50 \\ 5 \ 50 \\ 5 \ 50 \\ 5 \ 51 \\ 6 \ 28 \ 18 \\ \end{array} $	$ \begin{array}{c} {\rm m} {\rm s} \\ +3 39.7 \\ +2 46. \\ +1 55.2 \\ +1 6.1 \\ +0 19.7 \\ +0 23.9 \\ -1 40.7 \\ -2 213.2 \\ -2 41.3 \\ -3 4.6 \\ -3 324.9 \\ -3 346.5 \\ -3 346.5 \\ -3 346.4 \\ -3 324.9 \\ -3 24.9 \\ -1 24.1 \\ -1 24.1 \\ -1 45.8 \\ +2 24.1 \\ +3 1.4 \\ -3 -4 -4 -4 \\ -3 -4 -4 -4 \\ -3 -4 -4 -4 \\ -3 -4 -4 -4 \\ -3 -4 -4 -4 \\ -4 -4 -4 -4 \\ -4 -4 $	$\begin{array}{c} \circ & \prime & \prime & \prime \\ + \ 4 \ 56 \ 5 \\ + \ 6 \ 4 \ 50 \\ + \ 7 \ 12 \ 39 \\ + \ 8 \ 19 \ 23 \\ + \ 9 \ 24 \ 53 \\ + \ 10 \ 28 \ 53 \\ + \ 11 \ 31 \ 29 \\ + \ 12 \ 32 \ 16 \\ + \ 13 \ 31 \ 12 \\ + \ 12 \ 32 \ 16 \\ + \ 13 \ 31 \ 12 \\ + \ 14 \ 28 \ 8 \\ + \ 15 \ 22 \ 55 \\ + \ 14 \ 37 \ 57 \\ + \ 19 \ 19 \ 5 \ 32 \\ + \ 17 \ 53 \ 25 \\ + \ 18 \ 37 \ 57 \\ + \ 19 \ 19 \ 5 \ 52 \\ + \ 20 \ 35 \ 5 \ 22 \\ + \ 20 \ 35 \ 5 \ 20 \\ + \ 21 \ 37 \ 57 \\ + \ 20 \ 35 \ 5 \ 20 \\ + \ 21 \ 37 \ 57 \\ + \ 22 \ 32 \\ + \ 22 \ 32 \\ + \ 22 \ 32 \\ + \ 22 \ 32 \\ + \ 22 \ 32 \\ + \ 23 \ 21 \ 33 \\ + \ 23 \ 22 \ 52 \\ + \ 23 \ 23 \ 53 \ 53 \\ + \ 23 \ 23 \ 53 \ 53 \\ + \ 23 \ 23 \ 53 \ 53 \ 53 \ 53 \ 53 \ 53$

1926 EPHEMERIS OF SUN AT 0h GREENWICH CIVIL TIME

Date	R.A.	Equation of Time	Declination	Date	R.A.	Equation of Time	Declination
July 2 5 5 5 5 5 5 5 5 5 5 5 5 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} m & s \\ +3 & 25.5 \\ +4 & 10.8 \\ +5 & 9.5 \\ +5 & 52.7 \\ +6 & 7.4 \\ +5 & 52.7 \\ +6 & 7.4 \\ +6 & 12.3 \\ +6 & 22.8 \\ +6 & 14.2 \\ +1 & 14.2 \\ +6 & 14.2 \\ +1 & $	$\begin{array}{c} \circ & , & , \\ +23 & 10 & 54 \\ +22 & 53 & 12 \\ +22 & 25 & 12 \\ +22 & 35 & 44 \\ +21 & 50 & 18 \\ +21 & 22 & 30 \\ +20 & 51 & 26 \\ +20 & 17 & 12 \\ +19 & 39 & 56 \\ +18 & 59 & 43 \\ +18 & 16 & 40 \\ +17 & 30 & 56 \\ +16 & 42 & 37 \\ +15 & 51 & 52 \\ +114 & 58 & 50 \\ +14 & 58 & 50 \\ +14 & 58 & 50 \\ +114 & 58 & 50 \\ +114 & 58 & 50 \\ +114 & 58 & 50 \\ +114 & 58 & 50 \\ +114 & 58 & 50 \\ +114 & 58 & 50 \\ +114 & 58 & 50 \\ +114 & 58 & 50 \\ +114 & 58 & 50 \\ +114 & 58 & 50 \\ +114 & 58 & 50 \\ +114 & 58 & 50 \\ +114 & 58 & 50 \\ +14$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{m} & \text{s} \\ -10 & 36.3 \\ -11 & 31.4 \\ -12 & 23.2 \\ -13 & 11.3 \\ -13 & 55.0 \\ -14 & 34.1 \\ -15 & 7.9 \\ -15 & 36.0 \\ -15 & 57.7 \\ -16 & 21.4 \\ -16 & 21.4 \\ -16 & 14.7 \\ -16 & 21.4 \\ -16 & 14.7 \\ -16 & 38.8 \\ -15 & 9.7 \\ -14 & 33.1 \\ -13 & 49.2 \\ -12 & 58.0 \\ -11 & 59.8 \\ -10 & 55.2 \\ -9 & 44.8 \\ -13 & 59.7 \\ -14 & 59.8 \\ -10 & 55.2 \\ -9 & 44.8 \\ -13 & 59.7 \\ -14 & 19.2 \\ -2 & 251.1 \\ -1 & 21.8 \\ +0 & 7.8 \\ +1 & 36.8 \\ +1 & 36.8 \\ +2 & 35.3 \\ \end{array}$	$\begin{array}{c} \circ & , & , & , \\ - & 3 & 34 & 40 \\ - & 4 & 44 & 15 \\ - & 5 & 53 & 19 \\ - & 7 & 1 & 42 \\ - & 8 & 9 & 12 \\ - & 9 & 15 & 40 \\ - & 10 & 20 & 57 \\ - & 11 & 24 & 48 \\ - & 12 & 27 & 45 \\ - & 14 & 26 & 29 \\ - & 15 & 23 & 7 \\ - & 16 & 17 & 29 \\ - & 16 & 17 & 29 \\ - & 17 & 9 & 23 \\ - & 17 & 58 & 38 \\ - & 18 & 45 & 3 \\ - & 19 & 28 & 27 \\ - & 20 & 45 & 37 \\ - & 20 & 45 & 37 \\ - & 20 & 45 & 37 \\ - & 20 & 45 & 37 \\ - & 20 & 45 & 37 \\ - & 20 & 45 & 37 \\ - & 20 & 45 & 37 \\ - & 20 & 45 & 37 \\ - & 21 & 19 & 55 \\ - & 22 & 15 & 0 \\ - & 22 & 55 & 255 \\ - & 23 & 7 & 12 \\ - & 22 & 55 & 255 \\ - & 23 & 9 & 33 \\ - & 23 & 25 & 18 \\ - & 23 & 25 & 18 \\ - & 23 & 25 & 18 \\ - & 23 & 25 & 18 \\ - & 23 & 24 & 11 \\ - & 23 & 17 & 17 \\ - & 23 & 10 & 20 \end{array}$

To obtain the Sidereal Time or R.A. of Mean Sun, subtract the Equation of Time from the Right Ascension. In the Equation of Time the Sign + means the watch is faster than the Sun, - that it is slower. To obtain the Local Mean Time, in the former case add the Equation of Time to, and in the latter case subtract it from, apparent or sun-dial time.

OCCULTATIONS OF STARS BY THE MOON, 1926

By R. M. Motherwell

These occulations were computed for the latitude of Ottawa by the graphical method of Wm. F. Rigge, only stars of magnitude 4.5 or brighter being included.

Date	Star	Mag.	Mag. Immersion* Emersion* Position A		ion* Emersion*		n Angle	
Date	Star	Mag.		ersion	Emersion		Immer.	Emer.
1926			h	m	h	m	0	0
Jan. 10	θ Librae	4.4	6	58.2	7	50.8	158	247
Feb. 17	ξ² Ceti	4.3	11	15.2	12	11.2	47	264
Feb. 17	μ Ceti	4.4	21	24.0	22	12.9	110	215
Apr. 15	δ Tauri	3.9	10	43.5	11	25.1	18	298
June 7	μ Ceti	4.4	8	07.9	8	48.9	118	185
June 12	δ Geminorum	3.5	10	25.0	11	18.1	50	320
July 4	ξ² Ceti	4.3	6	08.5	6	15.0	145	156
July 6	δ Tauri	3.9	12	18.5	13	17.0	113	222
July 6	68Tauri	4.3	13	46.9	14	44.6	53	287
Aug. 11	ν Virginis	4.2	12	12.1	12	43.9	51	3
Aug. 31	ζ Tauri	3.0	9	00.9	10	16.5	73	278
Sept. 2	δ Geminorum	3.5	5	33.8	6	54.7	86	267
Sept. 26	68Tauri	4.3	9	37.6	9	48.6	159	181
Oct. 24	ζ Tauri	3.0	23	29.5	23	46.7	151	179
Nov. 1	ν Virginis	4.2	7	07.1	8	07.9	72	343
Nov. 22	η Geminorum	3.2	1	39.3	2	59.2	96	253
Nov. 22	μ Geminorum	3.2	6	15.8	7	19.7	101	266

*Eastern Standard Civil Time

TIMES OF SUNRISE AND SUNSET

In the tables on pages 10 to 21 are given the times of sunrise and sunset for places in latitudes 44° , 46° , 48° , 50° and 52° , which cover pretty well the populated parts of Canada. The times are given in Mean Solar Time, and in the table on page following this, are given corrections to change these times to the Standard or Railroad times of the cities and towns named, or for places near them.

How the Tables are Constructed

The time of sunrise and sunset at a given place, in mean solar time, varies from day to day, and depends principally upon the declination of the sun. Variations in the equation of time, the apparent diameter of the sun and atmospheric refraction at the points of sunrise and sunset also affect the final result. These quantities, as well as the solar declination, do not have precisely the same values on corresponding days from year to year, and so it is impossible to give in any general table the exact time of sunrise and sunset day by day. With this explanation the following general table has been computed, giving the rising and setting of the upper limb of the sun, corrected for refraction, using the values of the solar declination and equation of time given in the Nautical Almanac for 1899; these are very close average values and may be accepted as approximately correct for years. It must also be remembered that these times are computed for the sea horizon, which is only approximately realised on land surfaces, and is generally widely departed from in hilly and mountainous localities. The greater or less elevation of the point of view above the ground must also be considered, to get exact results.

The Times for Any Station

In order to find the time of sunrise and sunset for any place on any day, first from the list below find the approximate latitude of the place and the correction, in minutes, which follows the name. Then find in the monthly table the time of sunrise and sunset for the proper latitude, on the desired day, and apply the correction.

44 °		46°		48'	0	50°		52°	
m	ins.	m	ins.		mins.		mins.	m	ins.
Barrie	+ 17	Charlotte-		Port Arth		Brandon	+40	Calgary	+ 36
Brantford	+21	town	+13	Victoria	+ 3	Indian		Edmon-	
Chatham	+29	Fredericton	+ 26				1-5		+ 34
Goderich	+ 27	Montreal	- 6			Kamloops			
Guelph	+21	Ottawa	+ 3	1		Kenora	+ 18	Albert	+ 4
Halifax	+ 14	Parry Sound	+ 20			Medicine		Saska-	
Hamilton		Quebec	- 15			Ha	t + 22	toon	+ 6
Kingston	+ 6	Sherbrooke	- 12			Moosejaw	+ 2	ļ	
London	+ 25	St. John,				Moosomin	+40		
Orillia	+ 18	N.B.	+ 24			Nelson	- I I		
Owen Sound	l + 24	Sydney	+ I			Portage L	a		
Peterboro	+13	Three Rivers	- 10			Prairi	e + 33		
Port Hope	+ 14					Regina	- 2		
Stratford	+ 24					Vancouver	+ 12		
Toronto	+ 18					Winnipeg	+ 28		
Windsor	+ 32								
Woodstock	+ 23								
Yarmouth	+ 24					l			

Example.—Find the time of sunrise at Owen Sound, also at Regina, on February 11.

In the above list Owen Sound is under " 44° ", and the correction is + 24 min. On page 11 the time of sunrise on February 11 for latitude 44° is 7.05; add 24 min. and we get 7.29 (Eastern Standard Time). Regina is under " 50° ", and the correction is - 2 min. From the table the time is 7.18, and subtracting 2 min. we get the time of sunrise 7.16 (Central Standard Time).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Day of	Latitude 44°	Latitude 46°	Latitude 48°	Latitude 50°	Latitude 52°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	Sunrise Sunset	Sunrise Sunset	Sunrise Sunset	Sunrise Sunset	Sunrise Sunset
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 4	7 35 4 33 7 35 4 34 7 35 4 35 7 35 4 35 7 35 4 36	7 42 4 26 7 42 4 26 7 42 4 27 7 42 4 27 7 42 4 28	7 50 4 18 7 50 4 19 7 50 4 20 7 50 4 21	7 59 4 9 7 59 4 10 7 59 4 11 7 58 4 12	8 8 4 0 8 8 4 2 8 7 4 3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 8 9	7 35 4 39 7 34 4 40 7 34 4 41	7 42 4 32 7 41 4 33 7 41 4 34	7 49 4 24 7 49 4 25 7 49 4 26	7 58 4 16 7 57 4 17 7 57 4 18	8 6 4 7 8 5 4 8 8 5 4 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 13 14	7 33 4 44 7 33 4 45 7 32 4 46	7 40 4 38 7 39 4 39 7 39 4 40	7 47 4 30 7 47 4 31 7 46 4 33	7 55 4 22 7 55 4 23 7 54 4 25	8 3 4 14 8 2 4 15 8 1 4 17
	17 18 19	7 30 4 50 7 30 4 52 7 29 4 53	7 37 4 44 7 36 4 45 7 35 4 47	7 44 4 37 7 43 4 38 7 42 4 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 59 4 22 7 58 4 24 7 57 4 26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 24	7 26 4 58 7 25 4 59	7 32 4 52 7 31 4 54	7 40 4 44 7 39 4 46 7 3 ⁸ 4 47	7 46 4 37 7 45 4 39 7 44 4 41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 28 29 30	7 23 5 3 7 22 5 5 7 21 5 6 7 20 5 8	7 28 4 58 7 27 4 59 7 26 5 1 7 25 5 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 40 4 46 7 39 4 47 7 38 4 49 7 36 4 51	7 47 4 39 7 46 4 41 7 45 4 43

JANUARY

	Latitu	de 44°	Latitud	le 46 °	Latitu	de 48 °	Latitu	de 50°	Latitud	e 52 °
ay of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
1 2	7 17 7 16	5 10 5 12	7 22	5 5	7 28 7 26	5 0	7 33	4 54	7 40	4 48
3	7 15	5 I2 5 I3	7 21	5 7 5 8	7 26	5 1	7 32	4 56	7 38	4 50
3 4	7 14	5 14	7 19	5 10	7 24	53 55	7 30	4 58 4 59	7 36	4 52 4 54
5	7 13	5 15	7 18	5 11	7 22	5 6	7 29	4 59 5 I	7 33	4 54
6	7 12	5 17	7 17	5 12	7 21	58	7 26	5 3	7 31	4 57
7	7 10	5 18	7 15	5 14	7 19	59	7 24	5 5	7 29	4 59
8	7978	5 20	7 13	5 15	7 18	5 11	7 23	5 6	7 27	5 I
9 10	7876	5 21 5 23	7 12	5 17 5 18	7 16	5 13 5 14	7 21	5 8 5 10	7 25	5 3
II	7 5	5 24	7 10					1		
12	7 3	5 24 5 25	7 10	5 19 5 21	7 13	5 16 5 17	7 18 7 16	5 11	7 21	57
13	7 2	5 27	7 6	5 23	7 10	5 19	7 14	5 15	7 18	5 10
14	7 I	5 28	7 4	5 24	7 8	5 21	7 12	5 17	7 16	5 12
15	6 59	5 29	7 3	5 26	76	5 22	7 10	5 18	7 14	5 14
16	6 58	5 31	7 I	5 27	7 5	5 24	79	5 20	7 12	5 16
17	6 56	5 32	7 0	5 29	73	5 26	7 7	5 22	7 10	5 18
18	6 55	5 34	6 58 6 56	5 30	7 I 6 5 9	5 27	7 5	5 23	7 9	5 19
19 20	6 53 6 52	5 35	6 56 6 54	5 32 5 33	659 658	5 29	73 71	5 25 5 27	77	5 21
20	- J-		0 34	5 33		5 30		5 21	/ 3	5 23
21	6 50	5 38	6 53	5 35	6 56	5 32	6 59	5 29	7 3	5 25
22	6 48	5 39	6 51	5 36	6 54	5 33	6 57	5 30	7 0	5 27
23	6 47	5 40	6 49	5 38	6 52	5 35	6 55	5 32	6 58	5 29
24	6 45 6 44	5 42	6 47 6 46	5 39 5 41	650 649	5 36	6 53 6 51	5 34	6 56 6 54	5 31
25		5 43	0 40	3 41	5 49	5 38	6 51	5 35	6 54	5 33
26	6 42	5 44	6 44	5 42	6 47	5 39	6 49	5 37	6 51	5 34
27	6 40	5 45	6 42	5 43	6 45	5 41	6 48	5 38	6 49	5 36
28	6 38	5 47	6 41	5 45	6 43	5 42	6 45	5 49	6 47	5 38

FEBRURAY

	Latitu	de 44°	Latitu	de 46°	Latitu	de 48°	Latitu	de 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunt зе	Sunset	Sunrise	Sunset	Sunrise	Sunset
1 2 3 4	h m 6 37 6 35 6 34 6 32 6 30	h m 5 48 5 49 5 50 5 52	h m 6 39 6 37 6 35 6 33 6 31	h m 5 46 5 47 5 49 5 50 5 50	h m 6 41 6 39 6 37 6 35 6 33	h m 5 44 5 45 5 47 5 48 5 50	h m 6 43 6 41 6 39 6 37 6 35	h m 5 42 5 44 5 45 5 45 5 47 5 48	h m 6 43 6 42 6 40 6 38 6 36	h m 5 4 ¹ 5 4 ² 5 44 5 45 5 47
5 6 7 8 9 10	6 28 6 26 6 25 6 23 6 21	5 53 5 55 5 56 5 57 5 58 6 0	6 30 6 28 6 26 6 24 6 22	5 5 ² 5 53 5 54 5 56 5 57 5 59	6 33 6 31 6 29 6 27 6 25 6 23	5 5 ¹ 5 53 5 54 5 5 ⁶ 5 57	6 35 6 33 6 31 6 28 6 26 6 24	5 48 5 5 ⁰ 5 5 ² 5 53 5 55 5 56	6 34 6 32 6 29 6 27 6 25	5 47 5 49 5 5 ¹ 5 5 ² 5 54 5 56
11 12 13 14 15	6 19 6 18 6 16 6 14 6 12	6 1 6 2 6 4 6 5 6 6	6 20 6 18 6 16 6 15 6 13	6 0 6 1 6 3 6 4 6 5	6 21 6 19 6 17 6 15 6 13	5 59 6 0 6 2 6 3 6 5	6 22 6 20 6 18 6 15 6 13	5 58 6 0 6 2 6 3 6 5	6 23 6 21 6 19 6 16 6 14	5 57 5 59 6 1 6 3 6 4
16 17 18 19 20	6 10 6 8 6 7 6 5 6 3	6 7 6 8 6 10 6 11 6 12	6 11 6 9 6 7 6 5 6 3	6 7 6 8 6 9 6 11 6 12	6 11 6 9 6 7 6 5 6 3	6 6 6 8 6 9 6 11 6 12	6 11 6 9 6 7 6 5 6 3	6 6 6 8 6 9 6 11 6 13	6 11 6 9 6 7 6 4 6 2	6 6 6 8 6 10 6 12 6 13
21 22 23 24 25	6 I 5 59 5 58 5 56 5 54	6 13 6 14 6 16 6 17 6 18	6 I 5 59 5 57 5 55 5 53	6 14 6 15 6 16 6 17 6 19	6 I 5 59 5 56 5 54 5 52	6 14 6 15 6 17 6 18 6 20	$\begin{array}{ccc} 6 & 0 \\ 5 & 58 \\ 5 & 56 \\ 5 & 54 \\ 5 & 5^2 \end{array}$	6 14 6 16 6 17 6 19 6 20	$\begin{array}{cccc} 5 & 59 \\ 5 & 57 \\ 5 & 55 \\ 5 & 5^2 \\ 5 & 5^0 \end{array}$	6 15 6 17 6 19 6 20 6 22
26 27 28 29 30	5 5 ² 5 5 ⁰ 5 48 5 47 5 45	6 19 6 21 6 22 6 23 6 24	5 51 5 49 5 47 5 46 5 44	6 20 6 22 6 23 6 24 6 25	5 50 5 48 5 46 5 44 5 42	6 21 6 23 6 24 6 26 6 27	5 5 ⁰ 5 47 5 45 5 43 5 41	6 22 6 24 6 25 6 27 6 28	5 48 5 46 5 43 5 41 5 39	6 24 6 26 6 27 6 29 6 31
31	5 43	6 25	5 42	6 27	5 40	6 28	5 38	6 30	5 36	6 32

MARCH

	(Latitu	de 44°	Latituc	le 46 °	Latitu	ide 48 °	Latitu	de 50°	Latitu	de 52°
Day 🤯 Montÿ	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
I 2 3 4 5	h. m. 5 41 5 39 5 38 5 36 5 34	h. m. 6 27 6 28 6 29 6 30 6 32	h. m. 5 40 5 38 5 36 5 34 5 32	h. m. 6 28 6 30 6 31 6 32 6 33	h. m. 5 38 5 36 5 34 5 32 5 30	h. m. 6 30 6 31 6 33 6 34 6 36	h. m. 5 36 5 34 5 32 5 30 5 28	h. m. 6 31 6 33 6 35 6 36 6 38	h. m. 5 34 5 32 5 30 5 27 5 25	h. m. 6 34 6 36 6 37 6 39 6 41
6	5 32	6 33	5 30	6 34	5 28	6 37	5 26	6 39	5 23	6 43
7	5 30	6 34	5 28	6 36	5 26	6 38	5 24	6 41	5 21	6 44
8	5 29	6 35	5 26	6 37	5 24	6 40	5 21	6 42	5 19	6 46
9	5 27	6 36	5 24	6 39	5 22	6 41	5 19	6 44	5 16	6 48
10	5 25	6 37	5 23	6 40	5 20	6 43	5 17	6 46	5 14	6 49
11	5 24	6 38	5 21	$\begin{array}{c} 6 & 41 \\ 6 & 43 \\ 6 & 44 \\ 6 & 45 \\ 6 & 46 \end{array}$	5 18	6 44	5 15	6 47	5 11	6 51
12	5 22	6 40	5 19		5 16	6 45	5 13	6 49	5 9	6 53
13	5 20	6 41	5 17		5 14	6 47	5 11	6 50	5 7	6 54
14	5 18	6 42	5 15		5 12	6 48	5 9	6 52	5 5	6 56
15	5 17	6 43	5 14		5 10	6 50	5 7	6 53	5 3	6 58
16	5 15	6 45	5 12	6 48	5 8	6 51	5 5	6 55	$5 I 4 58 4 56 4 56 4 54 4 52 4 5^{2}$	7 0
17	5 13	6 46	5 10	6 49	5 6	6 53	5 2	6 56		7 1
18	5 11	6 47	5 8	6 50	5 5	6 54	5 1	6 58		7 3
19	5 10	6 48	5 6	6 52	5 3	6 55	4 59	6 59		7 5
20	5 8	6 49	5 5	6 53	5 1	6 57	4 57	7 1		7 6
21	5 7 5 5 5 3 5 2 5 0	6 50	5 3	6 54	4 59	6 58	4 55	7 2	4 50	7 8
22		6 52	5 I	6 56	4 57	7 0	4 53	7 4	4 48	7 10
23		6 53	4 59	6 57	4 55	7 1	4 50	7 6	4 46	7 11
24		6 54	4 58	6 58	4 54	7 3	4 49	7 7	4 44	7 13
25		6 56	4 56	7 0	4 52	7 4	4 47	7 9	4 42	7 14
26	4 59	6 57	4 54	7 I	4 50	7 5	4 45	7 10	4 40	7 16
27	4 57	6 58	4 53	7 2	4 48	7 7	4 43	7 12	4 38	7 18
28	4 56	6 59	4 51	7 3	4 47	7 8	4 41	7 13	4 36	7 19
29	4 54	7 0	4 50	7 5	4 45	7 10	4 39	7 15	4 34	7 21
30	4 53	7 1	4 48	7 6	4 43	7 12	4 3 ⁸	7 1 6	4 32	7 22

APRIL

M	AV	

	Latitu	de 44°	Latitu	de 46°	Latitu	de 48°	Latitud	le 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
1	h. m. 4 51	h. m. 7 3	h. m. 4 47	h. m. 7 7	h. m. 4 42	h. m. 7 12	h. m. 4 36	h. m. 7 18	h. m. 4 30	h. m. 7 24
2	4 50	74	4 45	79	4 40	7 14	4 34	720	4 28	7 26
3	4 48	7 5	4 43	7 10	4 38	7 15	4 32	7 21	4 26	7 27
4	4 47	7678	4 42	7 11	4 37	7 17	4 31	7 23	4 24	7 29
5	4 46	78	4 41	7 13	4 35	7 18	4 29	724	4 22	7 31
6	4 44	79	4 39	7 14	4 34	7 19	4 27	7 26	4 21	7 33
7	4 4 3	7 10	4 38	7 15	4 32	7 21	4 26	7 27	4 19	7 34
8	4 42	7 11	4 36	7 16	4 31	7 22	4 24	7 29	4 17	7 36
9	4 40	7 12	4 35	7 17	4 29	7 23	4 22	7 30	4 15	7 38
10	4 39	7 13	4 34	7 19	4 28	7 25	4 21	7 32	4 13	7 39
11	4 38	7 14	4 32	7 20	4 26	7 26	4 20	7 33	4 1 1	7 41
12	4 37	7 16	4 31	7 21	4 25	7 28	4 18	7 34	4 10	7 42
13	4 36	7 17	4 30	7 23	4 24	7 29	4 16	7 36	4 8	7 44
14	4 35	7 18	4 49	7 24	4 22	7 30	4 15	7 37	4 7	7 45
15	4 34	7 19	4 28	7 25	4 21	7 31	4 14	7 39	4 5	7 47
16	4 32	7 20	4 26	7 26	4 20	7 33	4 12	7 40	4 4	7 48
17	4 31	7 21	4 25	7 27	4 18	7 34	4 11	7 42	4 3	7 50
18	4 30	7 22	4 24	7 28	4 17	7 35	4 10	7 43	4 I	7 51
19	4 30	7 23	4 23	7 30	4 16	7 36	4 8	7 44	4 0	7 52
20	4 29	7 24	4 22	7 31	4 15	7 38	4 7	7 46	3 58	7 54
21	4 28	7 25	4 21	7 32	4 14	7 39	4 6	7 47	3 57	7 55
22	4 27	7 26	4 20	7 33	4 13	7 40	4 5	7 48	3 56	7 56
23	4 26	7 27	4 19	7 34	4 12	7 41	4 4	7 49	3 55	7 58
24	4 25	7 28	4 18	7 35	4 11	7 43	4 3	7 51	3 53	7 59
25	4 24	7 29	4 17	7 36	4 10	7 44	4 2	7 52	3 52	8 1
26	4 24	7 30	4 16	7 37	4 9	7 45	4 0	7 53	3 51	8 2
27	4 23	7 31	4 16	7 38	4 8	7 46	3 59	7 54	3 50	8 3
28	4 22	7 32	4 15	7 39	4 7	7 47	3 58	7 56	3 49	8 5 8 6
29	4 22	7 33	4 14	7 40	4 6	7 48	3 58	7 57	3 47	86
30	4 21	7 34	4 14	7 41	4 5	7 49	3 57	7 58	3 46	00
31	4 21	7 34	4 13	7 42	4 5	7 50	3 56	7 59	3 45	89

Day of	Latitu	de 44°	Latitud	le 46 °	Latitu	de 48°	Latitu	de 50°	Latitu	de 52°
Ionth	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
1 2 3 4 5	h. m. 4 20 4 19 4 19 4 18 4 18	h. m. 7 35 7 36 7 37 7 38 7 39	h. m. 4 I2 4 I2 4 I1 4 I1 4 I1 4 I0	h. m. 7 43 7 44 7 44 7 45 7 46	h. m. 4 4 4 4 4 3 4 3 4 2	h. m. 7 51 7 52 7 52 7 53 7 53 7 54	h. m. 3 56 3 55 3 54 3 54 3 54 3 53	h. m. 8 0 8 1 8 2 8 3 8 4	h. m. 3 45 3 44 3 44 3 43 3 43	h. m. 8 IO 8 II 8 II 8 I2 8 I3
6 7 8 9 10	4 17 4 17 4 17 4 17 4 17 4 16	7 39 7 40 7 41 7 41 7 42	4 10 4 10 4 9 4 9 4 9	7 47 7 48 7 48 7 49 7 49 7 49	4 2 4 1 4 I 4 I 4 0	.7 55 7 56 7 57 7 57 7 58	$\begin{array}{cccc} 3 & 5^2 \\ 3 & 5^2 \\ 3 & 5^2 \\ 3 & 5^1 \\ 3 & 5^1 \end{array}$	8 4 8 5 8 6 8 7 8 8	3 43 3 42 3 42 3 41 3 41 3 41	8 14 8 15 8 15 8 16 8 17
11 12 13 14 15	4 16 4 16 4 16 4 16 4 16 4 16	7 42 7 43 7 43 7 44 7 44 7 44	4 9 4 9 4 8 4 8 4 8	7 50 7 51 7 51 7 52 7 52	4 0 4 0 4 0 4 0 4 0 4 0	7 59 7 59 8 0 8 0 8 1	3 50 3 50 3 50 3 50 3 50 3 50	8 8 8 9 8 10 8 10 8 11	3 41 3 41 3 40 3 40 3 40 3 40	8 18 8 18 8 19 8 19 8 20
16 17 18 19 20	4 16 4 17 4 17 4 17 4 17 4 17	7 45 7 45 7 45 7 46 7 46 7 46	4 8 4 8 4 8 4 8 4 8 4 8	7 53 7 53 7 54 7 54 7 54 7 54	4 0 4 0 4 0 4 0 4 0 4 0	8 I 8 2 8 2 8 2 8 2 8 3	3 50 3 50 3 50 3 50 3 50 3 50	8 11 8 12 8 12 8 12 8 12 8 13	3 40 3 40 3 39 3 39 3 39 3 39	8 21 8 21 8 22 8 23 8 23 8 23
21 22 23 24 25	4 17 4 18 4 18 4 18 4 18 4 18	7 46 7 46 7 46 7 47 7 47 7 47	4 8 4 9 4 9 4 10 4 10 4 10	7 54 7 55 7 55 7 55 7 55 7 59	4 0 4 0 4 I 4 I 4 I	8 3 8 3 8 3 8 3 8 3 8 3	3 50 3 50 3 51 3 51 3 51 3 51	8 13 8 13 8 13 8 13 8 13 8 13	3 39 3 39 3 40 3 40 3 40 3 40	8 23 8 23 8 23 8 23 8 23 8 23
26 27 28 29 30	4 19 4 19 4 19 4 20 4 20	7 47 7 47 7 47 7 47 7 47 7 47	4 IO 4 II 4 II 4 I2 4 12	7 55 7 55 7 55 7 55 7 55 7 54	4 2 4 2 4 3 4 3 4 4	8 3 8 3 8 3 8 3 8 3 8 3	3 52 3 52 3 53 3 53 3 53 3 54	8 13 8 13 8 13 8 13 8 13 8 13	3 41 3 41 3 42 3 42 3 42 3 43	8 23 8 23 8 23 8 23 8 23 8 23

JUNE

	Latitu	de 44°	Latitue	le 46°	Latitu	de 48°	Latitu	de 50°	Latitu	ide 52
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m. 8 3	h. m. 3 55	h. m. 8 12	h. m. 3 44	h. m. 8 23
1 2	4 2 I 4 2 I	7 47	4 13	7 54 7 54	4 4 4 5	83	3 55	8 12	3 45	8 22
3	4 22	7 46	4 14	7 54	4 5 4 6	8 2	3 56	8 1 2	3 46	8 22
4	4 22	7 46	4 15	7 54	4 6	8 2	3 57	8 11	3 47	8 21
5	4 23	7 46	4 15	7 53	4 7	8 2	3 58	8 11	3 48	8 21
6	4 24	7 45	4 16	7 53	4 8	8 1	3 59	8 10	3 48	8 20
7	4 24	7 45	4 17	7 53	4 9	8 1	4 0	8 10	3 49	8 20
8	4 25	7 45	4 18	7 52	4 10	8 o	4 0	8 9	3 50	8 19
9	4 26	7 44	4 18	7 52	4 IO	8 0	4 I	8 9	3 51	8 19
10	4 27	7 43	4 19	7 51	4 11	7 59	4 2	88	3 52	8 18
11	4 28	7 43	4 20	7 50	4 12	7 59	4 3	8 7	3 53	8 17
12	4 29	7 42	4 21	7 50	4 13	7 58	4 4	8 7	3 54	8 16
13	4 29	7 42	4 22	7 49	4 14	7 57	4 5	8 6	3 56	8 15
14	4 30	7 41	4 23	7 48	4' 15	7 56		8 5 8 4	3 57	
15	4 3 ¹	7 40	4 24	7 48	4 16	7 56	4 7	84	3 58	8 13
16	4 32	7 40	4 25	7 47	4 17	7 55	4 8	8 3	3 59	8 12
17	4 33	7 39	4 26	7 46	4 18	7 54	4 10	8 2	4 0	8 11
18	4 34	7 38	4 27	7 45	4 19	7 53	4 11	8 I 8 O	4 2	1 0
19	4 34	7 38	4 28	7 44	4 20	7 52	4 12		4 3	8 6
20	4 36	7 37	4 29	7 43	4 21	7 51	4 13	7 59	4 4	
21	4 37	7 36	4 30	7 42	4 23	7 50	4 15	7 58	4 5	8 7
22	4 38	7 35	4 31	7 41	4 24	7 49	4 16	7 57	4 7	8
23	4 39	7 34	4 32	7 40	4 25	7 48	4 17	7 56	4 8	8 2
∠4	4 40	7 33	4 33	7 39	4 26	•7 47	4 18	7 54	4 10	
25	4 40	7 32	4 34	7 38	4 27	7 46	4 20	7 53	4 11	8 1
26	4 4 1	7 31	4 35	7 37	4 28	7 44	4 21	7 52	4 12	8 0
27	4 4 2	7 30	4 36	7 36	4 30	7 43	4 22	7 50	4 14	7 54
28	4 4 1	7 29	4 38	7 35	4 31	7 42	4 24	7 49	4 15	7 57
29	4 45	7 28	4 39	7 34	4 32	7 40	4 25	7 47	4 17	7 5
30	4 46	7 27	4 40	7 33	4 33	7 39	4 20	7 46	4 18	7 54
31	4 47	.7 26	4 41	7 32	4 35	7 38	4 28	7 44	4 20	7 52

JULY

	Latitu	de 44°	Latitu	de 46°	Latitu	de 48°	Latitu	ıde 50°	Latitu	de 52 °
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
I	4 48	7 24	4 42	7 30	4 36	7 36	4 29	7 43	4 21	7 50
2	4 49	7 23	4 44	7 29	4 37	7 35	4 31	7 41	4 23	7 49
3	4 50	7 22	4 45	7 27 7 26	4 39	7 33	4 32	7 40 7 38	4 24 4 20	7 47
4	4 5 ¹ 4 5 ²	7 21	4 46	7 24	4 40 4 41	7 32	4 33	7 37	4 20 4 28	7 45
5	4 52	7 19	4 4/	1 24	4 4*	/ 30	4 33	1 31	4 20	7 43
6	4 53	7 18	4 48	7 23	4 43	7 29	4 36	7 35	4 29	74I
7	4 54	7 17	4 49	7 22	4 44	7 27	4 38	7 33	4 31	7 40
8	4 56	7 15	4 5 ¹	7 20	4 45	7 26	4 39	7 32	4 32	7 38
9	4 57	7 14	4 52	7 19	4 46	7 24	4 40	7 30	4 34	7 36
10	4 58	7 12	4 53	7 17	4 48	7 22	4 42	7 28	4 36	7 34
IΙ	4 59	7 11	4 54	7 16	4 49	7 21	4 44	7 26	4 37	7 32
12	5 0	7 9	4 56	7 14	4 51	7 19	4 45	7 25	4 39	7 30
13	5 2	7 8	4 57	7 12	4 52	7 17	4 47	7 23	4 40	7 28
14	5 3	7 6	4 58	7 11	4 53	7 16	4 48	7 21	4 42	7 26
15	54	75	4 59	79	4 55	714	4 50	7 19	4 44	724
16	55	7 3	5 I	78	4 56	7 12	4 51	7 17	4 45	7 22
10	55 56	7 2	5 2	7 6	4 57	7 10	4 53	7 15	4 47	7 20
18		7 0	5 3	7 4	4 59	79	4 54	7 13	4 48	7 18
19	5758	6 59	5 4	7 3	5 0	7 7	4 55	7 12	4 50	7 16
20	5 10	6 57	5 6	7 I	5 2	75	4 57	79	4 5 ²	7 14
2 I	5 11	6 55	57	6 59	53	7 3	4 59	7 7	4 53	7 12
22	5 12	6 54	5 8	6 57	5 4	7 1	5 0	7 5	4 55	7 10
23	5 13	6 52	59	6 56	5 6	6 59	5 2	7 3	4 56	7 8
24	5 14	6 50	5 11	6 54	5 7	6 57	5 3	7 1	4 58	7 6
25	5 15	6 49	5 12	6 52	5 8	6 56	5 4	7 0	5 0	74
26	5 16	6 47	5 13	6 50	5 10	6 54	56	6 57	5 I	72
20	5 18	6 47	5 14	6 48	5 11	6 52	5 8	6 55	5 3	7 0
28	5 19	6 44	5 16	6 46	5 12	6 50	5 9	6 53	5 4	6 58
29	5 20	6 4 2	5 17	6 45	5 14	6 48	5 10	6 51	5 6	6 56
30	5 21	6 40	5 18	6 43	5 15	6 46	5 12	6 49	5 8	6 54
31	5 22	6 38	5 19	6 41	5 17	6 44	5 14	6 47	5 10	6 51

AUGUST

	Latitud	de 44°	Latitud	le 46 °	Latitu	de 48°	Latitu	de 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
I 2	h. m. 5 23 5 24	h. m. 6 36	h. m. 5 20	h. m. 6 39	h. m. 5 18	h. m. 6 42	h. m. 5 15	h. m. 6 45	h. m. 5 I I	h. m. 6 49
3 4 5	5 24 5 25 5 27 5 28	6 35 6 33 6 31 6 29	5 22 5 23 5 24 5 26	6 37 6 35 6 33 6 31	5 19 5 21 5 22 5 23	6 40 6 38 6 36 6 34	5 16 5 18 5 20 5 21	6 43 6 40 6 38 6 36	5 13 5 15 5 17 5 19	6 46 6 44 6 42 6 39
6 7 8 9 10	5 29 5 30 5 31 5 32 5 33	6 28 6 26 6 24 6 22 6 20	5 27 5 28 5 3 ⁰ 5 31 5 3 ²	6 29 6 27 6 26 6 24 6 22	5 25 5 26 5 27 5 29 5 30	6 32 6 30 6 28 6 26 6 24	5 23 5 24 5 25 5 27 5 28	6 34 6 32 6 30 6 28 6 25	5 20 5 22 5 24 5 26 5 27	6 37 6 34 6 32 6 30 6 27
11 12 13 14 15	5 34 5 36 5 37 5 38 5 39	6 19 6 17 6 15 6 13 6 11	5 33 5 34 5 36 5 37 5 38	6 20 6 18 6 16 6 14 6 12	5 31 5 33 5 34 5 36 5 37	6 22 6 20 6 17 6 15 6 13	5 30 5 31 5 33 5 34 5 36	6 23 6 21 6 19 6 17 6 14	5 29 5 30 5 32 5 33 5 33 5 35	6 25 6 23 6 21 6 18 6 16
16 17 18 19 20	5 40 5 41 5 42 5 44 5 45	6 9 6 8 6 6 6 4 6 2	5 39 5 41 5 42 5 44 5 45	6 10 6 8 6 6 6 4 6 2	5 38 5 40 5 41 5 42 5 44	6 II 6 9 6 7 6 5 6 3	5 38 5 39 5 41 5 42 5 43	6 12 6 10 6 8 6 5 6 3	5 36 5 38 5 39 5 41 5 42	6 14 6 11 6 9 6 7 6 4
21 22 23 24 25	5 46 5 47 5 48 5 49 5 50	6 0 5 58 5 56 5 55 5 53	5 46 5 47 5 48 5 5° 5 5 ¹	$\begin{array}{ccc} 6 & 0 \\ 5 & 58 \\ 5 & 56 \\ 5 & 54 \\ 5 & 52 \end{array}$	5 45 5 47 5 48 5 50 5 51	6 1 5 59 5 56 5 54 5 52	5 45 5 46 5 48 5 5 ⁰ 5 5 ¹	6 I 5 59 5 56 5 54 5 52	5 44 5 46 5 48 5 49 5 51	6 2 6 0 5 58 5 55 5 53
26 27 28 29 30	$5 52 \\ 5 53 \\ 5 54 \\ 5 55 \\ 5 56 \\ 5 56 \\ $	5 51 5 49 5 47 5 45 5 43	5 52 5 54 5 55 5 56 5 57	5 50 5 48 5 46 5 44 5 43	5 52 5 54 5 55 5 57 5 58 $5 58 $	5 50 5 48 5 46 5 44 5 42	5 52 5 54 5 55 5 57 5 58	5 50 5 48 5 46 5 44 5 41	5 53 5 54 5 56 5 58 5 59	5 51 5 48 5 46 5 44 5 41

SEPTEMBER

	Latitu	1de 44 °	Latitu	de 46°	Latitu	de 48°	Latitu	1de 50°	Latitu	ide 52
Dag sf Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunse
	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
I	5 58	5 4 I	5 5 ⁸	5 4 I	5 59	5 40	60	5 39	6 і	5 39
2	5 59	5 40	6 0	5 39	6 I	5 38	62	5 37	63	5 37
3	60 61	5 38	6 I	5 37	6 2	5 36	63	5 35	65 66	5 35
4		5 36	6 2	5 35	64	5 34	65 66	5 33		5 34
5	62	5 34	6 4	5 33	65	5 32	66	5 31	68	5 30
6	64	5 32	65	5 31	67	5 30	68	5 28	6 10	5 28
7 8	6 5 6 6	5 31	6 6	5 30	68	5 28	6 10	5 26	6 11	5 25
		5 29	68	5 28	69	5 26	6 11	5 24	6 13	5 23
9	68	5 27	69	5 26	6 11	5 24	6 12	5 22	6 15	5 21
10	69	5 25	6 10	5 24	6 12	5 22	6 14	5 20	6 16	5 19
II	6 10	5 24	6 12	5 22	6 14	5 20	ხ 16	5 18	6 18	5 17
12	б 11	5 22	6 13	5 20	6 15	5 18	6 17	5 16	6 19	5 15
13	6 12	5 20	6 14	5 18	6 17	5 16	6 19	5 14	6 21	5 13
14	6 13	5 19	6 16	5 16	6 18	5 14	6 21	5 12	6 23	5 10
15	6 15	5 17	6 17	5 14	6 20	5 12	6 22	5 10	6 24	5 8
16	6 16	5 15	6 18	5 13	6 21	5 10	6 24	5 7	6 26	56
17	6 17	5 13	6 20	5 11	6 22	5 8	6 26	5 5	6 27	5 4
18	6 19	5 12	6 21	5 9	6 24	5 6	6 27	5 3	6 29	5 1
19	6 20	5 10	6 22	5 8	6 25	5 5	6 28	5 2	6 31	4 59
20	621	59	624	5 6	6 27	5 3	6 30	5 0	6 33	4 57
2 I	6 22	57	6 25	54	6 28	5 1	6 32	4 57	6 35	4 55
22	6 24	5 6	6 27	5 2	6 30	4 59	6 34	4 56	6 37	4 53
23	6 25	5 4	6 28	5 1	6 31	4 58	6 35	4 54	6 39	4 51
24	6 26	5 2	6 30	4 59	6 33	4 56	6 37	4 52	6 40	4 48
25	6 28	5 I	6 31	4 57	6 34	4 54	6 38	4 50	6 42	4 46
26	6 29	4 59	6 32	4 56	6 36	4 52	6 40	4 48	6 44	4 44
27	6 30	4 57	6 34	4 54	6 38	4 50	6 42	4 46	6 46	4 44
28	6, 32	4 56	6 35	4 52	6 39	4 48	6 43	4 44	6 48	4 42
29	6 33	4 55	6 37	4 51	6 41	4 47	6 45	4 44	6 50	4 38
30	6 34	4 54	6 38	4 49	6 42	4 45	6 47	4 41	6 52	4 36
31	6 35	4 52	6 40	4 48	6 44	+ 44	6 48	4 39	6 53	4 35

OCTOBER

	Latituo	le 44°	Latitud	e 46 °	Latitu	de 48°	Latituo	le 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
I 2 3 4 5	h. m. 6 37 6 38 6 40 6 41 6 42	h. m. 4 51 4 49 4 48 4 47 4 45	h. m. 6 41 6 42 6 44 6 45 6 47	h. m. 4 46 4 45 4 44 4 42 4 41	h. m. 6 45 6 47 6 48 6 50 6 51	h. m. 4 42 4 41 4 39 4 38 4 36	h. m. 6 50 6 52 6 53 6 55 6 57	h. m. 4 37 4 36 4 34 4 32 4 31	h. m. 6 55 6 57 6 59 7 I 7 2	h. m. 4 33 4 31 4 29 4 27 4 26
6 7 8 9 10	6 43 6 44 6 46 6 47 6 49	4 44 4 43 4 42 4 41 4 40	6 48 6 49 6 51 6 52 6 54	4 39 4 38 4 37 4 36 4 35	6 53 6 54 6 56 6 58 6 59	4 35 4 33 4 32 4 30 4 29	6 58 7 0 7 2 7 3 7 5	4 29 4 28 4 26 4 25 4 23	7 4 7 6 7 8 7 9 7 11	4 24 4 22 4 21 4 13 4 18
11 12 13 14 15	6 50 6 51 6 53 6 54 6 55	4 38 4 37 4 36 4 35 4 34	6 55 6 56 6 58 6 59 7 I	4 33 4 3 ² 4 31 4 30 4 29	7 I 7 2 7 4 7 5 7 7	4 28 4 26 4 25 4 24 4 23	7 7 7 8 7 10 7 11 7 13	4 22 4 20 4 19 4 18 4 16	7 13 7 15 7 16 7 18 7 20	4 16 4 15 4 13 4 12 4 10
16 17 18 19 20	$\begin{array}{ccc} 6 & 57 \\ 6 & 58 \\ 6 & 59 \\ 7 & 0 \\ 7 & 2 \end{array}$	4 33 4 32 4 32 4 32 4 31 4 30	7 2 7 4 7 5 7 6 7 8	4 28 4 27 4 26 4 25 4 24	7 8 7 10 7 12 7 13 7 14	4 21 4 20 4 19 4 18 4 17	7 15 7 16 7 18 7 20 7 21	4 15 4 14 4 13 4 11 4 10	7 21 7 23 7 25 7 26 7 28	4 9 4 7 4 6 4 5 4 4
21 22 23 24 25	7 3 7 4 7 6 7 7 7 8	4 29 4 28 4 28 4 28 4 27 4 26	7 9 7 10 7 12 7 13 7 14	4 23 4 22 4 22 4 22 4 21 4 20	7 15 7 17 7 19 7 20 7 21	4 17 4 16 4 15 4 14 4 13	7 23 7 24 7 26 7 28 7 29	4 9 4 8 4 7 4 6 4 5	7 30 7 32 7 33 7 35 7 37	4 3 4 2 4 0 3 59 3 58
26 27 28 29 30	7 9 7 10 7 12 7 13 7 14	4 26 4 25 4 25 4 24 4 24	7 16 7 17 7 18 7 19 7 21	4 19 4 19 4 18 4 18 4 18 4 17	7 23 7 24 7 25 7 27 7 28	4 12 4 12 4 11 4 10 4 10	7 31 7 32 7 33 7 35 7 36	4 4 4 4 4 3 4 2 4 2	7 38 7 40 7 41 7 43 7 44	3 57 3 56 3 55 3 55 3 55 3 54

NOVEMBER

	Latitu	de 44°	Latitu	de 46°	Latitu	de 48°	Latitu	ıde 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	S unrise	Sunset	S unrise	Sunset
	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
1	7 15	4 23	7 22	4 16	7 29	49	7 37	4 I	7 46	3 54
2	7 16	4 23	7 23	4 16	7 31	4 9	7 39	4 [7 47	3 53
3	7 17	4 23	7 24	4 16	7 32	4 8 4 8	7 40	4 0	7 48	3 52
4	7 18	4 23	7 25	4 16	7 33	. <u>.</u>	7 4 I	4 0	7 50	3 52
5	7 19	4 22	726	4 15	7 34	48	7 42	3 59	7 5 ¹	3 51
6	7 20	4 22	7 27	4 15	7 35	48	7 43	3 59	7 53	3 51
7	7 21	4 22	7 29	4 15	7 36	47	7 45	3 59	7 54	3 50
8	7 22	4 22	7 30	4 15	7 37	47	746	3 59	7 55	3 50
9	7 23	4 22	7 30	4 15	7 37	47	7 47	3 58	7 56	3 50
10	7 24	4 22	7 3 ¹	4 1 5	7 38	47	7 48	3 58	7 57	3 50
II	7 25	4 22	7 32	4 15	7 40	4 7	7 49	3 58	7 58	3 50
12	7 26	4 22	7 33	4 15	7 41	4 7	7 50	3 58	7 59	3 50
13	7 26	4 22	7 34	4 15	7 42	4 7	7 51	3 58	7 59	3 49
14	7 27	4 22	7 35	4 15	7 43	4 7	7 52	3 58	8 0	3 49
15	7 28	4 23	7 36	4 15	7 44	4 7	7 53	3 58	8 I	3 49
16	7 29	4 23	7 36	4 15	744	4 7	7 53	3 58	8 2	3 49
17	7 30	4 23	7 37	4 16	7 45	4 8	7 54	3 59	8 3	3 49
18	7 30	4 24	7 38	4 16	7 46	4 8	7 55	3 59	8 4	3 50
19	7 31	4 24	7 38	4 16	7 46	4 8	7 55	3 59	8 4	3 50
20	7 31	4 24	7 39	4 17	7 47	49	7 56	4 0	8 5	3.51
2 I	7 32	4 25	7 39	4 17	7 47	49	7 56	4 0	8 5	3 51
22	7 32	4 25	7 40	4 18	7 48	4 10	7 57	4 I	8 5 8 6	3 52
23	7 33	4 26	7 40	4 18	7 48	4 10	7 57	4 I	8 6	3 52
24	7 33	4 27	7 4 I	4 19	7 49	4 I I	7 58	4 2	8 7	3 53
25	7 34	4 27	7 4 ^I	4 20	7 49	.4 12	7 58	4 3	8 7	3 53
2 6	7 34	4 28	7 42	4 20	7.50	4 12	7 58	4 3	8 8	3 54
27	7 34	4 28	7 42	4 21	7 50	4 13	7 59	4 4	8 8	3 54
28	7 34	4 29	7 42	4 22	7 50	4 14	7 59	4 5 4 6	8 8	3 55
29	7 35	4 30	7 42	4 22	7 50	4 15	7 59	•	8 8	356
30	7 35	4 31	7 42	4 23	7 50	4 16	7 59	4 7	88	3 57
31	7 35	4 32	7 42	4 24	7 50	4 17	7 59	4 8	88	3 58

DECEMBER

THE PLANETS DURING 1926

In the following notes on the planets a general account of the phenomena in connection with their motions is given. Fuller details will be found on the pages headed *The Sky for the Month* (pages 28, 30, \ldots).

MERCURY

Mercury's apparent separation from the sun is never very great, and consequently the planet is comparatively seldom seen with the naked eye; but when near its greatest elongation, or angular distance from the sun, it is easily visible as a star of the first magnitude. It can often be seen for about a fortnight, or even longer, at such a time, but some of these occasions are much more favourable than others. In general, the planet can best be seen at an eastern elongation (that is, as an evening star) in the spring; at a western elongation (that is, as a morning star) in the autumn. Similar elongations recur, on the average, every 116 days, or a little less than four months.

The eastern elongations are as follows: March 14, 18° 23'; July 10, 26° 22'; November 4, 23° 22'.

The western elongations:—April 28, 27° 4'; August 25, 18° 20'; December 13, 21° 13',

The March elongation is the best for evening observations. At those in July and November the planet is much farther from the sun, but it is not so high above the horizon at sunset. The August elongation is the best for morning observations, for a similar reason. But with a clear sky Mercury should be visible at almost every elongation, though a field-glass may be required sometimes to locate it.

Further details are given on the pages devoted to The Sky for the Month.

Venus

At the beginning of the year Venus is a splendid evening star; indeed on January 2 it attains greatest brilliance, at which time its stellar magnitude is -4.4, or about 15 times as bright as Sirius. It gradually draws in towards the sun and reaches inferior conjunction on February 7. For some time before and after this date the planet will be too close to the sun for comfortable observation. On March 14 it attains greatest brilliance again and from this time until October it will be a fine morning star. On April 18 it reaches its greatest elongation west, 46° 16', at which time the telescope reveals its phase to be that of a half-moon (third quarter). On Sept. 10-11 the planet is near Regulus, being less than 30' north of the star. It comes to superior conjunction with the sun on November 21, after which it is an evening star again. Further details of the planet's position and brightness are given in the monthly pages. See plate on inside of cover.

MARS

There was a notable opposition of Mars on August 23, 1924, at which time it was nearer to the earth than at any opposition for many years past or to come. The oppositions occur at intervals of approximately 780 days, and hence there will be one in 1926. It will occur on November 4, though the planet is nearest the earth on October 27. Its distance is 42,624,200 miles, which is somewhat greater than that in 1924, namely, 34,637,400, but the planet this year is a little nearer the equator, which will improve its position for observation. See plate on inside of cover.

At the beginning of the year Mars is in Scorpio, a few degrees north of Antares, which it resembles in colour but at this time it is fainter. The planet steadily approaches the earth and becomes brighter. It is in quadrature (90° w.) with the sun on July 8, reaches a stationary point on Sept. 28, retrogrades until Dec. 7, when it becomes stationary again and begins to move eastward once more. Opposition is midway between the stationary points.

In the accompanying diagrams are shown the orbits of earth and Mars, and also the path of Mars among the stars during 1926.

Orbits of Earth and Mars during 1926. The distance of Mars from Earth is expressed in millions of miles. Least distance, October 27, 42.6 millions.

JUPITER

Jupiter is the greatest of all the planets. Its brightness exceeds that of any of the fixed stars, and though at times Mars rivals it, Venus only distinctly outshines it.

At the beginning of the year Jupiter is too close to the sun for observation. It comes to conjunction on Jan. 25, and will not be in suitable position for observation for a month after that. Then it will gradually improve as a morning star. It comes to opposition on August 15. After that it apparently drifts steadily westward in the sky, and it is a brilliant evening star all the rest of the year.

Jupiter is a fine object for a small telescope. Even a field glass will reveal its disc and also its four large moons. They were discovered by Galileo in 1610, but since then five more have been discovered, all very faint objects (see page 56). The path of Jupiter amongst the stars in 1926 is given in the accompanying diagram.

Path of Jupiter among the stars during 1926. The positions of the planet are given on the first of each month. (Jupiter is very close to Theta on March 2 and to Mu on May 8).

SATURN

At the beginning of the year Saturn is a good morning star in the constellation Libra, rising at about 5 o'clock. Its stellar magnitude is 0.8. It slowly moves eastward among the stars until March 6, when it reaches a stationary point and begins to retrograde, which it continues to do until July 24. It is in opposition on May 14, and is visible all night long. After this it drifts to the western sky and is an evening star. It is in conjunction with the sun on Nov. 21, and for some weeks before and after this date is too near the sun for observation. At the end of the year it is a morning star.

By many observers Saturn, with its unique ring system and its numerous satellites, is considered the finest object in the sky. During some months in 1921 the rings were invisible (as explained in the HANDBOOK for 1921) and we now see their north face. During this year the formation of the rings can be well seen, though they will continue to open out until 1928, and then for seven years they will continue to close in again. The accompanying diagram shows the path of Saturn amongst the stars in 1926.

Path of Saturn among the stars during 1926. The positions of the planet are indicated on the first of each month.

URANUS

This planet was discovered by Sir William Herschel in 1781 and it appears to the naked eye on a dark night as a star of the sixth magnitude. It is in the constellation of Pisces all the year. It moves forward in its orbit only a little over 4° per year. It moves eastward until July 5, when it becomes stationary and begins to retrograde, which it continues to do until December 5. Midway between these dates, namely, on September 21, it is in opposition to the sun, when it is visible all night. For some weeks before and after this date the planet can best be observed, and its position and motion can be followed with a field glass. See the accompanying map of the planet's path amongst the stars.

Path of Uranus among the stars during 1926. The position of the planet is represented by numbers:--1, Jan. 1; 2, March 1; 3, May 1; 4, July 1; 5, Sept. 1; 6, Nov. 1; 7, Jan. 1, 1927.

NEPTUNE

The planet Neptune is the most distant member of the solar system, being 2,800 millions of miles from the sun and requiring 165 years to complete a revolution. During the year it is in the constellation Leo, and it will remain there for some years as it moves in its orbit only 2.2 degrees per year. On January 1 it is in R.A. 9h 48m, and it retrogrades until May 3, when its R.A. is 9h 38m. The motion then becomes direct until November 30, when its R.A. is 9h 57m. For the rest of the year it retrogrades again, and on December 31 its R.A. is 9h 56m, Decl. 13° 2′ N. The planet appears as a star of the eighth magnitude, and so cannot be seen with the naked eye.

ECLIPSES, 1926

In the year 1926 there will be two eclipses, both of the sun.

1. A Total Eclipse of the Sun, January 14, 1926.

The path of totality begins in Gentral Africa, emerges at the east coast just south of the equator, crosses the Indian Ocean, passing over the Island of Seychelles, crosses Sumatra approximately in latitude 5° south, crosses Borneo and Mindanao, the southernmost of the Philippine Islands, and ends in the Pacific Ocean.

The greatest duration, at the middle of the path, is 4m 11s, but it occurs in mid-ocean. On the west coast of Sumatra, at Benkoelen, the duration is 3m 20s. Here the weather conditions are best, but they are not very favourable.

The partial phase will be seen in a large part of Africa (not including Cape of Good Hope), Egypt, Arabia, India, S.E. China, Japan, West Indies, N.W. Australia.

Among the expeditions which will observe the eclipse are those from the U.S. Naval Observatory, Washington, D.C.; the Sproul Observatory, Swathmore, Pa.; the Royal Academy of Science of the Netherlands; and the Einstein Foundation and the Observatory, Potsdam, Germany.

CIRCUMSTANCES OF THE ECLIPSE

	Greenwich Civil			Long. from	Latitude	
	Time			Greenwich		
	d	h	m	• /	0	'
Eclipse beginsJanuary	14	3	58.6	- 33 47	+ 3	7
Central eclipse begins	14	4	55.1	-21 9	+ 6	52
Central eclipse at L. App.						
Noon	14	6	37.9	-8245	-10	5
Central eclipse ends "	14	8	17.8	-141 58	+14	28
Eclipse ends "	14	9	14.3	-129 24	+10	44

2. An Annular Eclipse of the Sun, July 9-10, 1926.

This eclipse is visible only in the Pacific Ocean. The central path passes over very few square miles of land. It begins in long. 132° E, lat. 4° N, its midpoint is in long. 167° W, lat. 26° N, and it ends in long. 103° W, lat. 1° N.

The partial phase will be seen in Japan, S.E. China, the West Indies, Northern Australia, south-western portion of the United States and of British Columbia, Mexico and Central America. The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9.

The Sun.—During January the sun's R.A. increases from 18h 43m to 20h 55m and its Decl. from 23° 5′ S to 17° 22′ S. The equation of time (see page 6) increases from 3m to 12s. to 13m 36s. On account of this rapid rise in value the time of mean noon appears to remain, for the first ten days of the month, at the same distance from the time of sunrise, that is, the forenoons as indicated by our clocks are of the same length. On the 20th the sun enters the sign Aquarius the second of the winter signs of the zodiac. On January 1 the sun is in perihelion (see opp. page for distance). On January 14 there is a total eclipse of the sun visible in Eastern Africa, Indian Ocean and the East Indies, not visible in Canada (see page 28).

The Moon.—For its phases and conjunctions with the planets, see opposite page. On Jan. 10 the moon occults a star in Libra (see page 8).

Mercury on the 15th is in R.A. 18h 22m, Decl. 23° 29' S, and transits at 10.49. It reached greatest elongation west, 22° 36', on December 31, 1925. At that time the planet for middle latitudes was about 15° above the horizon in a direction 40° east of south. For a week or ten days at this time it should be visible without difficulty. Use a field-glass in searching for the planet. (See page 22.)

Venus on the 15th is in R.A. 21h 49m, Decl. 9° 57' S, and transits at 14.11. The planet begins the year as a splendid evening star. Indeed its brightness is a maximum on the 2nd, at which time its stellar magnitude is -4.4, or about 15 times as bright as Sirius. In the telescope it shows a crescent shape like the moon 4 days old. During the month the planet draws in towards the sun. On the 31st it transits 37m after the sun, but on account of higher declination it sets about $1\frac{1}{4}$ hrs. after sunset.

Mars on the 15th is in R.A. 16h 44m, Decl. 22° 15' S, and transits at 9.09. At the beginning of the year Mars is in Scorpio about 5° north of Antares. It is very distant from the earth (199,120,000 mls. on the 15th) and hence is faint, a little brighter than Polaris, but of a red colour, like Antares.

Jupiter on the 15th is in R.A. 20h 17m, Decl. 20° 8' S_i and transits at 12.42. It is in the constellation Capricornus during the month. On the 1st it sets about 1h 40m after the sun, and on the 25th it is in conjunction, after which it is a morning star. During the entire month it is too near the sun for observation, and for this reason the configurations of its satellites are not given.

Saturn on the 15th is in R.A. 15h 29m, Decl. 16° 43' S, and transits at 7.53. At the beginning of the year Saturn is in Libra about 4° south-west of Gamma and can be well observed as a morning star. Its stellar magnitude is 0.8.

Uranus on the 15th is in R.A. 23h 33m, Decl. 3° 40' S, and transits at 15.56.

Neptune on the 15th is in R.A. 9h 46m, Decl. 13° 50' N, and transits at 2.11.

For further information regarding the planets, with maps of their paths, see pages 22 to 26.

JANUARY ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)	Minima of Algol	Configurations of Jupiter's Satellites
		m
Fri.123h \oplus in Perihelion, 91,337,800 miles.Sat.216h \heartsuit Greatest brilliancy; 17 h $35m \checkmark \Psi @, \Psi 2^{\circ} 15$ Sun.3	'S 5	40
Mon. 4 Tues. 5 Wed. 6	2	30 .un
© Thur. 7 2h 22m Moon L Q Fri. 8	23 	20 the
Sat. 9 21h 47m ♂ b €, b 2° 39' S Sun. 10 Mon. 11 1h 50m ♂ ♂ €, ♂ 3° 48' S Tues. 12 15h 40m ♂ \$ €, \$ 1° 58' S	20 	Jupiter to
Wed. 13 17h ♀ in ♡ Thur. 14 1h 35m N.M.; ⊙ Total Eclipse invisible in Cana (see p. 28); 15h 19m ♂ 2 ℂ, 24 0° 10' N	17 da 	000000000010000001001001020001100310
Fri. 15 16h ♀ stationary Sat. 16 2h 10m ♂ ♀ €, ♀ 6° 6′ N Sun. 17 18h ♂ ¹ in ♡; 21h 54m ♂ ô €, ô 3° 57′ N Mon. 18	13 	of the pr
Tues. 19 Wed. 20 17h 31m Moon F.Q.	10 	40 Leason
Thur. 21 Fri. 22 Sat. 23 23h Ø in Aphelion	7 	00 sible by
Sun. 24 Mon. 25 0h♂ 21⊙ Tues. 26	4 	10 II
Wed. 27 \textcircled{M} Thur. 28 16h 35m F.M Fri. 29 22h 45m $\bigcirc \ensuremath{/}{$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	1	00
Sat. 30 Sun. 31		50

Explanation of symbols and abbreviations on page 4.

THE SKY FOR FEBRUARY, 1926

The times of transit are in Local Mean Time. To change to Standard Time, see p. 9.

The Sun.—During February the sun's R.A. increases from 20h 55m to 22h 45m, and its Decl. changes from $17^{\circ} 22'$ S to $7^{\circ} 57'$ S. The equation of time reaches a maximum value of 14m 23s on the 12th (see page 6). For the change in the length of the day, see page 11. On the 19th the sun enters the third winter sign of the zodiac, Pisces.

The Moon.—For its phases and conjunctions with the planets, see opp. page. On February 17 it occults two stars in Cetus (see page 8).

Mercury on the 15th is in R.A. 21h 51m, Decl. 5° 11' S and transits at 12.16. On the same day it is in superior conjunction with the sun, and so it is not in suitable position for observation during the month.

Venus on the 15th is in R.A. 20h 54m, Decl. 8° 45' S, and transits at 11.15. It is rapidly approaching the sun and reaches inferior conjunction on the 7th. It is then $7\frac{1}{2}^{\circ}$ north of the sun. After this it is a morning star, but some weeks will elapse before it will be suitably placed for observation.

Mars on the 15th is in R.A. 18h 18m, Decl. 23° 44' S, and transits at 8.41. It is in Sagittarius nearly all the month, and on the 15th its distance from the earth is 178,140,000 mls.

Jupiter on the 15th is in R.A. 20h 48m, Decl. $18^{\circ} 23'$ S, and transits at 11.10. The planet is too near the sun for observation until about the 20th. For the configuration of its satellites, see next page; and for their eclipses, etc., see page 52.

Saturn on the 15th is in R.A. 15h 36m, Decl. $17^{\circ} 2'$ S, and transits at 5.58. On this date it is in quadrature with the sun, being 90° west of the sun. Its stellar magnitude is 0.7 and it is well placed for observation as a morning star.

Uranus on the 15th is in R.A. 23h 38m, Decl. 3° 8' S, and transits at 14.00.

Neptune on the 15th is in R.A. 9h 43m, Decl. 14° 7' K, and transits at 0.06.

For further information regarding the planets, with maps of their paths, see pages 22 to 26.

FEBRUARY ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)	Minima of Algol	Configurations of Jupiter's Satellites at 6h 15m
		 m
Mon. 1		40
Tues. 2 18h φ in Perihelion		
Wed. 3		
Thur. 4 $5h\sigma \notin 24, \notin 1^{\circ} 32' S$		
(Fri. 5 18h 25m Moon L.Q Sat. 6 9h 47m $\alpha' b$ $($.b 2° 27' S	15 3	30
Sat. 6 9h 47m ♂ b (, b 2° 27' S Sun. 7 10h ♂ ♀ ⊙ Inferior		
Mon. 8 18h $\heartsuit \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	10	20
Tues. 9		- •
Wed. 10		Invisible
Thur. 11 13h 1m ♂ 2 €, 2 0° 43′ N.; 19h 27m ♂ 9 €, 9		ivi
10° 16′ N	9	
● Fri. 12 7h 42m ♂ ♥ ♥ , ♥ 0° 8′ N.; 12h 20m N.M.; 16h ♂	0	10
ΨΟ		
Sat. 13 8h & Greatest Hel. Lat. S		
Sun. 14 10h 8m ơ ô 🕻 , ô 3° 59' N	6 (00
Mon. 15 0h □b☉; 20h♂ 𝔅 ⊙ Superior		
Tues. 16		
Wed. 17 $15h \circ 921$, $9 \circ 8' N$	2 (50
Thur. 18		
D Fri. 19 7h 36m Moon F Q	23°	30 43201
Sat. 20		4210*
Sun. 21		d4O23
Mon. 22	20 2	
Γues. 23 Wed. 24 14h ♀ Greatest Hel. Lat. N		21043
Thur. 25	1 77 1	23014
Fri. 26 3h 29m ♂ Ψ €, Ψ 2° 6′ S	17 1	
\textcircled{T} Sat. 27 3h \heartsuit Stationary; 11h 51m F.M		d3O14 213O4
Sun. 28		
	11 (

Explanation of symbols and abbreviations on page 4.

THE SKY FOR MARCH, 1926

The times of transit are given in Local Mean Time. To change to Standard Time, see p. 9.

The Sun.—During March the sun's R.A. increases from 22h 45m to 0h 39m, and its Decl. changes from 7° 57' S to 4° 10' N. The equation of time decreases from 12m 41s to 4m 16s (see page 6). For changes in the length of the day, see page 12. On the 21st at 4.02 a.m. the sun enters the first spring sign of the zodiac, Aries (see opp. page).

The Moon.—For its phases and conjunctions with the planets, see opp. page. Mercury on the 15th is in R.A. 0h 40m, Decl. 6° 47' N, and transits at 13.12.
On the previous day it attains its greatest elongation east, 18° 23'. This is a fine occasion to observe the planet. Immediately after sunset search for it about 10° south of the west point of the horizon and at an altitude of about 17°. A field-glass may be helpful in locating it, but there should be no difficulty with the naked eve. From about March 6 to March 20 the planet should be visible.

(See page 22.)

Venus on the 15th is in R.A. 21h 2m, Decl. 11° 44' S, and transits at 9.33. On the 14th it has maximum brilliance. Then it exhibits the crescent phase like the moon 4 days old (see notes for January). Its stellar magnitude then is -4.3, and the planet loses little in brightness during the month.

Mars on the 15th is in R.A. 19h 45m, Decl. 22° 5' S, and transits at 8.17. During the month the planet moves from Sagittarius into Capricornus, and on the 15th the distance from the earth is 158,570,000 mls.

Jupiter on the 15th is in R.A. 21h 13m, Decl. $16^{\circ} 41'$ S, and transits at 9.44. It is a bright morning star, but not very high above the horizon at sunset. For the configuration of its satellites, see next page; and for their eclipses, etc., see page 52.

Saturn on the 15th is in R.A. 15h 37m, Decl. 17° 1' S, and transits at 4.09. On the 6th the planet reaches a stationary point and begins to retrograde, which it continues to do until July 24. Magnitude 0.5. Well placed for morning observations.

Uranus on the 15th is in R.A. 23h 44m, Decl. 2° 31' S, and transits at 12.15.

Neptune on the 15th is in R.A. 9h 40m, Decl. 14° 22N., and transits at 22.09. For further information regarding the planets, with maps of their paths, see

pages 22 to 26.

MARCH ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)	Minima of	AIgol	Configurations of Jupiter's Satellites at 5h 30m
	h	m	
Mon. 1			O234*
Tues. 2			21034
Wed. 3 0h ♂ \$\$,\$ 0° 31' N	10	50	23041
Thur. $4 8h \emptyset$ in \mathbb{Q} .			34102
Fri. 5 17h 33m ♂ b €, b 2° 9′ S	_		43021
Sat. 6 11hb Stationary	7	40	42310
(Sun. 7 6h 50m Moon L.Q			4013*
Mon. 8 23h \emptyset in Perihelion			41023
Tues. 9 18h $12 \sigma' \sigma' \oplus \sigma' 1^{\circ} 2' S$	4	30	d42O3
Wed. 10			d42O1
Thur. 11 2h 58m $\circ \mathcal{Q} \oplus \mathcal{Q}$, \mathcal{Q} 7° 22′ N.; 9h 18m $\circ \mathcal{Q} \oplus \mathcal{Q}$, \mathcal{Q}			0.11.00
1° 18′ N	-	90	34102
Fri. 12 DSat. 13 22h 20m N.M.: 23h 45m イ合 低 合 4°・0′ N	1	20	30421
			23104
2 m + 0104000 200, 20 20 , 20 + 0104000		10	02148
brilliancy	22	10	0314*
Mon. 15 0h 21m ♂ 貸 ⓓ, 貸 7° 51′ N Tues. 16 13h ♂ 含⊙			10234
	10	50	20134
	18	50	
Thur. 18 Fri. 19 5h \$ Greatest Hel. Lat. N			31024
	15	10	30124
		40	d321O
· · · · · · · · · · · · · · · · · · ·			40.091
Υ , Spring commences			42031
Mon. 22 6h $\sigma' \Leftrightarrow 24$, $\Leftrightarrow 4^{\circ} 39'$ N Tues. 23	10	20	41023
	12	30	d4O13
Wed. 24			4203*
Thur. 25 8h 46 $\sigma' \Psi \oplus \Psi \oplus \Psi 2^{\circ} 9'$ S Fri. 26	0		d43O2
	9	20	43012
			43210
Sun. 28 Mon. 29 5h 0m F.M	0	10	201**
· · · · ·	0	10	10423
Tues. 30			02143
			21034

Explanation of symbols and abbreviations on page 4.

THE SKY FOR APRIL, 1926

The times of transit are given in Local Mean Time. To change to Standard Time, see p. 9.

The Sun.—During April the sun's R.A. increases from 0h 39m to 2h 30m, and its Decl. from 4° 10' N. to 14° 47' N. The equation of time changes from +4m 16s to -2m 50s (see page 6). For the length of daylight in various latitudes, consult page 13. On the 20th the sun enters the second spring sign, Taurus.

The Moon.—For its phases and conjunctions with the planets, see opp. page. On April 15 it occults a star in Taurus (see p. 8).

Mercury on the 15th is in R.A. 0h 11m, Decl. 0° 21' N., and transits at 10.39. It is now a morning star, having passed inferior conjunction on March 31. During the month it separates from the sun, and on the 28th reaches its greatest elongation west, 27° 4', and transits at 10.20. This is not the best time of the year to observe the planet at a western elongation although its distance from the sun is great. At sunrise it is only about 8° above the horizon, at a point about 5° south of east.

Venus on the 15th is in R.A. 22h 40m, Decl. 7° 44' S, and transits at 9.08. On the 18th it attains its greatest elongation, 46° 16' W, at which times its phase as revealed in the telescope is that of a half-moon. The planet is a fine morning star and during the month its magnitude changes from -4.2 to -3.9.

Mars on the 15th is in R.A. 21h 17m, Decl. 17° 10' S, and transits at 7.48. Its distance from the earth on that date is 137,420,000 mls., and its stellar magnitude is 0.9, about 30 per cent. brighter than Antares. It rises about $2\frac{1}{4}$ hrs. before the sun, and is fairly well placed for observation. On the 23rd the planet is in conjunction with Jupiter (see opp. page).

Jupiter on the 15th is in R.A. 21h 37m, Decl. 14° 56' S, and transits at 8.06. Its stellar magnitude is -1.7 (a little brighter than Sirius), a prominent morning star not far from Mars. For the configuration of its satellites, see next page; for their eclipses, etc., see page 52.

Saturn on the 15th is in R.A. 15h 32m, Decl. 16° 40' S, and transits at 2.02. Stellar magnitude 0.4 and visible much of the night.

Uranus on the 15th is in R.A. 23h 50m, Decl. 1° 50' S, and transits at 10.19.

Neptune on the 15th is in R.A. 9h 38m, Decl. 14° 32' N, and transits at 20.05.

For further information regarding the planets, with maps of their paths, see pages 22 to 26.
APRIL ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)	Minima of Algol	Configurations of Jupiter's Satellites at 4h 15m
	h m	
Thur. 1 22h 1m of b (, b 1° 53' S	3 00) 3014*
Fri. 2		3024*
Sat. 3	23 50) 32104
Sun. 4		2014*
€ Mon. 5 15h 50m Moon L Q		10234
Tues. 6	20 40) dO213
Wed. 7 11h 38m♂♂℃, ♂ 0° 31′ N		42103
Thur. 8 2h 13m ♂ 24 €, 24 1° 52′ N.; 20h 22m ♂ ♀ €,		
♀ 4°56′ N		4301*
Fri. 9) 4302*
Sat. 10 12h 11m♂ े 🕻 , 👌 4° 8′ N.; 21h 19m♂ 🛱 🕻 , 🛱 5° 21	'	
N		42310
Sun, 11 17h & in V		42301
● Mon. 12 7h 56m N.M.; 11h ♀ Stationary	14 20) 41023
Tues. 13		40123
Wed. 14		214O3
Thur. 15	11 00) d2O14
Fri. 16		310 24
Sat. 17		dd3O4
Sun. 18 14h Q Greatest Elong. W., 46° 16'	7 50	23014
D M on.19 18h 23m Moon F Q		10234
Tues. 20		01234
Wed. 21 15h 16m of 𝒯 𝔅 , 𝖞 2* 20' S.; 16h ♀ in 𝔥; 23h ♀ ir	1	
Aphelion		21034
Thur. 22		2O314
Fri. 23 6h $\sigma \sigma' 24$, $\sigma' 0^{\circ} 51' S$		31402
Sat. 24	1 30	34021
Sun. 25		4230*
Mon. 26	$22 \ 20$	41023
1 Tues. 27 19h 17m F.M		40123
Wed. 28 1h & Greatest Elong. W., 22, 4'		42103
Thur. 29 1h 29m of b (], b 1° 48' S		42031
Fri. 30		43102

THE SKY FOR MAY, 1926

The times of transit are given in Local Mean Time. To change to Standard Time, see p. 9.

The Sun.—During May the sun's R.A. increases from 2h 30m to 4h 32m, and its Decl. from $14^{\circ} 47'$ N to $21^{\circ} 55'$ N. The equation of time increases from 2m 50s to a maximum of 3m 47s on the 15th, and then falls to 2m 31s on the 31st (see page 6). For changes in the length of the day, see page 14. On the 21st the sun enters Gemini, the third sign of the zodiac.

The Moon.—For its phases and conjunctions with the planets, see opp. page. Mercury on the 15th is in R.A. 2h 5m, Decl. 10° 0' N, and transits at 10.38. During the first few days of the month it should continue to be seen as a morning star, and then it moves on towards superior conjunction and becomes too near the sun for observation.

Venus on the 15th is in R.A. 0h 38m, Decl. 2° 18' N, and transits at 9.08. It is still a fine morning star, its stellar magnitude changing very slightly during the month, namely, from -3.9 to -3.6. On the 4th there is a close conjunction of Venus and Uranus (see opp. page).

Mars on the 15th is in R.A. 22h 42m, Decl. 10° 15' S, and transits at 7.14. On this date its distance from the sun is 118,250,000 mls. and its stellar magnitude 0.6, an increase in brightness during one month of about 30 per cent. Still improving as a morning star.

Jupiter on the 15th is in R.A. 21h 52m, Decl. 13° 43' S, and transits at 6.24. On the 17th it is in quadrature with the sun, but being much farther south in the sky it rises (to a person in middle north latitude) about $3\frac{1}{2}$ hours before the sun. It is a fine morning star of magnitude -1.9.

Saturn on the 15th is in R.A. 15h 24m, Decl. $16^{\circ} 8'$ S, and transits at 23.52. It comes to opposition on the 14th, at which time it sets as the sun rises and consequently can be seen all night long. Stellar magnitude 0.2, the same as that of Capella.

Uranus on the 15th is in R.A. 23h 56m, Decl. 1° 16' S, and transits at 8.18.

Neptune on the 15th is in R.A. 9h 38m, Decl. 14° 33' N, and transits at 18.07.

For further information regarding the planets, with the maps of their paths, see pages 22 to 26.

MAY ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)	Minima of Algol	Configurations of Jupiter's Satellites at 3h 0m
	h n	1
Sat. 1		34O21
Sun. 2		$0\ 32104$
Mon. 3 10h Ψ Stationary	•••	dO4**
@ Tues. 4 10h ♂ 58, ♀ 0° 21′ S.; 22h 13m Moon L Q		01234
Wed. 5 14h 54m of 2 €, 24 2° 21′ N	. 12 50	0 12034
Thur. 6 3h 37m ♂♂ €, ♂ 1° 52′ N		20134
Fri. 7 21h 55m♂き €, き 4° 20′ N		13024
Sat. 8 4h $30 \text{ m} \circ 9 \oplus 9 \circ 51' \text{ N}$	9 40	0 30214
Sun. 9 20h 17m ♂ ♀ € , ♀ 2° 22′ N		32104
Mon. 10		401**
Tues. 11 17h 55m N.M	6 2	0 4023*
Wed. 12 7h & Greatest Hel. Lat. S		412O3
Thur. 13 8h $\Box \Psi \odot$		42013
Fri. 14 3h $\beta b \odot$		0 41302
Sat. 15		43012
Sun. 16		43210
Mon. 17 6h $\square 2! \odot$		0 43201
Tues. 18 23h $6m \circ \Psi \subseteq , \Psi 2^{\circ} 35' S$		032**
b Wed. 19 12h 48m Moon F.Q		0 d1043
Thur. 20		20134
Fri. 21		d1024
Sat. 22		
Sun. 23		32104
Mon. 24		32104 32014
Tues. 25 $22h \ \varphi$ in Aphelion		
Wed. 26 5h 52m ♂ b ℂ, b 1° 56′ S ⑦ Thur, 27 6h 49m F.M		dO243 24O13
Sat. 29		43012
Sun, 30		43210
Mon. 31 8h \forall in \otimes	81	0 43201

Explanation of symbols and abbreviations on page 4.

THE SKY FOR JUNE, 1926

The times of transit are given in Local Mean Time. To change to Standard Time, see p. 9.

The Sun.—During June the sun's R.A. increases from 4h 32m to 6h 37m, and its Decl. rises from $21^{\circ} 55'$ N on the 1st to its maximum $23^{\circ} 27'$ on the 22nd. On that date the sun reaches the summer solstice and enters the first summer sign of the zodiac, Cancer. The duration of daylight is then the longest, but it does not change appreciably for several days before and after this date (see page 15). The Decl. falls to $23^{\circ} 11'$ on the 30th. The increase in the equation of time (for which see p. 6), taking with the decreasing length of daylight, causes the local mean time of sunset to appear unchanged for several days at the end of June and the beginning of July.

The Moon.—For its phases and conjunction with the planets, see opp. page. On June 7 it occults a star in Cetus and on the 12th one in Gemini (see p. 8).

Mercury on the 15th is in R.A. 6h 23m, Decl. 25° 13' N, and transits at 12.57. On June 4 is in superior conjunction, after which it is an evening star. It steadily separates from the sun, and on the 30th its elongation east is about 22°. At sunset its altitude is approximately 13° and its azimuth is 15° north of west. At this time it should be observable, though a field-glass will be useful to locate it in the twilight.

Venus on the 15th is in R.A. 2h 51m, Decl. $14^{\circ} 8'$ N, and transits at 9.19. The planet still remains a morning star (which it will continue to do until Nov. 21), slowly falling in brightness from mag. -3.6 to -3.4 during the month.

Mars on the 15th is in R.A. 0h 4m, Decl. 2° 11' S, and transits at 6.33. The distance from the earth is now 100,000,000 mls., and the stellar magnitude 0.3. The planet rises near the east point, about $3\frac{3}{4}$ hrs. before the sun, and is now well placed for observation as a morning star.

Jupiter on the 15th is in R.A. 21h 59m, Decl. 13° 17′ S, and transits at 4.28. It has now passed into Aquarius, but on the 16th it reaches a stationary point and begins to move westward towards Capricornus again. Stellar magnitude -2.2; a splendid morning star.

Saturn on the 15th is in R.A. 15h 15m, Decl. 15° 39' S, and transits at 21.41. The planet is slightly fainter than a month ago, but is still bright, being of magnitude 0.4. It is about 6° east of Alpha Librae and is well placed for evening observations.

Uranus on the 15th is in R.A. 23h 58m, Decl. 0° 59' S, and transits at 6.27.

Neptune on the 15th is in R.A. 9h 40m, Decl. 14° 24' N, and transits at 16.07. For further information regarding the planets, with maps of their paths, see pages 22 to 26.

	JUNE ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)	Minima of Algol	Configurations of Jupiter's Satellites at 2h 0m
.		h m	1
Wed. 2 C Thur. 3	2 Oh 3m♂24 (€, 24 2° 37′ N 3 3h 9m Moon L Q.; 18h 51m,♂♂ (€, ♂ 2° 43′ N 4 5h 5m♂き (€, き 4° 32′ N.; 11h♂算⊙ Superior; 23h	5 00	41O32 4O123 24O3*
	§ in Perihelion		1043*
	5		30124
	$3 20h 8m \sigma' \bigcirc \mathbb{G}$, $\bigcirc 2^{\circ} 56' N \dots$) 31204
	7		32014
	8	$22 \ 30$	
)		01234
-) 5h 8m N.M.; 20h 44m ♂ Ϩ ℂ, Ϩ 3° 18′ N		2O34*
Fri. 1	L	19 20	
	2 17h රත්රී , ත් 1° 45′ S		30412
	3		34120
	£) 43201
Tues. 1	5 5h & Greatest Hel. Lat. N.; 7h 45m 🗸 🖞 🕻 , Ψ 2° 47′		
	S		4102*
	3 16h 24 Stationary		40123
Thur. 1	7 13h ♀ Greatest Hel. Lat. S	$13 \ 00$	
D Fri. 18	8 6h 14m Moon F.Q		42013
Sat. 19)		43012
)) d310*
	7h □ô⊙, 23h 30m⊙ enters ≓, Summer commence	es	32014
Tues. 2	2 12h 0m ♂ b @ , b 2° 10′ S		1024*
Wed. 23	3 16h♂ Greatest Hel. Lat. S	640	01234
Thur. 2	£		21034
@Fri. 2	5 16h 13m F.M		20134
Sat. 26	}	3 30) 3024*
Sun. 27	·		31024
Mon. 28	B		32014
Tues. 29	9 6h 39m ♂ 2l €, 2l 2° 35′ N	0 20	13402
Wed. 30)		40123

THE SKY FOR JULY, 1926

The times of transit are given in Local Mean Time. To change to Standard Time, see p. 9.

The Sun.—During July the Sun's R.A. increases from 6h 37m to 8h 42m, and its Decl. decreases from 23° 11' N to 18° 17' N. The equation of time increases from 3m 25s on the 1st to 6m 22s on the 27th and then falls to 6m 14s on the 31st (see p. 7). On the 23rd the sun enters Leo, the second summer sign of the zodiac. For changes in the length of the day, see page 16. The earth is in aphelion on the 5th (see opp. page for distance). There is an annular eclipse of the sun on July 9-10, observable as a partial eclipse in a portion of British Columbia and the United States (see page 27).

The Moon.—For its phases and conjunctions with the planets, see opp. page. On the 4th it occults a star in Cetus and on the 6th two stars in Taurus (see p. 8).

Mercury on the 15th is in R.A. 9h 19m, Decl. $14^{\circ} 22'$ N, and transits at 13.49. On the 10th it reaches its greatest elongation, $26^{\circ} 22'$ east. At sunset the planet now is 13° above the horizon, in azimuth 10° north of west. Indeed there is little change in its position at sunset during the first 15 days of the month, and it should be visible, though a field-glass will be useful to locate it in the twilight.

Venus on the 15th is in R.A. 5h 16m, Decl. 21° 44' N, and transits at 9.45. Still a good morning star, in the constellation Taurus. On July 7 the planet is 4° N of Aldebaran. During all the month the stellar magnitude is -3.4.

Mars on the 15th is in R.A. 1h 17m, Decl. 5° 10' N, and transits at 5.48. On this date the planet's distance from the earth is 83,660,000 miles and its stellar magnitude -0.1, and so it is brighter than any star in the sky except Sirius.

Jupiter on the 15th is in R.A. 21h 54m, Decl. 13° 51' S, and transits at 2.25. Its stellar magnitude is -2.3. It rises about 9.30 p.m. and is a very fine object until dawn.

Saturn on the 15th is in R.A. 15h 11m, Decl. 15° 27' S, and transits at 19.39. On July 24 the planet ceases to retrograde (see opp. page). Its stellar magnitude is 0.6 and it can be observed from sunset until it sets at about half an hour after midnight.

Uranus on the 15th is in R.A. 23h 59m, Decl. 0° 57' S, and transits at 4.30. Neptune on the 15th is in R.A. 9h 43m, Decl. 14° 8' N, and transits at 14.12.

For further information regarding the planets, with maps of their paths, see pages 22 to 26.

JULY ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)	Minima of Algol	Configurations of Jupiter's Satellites at 1h Om
Thur. 1 11h 10m $\sigma' \& \mathbb{C}$, $\& 4^{\circ} 37' N$ \mathbb{C} Fri. 2 8h 2m Moon L Q.; 9h 27m $\sigma' \sigma' \mathbb{C}$, $\sigma' 2^{\circ} 52' N$ Sat. 3 Sun. 4 Mon. 5 8h $\&$ Stationary, 9h \oplus in Aphelion, 94,453,500 mile Tues. 6 18h 3m $\sigma' \not \cong \mathbb{C}$, $\varphi 1^{\circ} 33' N$ Wed. 7 Thur. 8 13h $\Box \sigma' \odot$; 16h \nsubseteq in \heartsuit \mathbb{C} Fri. 9 18h 6m N.M.; Ann. Ecl. invisible in Canada (see p. 27) Sat. 10 12h \nexists Greatest Elong. E., 26° 22'	. 17 es . 14	m 10 412O3 42O13 d41O2 50 d43O2 432O1 431O* 40 4O132 12O43 2O134 30 1O324
Sun. 11 Mon. 12 0h 44m ♂ 𝔅 𝔅 , 𝔅 3° 18' S.; 16h 32m ♂ 𝔅 𝔅 , 𝔅 2° 52' S Tues. 13 Wed. 14 Thur. 15 Fri. 16	; . 8	30124 3204* 20 3104* 01324 12043 10 24013
 ▶ Sat. 17 21h 55m Moon F.Q Sun. 18 11h ♂¹ in Perihelion, 22h g in Aphelion Mon. 19 19h 42m ♂ b €, b 2° 20′ S Tues. 20 Wed. 21 Thur. 22 	. 2 . 22	41032 43012 00 4320* 43210 50 40312 d4103
Fri. 23 14h ♀ Stationary Sat. 24 23h ♭ Stationary Sun. 25 0h 13m F.M Mon. 26 12h 7m ♂ ♀ €, ♀ 18' N Tues. 27 Wed. 28 17h 57m ♂ ६ €, ६ 4° 34' N	. 19 . 19 	24013 40 10423 30124 32104 30 d3204 0124* 10234
Thur. 29 Fri. 30 22h 6m ♂ ♂ ₵, ♂ 2° 24' N Sat. 31 14h 25m Moon L.Q.	. 13	3 10 20134 10234

THE SKY FOR AUGUST, 1926

The times of transit are given in Local Mean Time. To change to Standard Time, see p. 9.

The Sun.—During August the sun's R.A. increases from 8h 42m to 10h 38m, and its Decl. decreases from $18^{\circ} 17'$ N to $8^{\circ} 39'$ N. The equation of time falls from 6m 14s to 0m 17s (see page 7). For changes in the length of daylight, see page 17. On the 23rd the sun enters the third summer sign of the zodiac, Virgo.

The Moon.—For its phases and conjunctions with the planets, see opp. page. On August 11 it occults a star in Virgo and on the 31st one in Taurus (see p. 8).

Mercury on the 15th is in R.A. 8h 45m, Decl. 14° 26' N, and transits at 11.11. On August 7 it comes to inferior conjunction. It then becomes a morning star and reaches greatest elongation west 18° 20' on the 25th. At sunrise the planet has an altitude of 15° in azimuth 10° north of east, and it should be easily visible for some days before the 25th and for a week after it. This is the best opportunity to see Mercury as a morning star during the year. (See page 22.)

Venus on the 15th is in R.A. 7h 56m, Decl. 20° 54' N, and transits at 10.23. It is then in the constellation Gemini, just south of Pollux. Its mag. is -3.3, that of Pollux 1.2. Thus there is a difference of 4.5 mags. or the planet is 63 times as bright.

Mars on the 15th is in R.A. 2h 23m, Decl. 11° 5' N, and transits at 4.52. The planet's distance from the earth is now 67,760,000 mls., and its stellar magnitude -0.6. It is in the constellation Aries, and is a fine morning star, rising nearly 7 hrs. before the sun.

Jupiter on the 15th is in R.A. 21h 40m, Decl. 15° 7' S, and transits at 0.10. It is in opposition to the sun on this date (see opp. page) and hence rises as the sun sets. A fine object, visible all night. Stellar magnitude -2.4, of maximum brightness. For the configuration of its satellites, see opp. page; for their eclipses, etc., see page 53.

Saturn on the 15th is in R.A. 15h 12m, Decl. 15° 40' S, and transits at 17.38. On the 13th it is in quadrature with the sun, being 90° east. Its stellar magnitude is 0.7, or 20 per cent. brighter than Altair. The planet sets at about 22.30, and hence can be well seen as an evening star.

Uranus on the 15th is in R.A. 23h 57m, Decl. 1° 14' S, and transits at 2.26.

Neptune on the 15th is in R.A. 9h 47m, Decl. 13° 45' N, and transits at 12.15.

For further information regarding the planets, including maps of their paths, see pages 22 to 26.

	AUGUST ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)	Minima of	Algol Configurations	of Jupiter's Satellites at 0h 0m
<u></u>		h	m	
Sun.	1			30412
Mon.	2		ററ	34210
Tues.	3		0 00	43201
Wed.	4			4302*
Thur.	$5 21h 5m \checkmark \mathcal{Q} \oplus \mathcal{Q}, \mathcal{Q} 0^{\circ} 14' S$		3 50	41023
Fri.	6		0.00	42013
Sat.	$7 9h\sigma \notin \odot$ Inferior			4103*
Sat. Sun.	8 1h $41m \checkmark $ $(\ , \)$ 7° 17' S.; 6h Greatest Hel. Lat			4105
u Sun.	S.: 8h 49m N.M		2 10	43012
м	9 0h $55m \sigma' \Psi \mathbb{C}, \Psi \mathbb{2}^{\circ} 54' S$		5 40	43012 31240
Mon.				32014
	10		0 20	31024
	1		0 30	dO234
Thur. I	$2 19h \varphi in \Omega$		1 00	
	3 1h □ þ⊙		1 20	20134
	4			12034
Sun. 1	$5 15h v^2 4 \odot \dots$	•		30124
D Mon. 1	6 4h 25m ♂ b @, b 2° 19′ S.; 11h 39m Moon F.Q.			
	21h & Stationary		8 10	31204
Tues. 1	17	•		32014
Wed. 1	8 1h♂Ψ⊙			34102
Thur. 1			5 00	d4O23
	20			42013
Sat. 2	21			412O3
Sun. 2	22 17h 32m of 24 🕃 , 24 1° 57′ N	. 1	1 50	d4O12
	23 7h 38m F. M			d431O
	24			43201
Wed. 2	25 2h 16mơ ô 🕻 ,ô 4° 27′ N.; 4h & Greatest Elong. W.	,		
	18° 20′		8 30	43102
Thur. 2				O132*
Fri. 2	$77 h \emptyset$ in Ω			2O43*
Sat. 2	28 5h 29m රට් €, ට් 1° 43′ N	•	$5 \ 20$	21034
CSun. 2	29 23h 40m Moon L Q	•		O3124
Mon. 3				31024
	$23h \notin$ in Perihelion	•	2 10	32014
1 400, 0				

THE SKY FOR SEPTEMBER, 1926

The times of transit are given in Local Mean Time. To change to Standard Time, see p. 9.

The Sun.—During September the sun's R.A. increases from 10h 38m to 12h 26m, and its Decl. changes from 8° 39' N to 2° 48' S. The equation of time becomes zero on 1st and then increases to 9m 58s. For the change in the length of daylight, see page 18. On the 23rd the sun crosses the equator going southward and enters the first autumn sign of the zodiac, Libra.

The Moon.—For its phases and conjunctions with the planets, see opp. page. On September 2 it occults a star in Gemini and on the 26th one in Taurus (see p. 8).

Mercury on the 15th is in R.A. 11h 16m, Decl. 6° 38' N, and transits at 11.45. It is visible during a few days at the beginning of the month (see last month's notes) and then it moves in towards the sun, reaching superior conjunction on the 19th. For the rest of the month it is too close to the sun to be observed.

Venus on the 15th is in R.A. 10h 29m, Decl. 10° 52' N, and transits at 10.53. At sunrise the planet is directly in the east and about 16° above the horizon. Thus it is still a good morning star. During the month its stellar magnitude changes from -3.3 to -3.4.

Mars on the 15th is in R.A. 3h 5m, Decl. 14° 33' N, and transits at 3.32. On this date the distance from the earth is 53,300,000 mls., and the stellar magnitude is -1.2, slightly below Sirius. On the 28th the planet reaches a stationary point and begins to retrograde, which it continues to do until December 8. A fine morning star.

Jupiter on the 15th is in R.A. 21h 26m, Decl. 16° 18' S, and transits at 21.49. The planet has fallen slightly in brightness, having now a magnitude -2.3. It is in excellent position for observing. Jupiter in Capricornus and Mars in Aries can both be seen much of the night. For the configuration of Jupiter's satellites, see opp. page; for their eclipses, etc., see page 53.

Saturn on the 15th is in R.A. 15h 19m, Decl. 16° 15′ S, and transits at 15.44. The planet is now above the horizon about $2\frac{3}{4}$ after sunset and hence can still be seen quite well as an evening star.

Uranus on the 15th is in R.A. 23h 53m, Decl. 1° 38' S, and transits at 0.20.

Neptune on the 15th is in R.A. 9h 51m, Decl. 13° 24' N, and transits at 10.18.

For further information regarding the planets, with maps of their paths, see pages 22 to 26.

SEPTEMBER ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)	Minima of Algol	Configurations of Jupiter's Satellites at 22h 30m
	h m	
Tues. 0 23h β in Perihelion		31024
Wed. 1		O3124
Thur. 2 $17h \sigma' \notin \Psi, \notin 0^{\circ} 52' N$	23 00	21043
Fri. 3		d42O3
Sat. 4		40132
Sun. 5 3h 23m♂ ♀ €, ♀ 2° 12′ S.; 8h 53m♂ Ψ €, Ψ 2° 59′		
S.; 19h 47m♂♀€,♀ 2° 8′ S	19 50	43102
Mon. 6		43201
(b) Tues, 7 0h 45m N.M.; $11h \circ \heartsuit \Psi$, $\heartsuit 0^{\circ} 39'$ N		4310*
Wed. 8	16 40	4012*
Thur. 9		42103
Fri. 10		24013
Sat. 11 4h & Greatest Hel. Lat. N	$13 \ 30$	O32**
Sun. 12 13h 52m of b C , b 2° 7' S		31024
Mon. 13		32014
D Tues. 14 23h 27m Moon F.Q		31204
Wed. 15 7h \bigcirc in Perihelion		0124*
Thur. 16		12034
Fri. 17	7 10	20134
Sat. 18 23h 33m of 24 (, 24 1° 48' N		0234*
Sun. 19 9h♂♥⊙ Superior		d31O2
Mon. 20	4 00	34201
త Tues. 21 0hలింద⊙, 11h 35mơ రీ €, రీ 4° 21′ N.; 15h 19m F.M.		43120
Wed. 22	0.40	43012
Thur. 23 14h $27m\odot$ enters \simeq , Autumn commences	0 40	d4103
Fri. 24	01 00	42013
Sat. 25 1h 43m♂♂€,♂ 1° 33′ N Sun. 26	<i>4</i> 1 30	
		d43O2
Mon. 27	18 90	32401
@ 1 ues. 28 12h 0' Stationary; 12h 48m Moon L.Q	18 20	31204 30124
Wed. 29		30124
1 II UI. 30		

THE SKY FOR OCTOBER, 1926

The times of transit are given in Local Mean Time. To change to Standard Time, see p. 9.

The Sun.—During October the sun's R.A. increases from 12h 26m to 14h 22m, and its Decl. increases from 2° 48' S to 14° 7' S. On the 24th the sun enters the second autumnal sign of the zodiac, Scorpio. The equation of time rises from 9m 58s to 16m 19s, to be subtracted from apparent or sun-dial time (see p. 7). For the change in the length of daylight, see page 19.

The Moon.—For its phases and conjunctions with the planets, see opp. page. On October 24 it occults the star Zeta Tauri, mag. 3 (see page 8).

Mercury on the 15th is in R.A. 14h 20m, Decl. 15° 11' S, and transits at 12.50. During the month it continually separates eastward from the sun, but it is so far south of the equator that its altitude at sunset is so low that it cannot well be seen.

Venus on the 15th is in R.A. 12h 47m, Decl. 3° 32' N, and transits at 11.13. It is slowly drawing in towards the sun, but is still easily observable as a morning star, of mag. -3.4.

Mars on the 15th is in R.A. 3h 3m, Decl. 15° 17' N, and transits at 1.31. On this date the planet's distance from the earth is 43,728,000 mls., and its stellar magnitude is -1.9, about 30 per cent. brighter than Sirius. On the 27th the planet comes nearest to the earth (see opp. page) but it does not come into opposition until Nov. 4. From Oct. 26 to Nov. 7 the stellar magnitude is -2.1, and the planet is a fine object to observe.

Jupiter on the 15th is in R.A. 21h 20m, Decl. $16^{\circ} 41'$ S, and transits at 19.46. On the 14th the planet reaches a stationary point and begins to move eastward amongst the stars again. It is still of magnitude —2.2 and is a fine object for observation. For the configuration of its satellites, see opp. page; for their eclipses, etc., see page 53.

Saturn on the 15th is in R.A. 15h 30m, Decl. 17° 1' S, and transits at 13.57. During this month the sun moves along towards the planet, and renders it more difficult to observe as an evening star. The planet sets at about 18.40 in azimuth 25° south of west.

Uranus on the 15th is in R.A. 23h 49m, Decl. 2° 6' S, and transits at 22,14.

Neptune on the 15th is in R.A. 9h 55m, Decl. 13° 7' N, and transits at 8.23. For further information regarding the planets, with maps of their paths, see pages 22 to 26.

OCTOBER ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)	Algol	Configurations	of Jupiter's Satellites at 21h 15m
	h	m	
Thur. 0			10234
Fri. 1		10	20134
Sat. 2 16h $41 \text{ m} \circ \Psi \oplus 3^{\circ} 10' \text{ S}$			1034*
Sun. 3			dO124
Mon. $4 15h \notin in \%$	12	00	
Tues. 5 12h 5m $o' \not\subseteq (, $			32104
Wed. 6 17h 13m N.M			34012
Thur. 7 7h ♀ Greatest Hel. Lat. N.; 16h 54m ♂♀ ℂ, ♀	0		41.000
5° 36′ S Fri. 8		50	41023
			42013
Sat. 9 Sun. 10 0h 17m♂b (, b 1° 51' S		40	4103*
Mon. 11		40	4O312 43210
Tues. 12			43210 d4320
Wed. 13		20	43012
Thur. 14 4h 24 Stationary; 9h 28m Moon F.Q.; 21h \$\$ in		30	45012
Aphelion			1032*
Fri. 15		20	20143
Sat. 16 6h $29m\sigma' 24 \mathbb{C}$, $24 1^{\circ} 58' N$		20	12034
Sun. 17			03124
Mon. 18 20h 22m♂ Ĉ €, Ĉ 4° 25′ N	20	00	
Tues. 19		00	d32O4
Wed. 20			3024*
Thur. 21 0h 15m F.M	16	50	
Fri. 22 5h 18m ♂♂ @, ♂ 2° 43′ N			20413
Sat. 23			412O3
Sun. 24	13	40	40312
Mon. 25			d4310
Tues. 26			43201
Wed. 27 0h \circ nearest \oplus , 42,624,200 miles	10	30	43O2*
			4102*
Fri. 29			42013
Sat. 30 0h 42m ♂ Ψ ℂ , Ψ 3° 26' S	7	20	412O3
Sun. 31			

THE SKY FOR NOVEMBER, 1926

The times of transit are given in Local Mean Time. To change to Standard Time, see p. 9.

The Sun.—During November the sun's R.A. increases from 14h 22m to 16h 25m, and its Decl. changes from 14° 7′ S to 21° 39′ S. On the 23rd the sun enters Sagittarius, the third autumnal sign of the zodiac. The equation of time on the 4th rises to a maximum of 16m 22s, to be subtracted from apparent time—that is, the sun dial is that amount ahead of the mean time clock (see page 7). For the changes in the length of daylight, see page 20.

The Moon.—For its phases and conjunctions with the planets, see opp. page. On the 1st it occults a star in Virgo, and on the 22nd two in Gemini (see p. 8).

Mercury on the 15th is in R.A. 16h 38m, Decl. 24° 19' S, and transits at 13.02. On the 4th it reaches greatest elongation 23° 22' east, but on account of its low declination its altitude at sunset is only about 8° , in the south-west, and hence it is not in good position for observation.

Venus on the 15th is in R.A. 15h 16m, Decl. 17° 25' S, and transits at 11.39. It is now too close to be well observed, and on the 21st it reaches superior conjunction with the sun. After this it is an evening star, but it will be some weeks before it will be in a position suitable for observations.

Mars on the 15th is in R.A. 2h 22m, Decl. 13° 57' N, and transits at 22.44. The planet is now separating from the earth, and on the 15th its distance is 45,530,000 mls. with stellar magnitude -1.9. It is in opposition to the sun on the 4th (see opp. page) and is visible all night.

Jupiter on the 15th is in R.A. 21h 27m, Decl. 16° 7' S, and transits at 17.51. On the 11th it is in quadrature with the sun (see opp. page). Stellar magnitude -2.0 and a fine evening star. For the configuration of its satellites, see opposite page; for their eclipses, etc., see page 53.

Saturn on the 15th is in R.A. 15h 44m, Decl. 17° 54' S, and transits at 12.09. On the 21st the planet is in conjunction with the sun (see opp. page), after which it becomes a morning star. During the entire month it will be too near the sun for observation.

Uranus on the 15th is in R.A. 23h 45m, Decl. 2° 25' S, and transits at 20.09.

Neptune on the 15th is in R.A. 9h 57m, Decl. 12° 57' N, and transits at 6.23.

For further information regarding the planets, with maps of their paths, see pages 22 to 26.

NOVEMBER ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)	RONOMICAL PHENOMENA	
	h m	
Sun. 0 Mon. 1 Tues. 2 Wed. 3 Thur. 4 $4h_{\mathcal{O}}^{\circ} \overline{\mathcal{O}}^{\circ}$; 6h ξ Greatest Hel. Lat. S.; 22h 34m	4 10	O4132 13O24 32O14 31O4*
ơ♀ €,♀ 3° 41′ S.; 23h ♀ Greatest Elong. E.		
23° 22′ @ Fri. 5 9h 34m N.M	1 00	d3O24 2O34*
Sat. 6 12h 20m♂b @,b 1° 35' S Sun. 7 6h 54m♂g @,g 5° 34' S Mon. 8	21 50	21O34 O1234 13O42
Mon. 8 Tues. 9 Wed. 10	18 40	32401
Thur. 11 14h □20 Fri. 12 14h 55m ♂24 €, 24 2° 23' N.; 18h 2m Moon F.Q		43012 4203*
Sat. 13 Sun. 14	15 20	40123
Mon. 15 3h 19m ♂ ③ ④ , ③ 4° 35′ N.; 14h ♀ Stationary Tues. 16 Wed. 17 23h ♂ in Ω; 23h 44m ♂ ♂ ④ , ♂ 4° 50 N	12 10	d41O2 324O1 312O*
Wed. 17 25h8 m_{66} ; 25h 44m88 (4,0 4 50 N Thur. 18 \mathfrak{G} Fri. 19 11h 21m F.M.; 20h $\Box \Psi \odot$	9 00	30124 21034
Sat. 20 Sun. 21 7h σ ♀⊙ Superior; 13h σ ♭⊙; 18h σ ¹ ♀♭, ♀ 1° 28' S		d2O34 O1234
Mon. 22 Tues. 23 6h ξ in Ω		10324 32014
Wed. 24 Thur. 25 $9h \checkmark \emptyset \ Q, \emptyset \ 0^{\circ} 27' \text{ N.}; \ 19h \checkmark \emptyset \bigcirc \overline{\mathbb{G}}$ Fri. 26 $9h \ 1m \checkmark \Psi \ Q, \Psi \ 3^{\circ} 40' \text{ S.}$		312O4 d3O12 d41O*
 € Sat. 27 2h 15m Moon L.Q.; 21h ġ in Perihelion Sun. 28 9h	23 30	d42O3 4O23*
Mon. 29 Tues. 30 2h Ψ Stationary		41032

THE SKY IN DECEMBER, 1926

The times of transit are given in Local Mean Time. To change to Standard Time, see p. 9.

The Sun.—During December the sun's R.A. increases from 16h 25m to 18h 42m, and its Decl. reaches a maximum value $23^{\circ} 27'$ S on the 22nd. This is the time of the winter solstice and the sun enters the first of the winter signs of the zodiac, Capricornus. It is then vertical to points on the tropic of Capricorn on the earth. From this time it slowly moves northward, the daylight period being the shortest and changing very little for several days before and after the solstice (see p. 21). The equation of time changes from 11m 17s. Watch slow to 3m 75 watch fast (see page 7).

The Moon.—For its phases and conjunctions with the planets, see opp. page. Mercury on the 15th is in R.A. 15h 58m, Decl. 18° 18' S, and transits at 10.27.
It attains greatest elongation west, 21° 13', on the 13th, and is in fair position to be observed as a morning star. At sunrise it is near the south-east point and is about 17° above the horizon. For several days it should be visible and then it draws in towards the sun.

Venus on the 15th is in R.A. 17h 55m, Decl. 23° 58' S, and transits at 12.21. It is a morning star, but too close to the sun for observation.

Mars on the 15th is in R.A. 2h 9m, Decl. 14° 11' N, and transits at 20.34. On this date the planet's distance from the earth is 60,920,000 mls. and its stellar magnitude is -0.9. It is still well placed for observation and will continue to be for some months.

Jupiter on the 15th is in R.A. 21h 43m, Decl. 14° 44' S, and transits at 16.09. Its stellar magnitude is -1.7, and it can still be observed 2 hours or more after sunset. At the beginning of the year the planet was just entering Capricornus; at the end it is just leaving this constellation. For the configuration of its satellites, see opp. page; for their eclipses, etc., see page 53.

Saturn on the 15th is in R.A. 15h 59m, Decl. 18° 39' S, and transits at 10.26. During the first part of the month the planet is too near the sun for observation. On the 31st it rises about 3 hrs. before the sun and can be well seen as a morning star. Its low declination renders its altitude not very great at any time.

Uranus on the 15th is in R.A. 23h 44m, Decl. 2° 27' S, and transits at 18.10.

Neptune on the 15th is in R.A. 9h 57m, Decl. 12° 57' N, and transits at 4.25. For further information regarding the planets, with maps of their paths, see pages 22 to 26.

DECEMBER	of	ons	r's at
ASTRONOMICAL PHENOMENA	Minima of Algol	rati	of Jupiter's Satellites at 19h 0m
ASTRONOMICAL THENOMENA	.in I	igu	Jul [9h
(75th Meridian Civil Time)	Ν	Configurations	Sa
	h	m	
Tues. 0 2h Ψ Stationary	. 20	20	43201
Wed. 1			43120
Thur. 2 8h \bigcirc in \circlearrowright			43012
Fri. 3 17h 34m♂⊉ €, ⊉ 0° 56′ S		10	14O2*
Sat. 4 2h 18m ♂ b €, b 1° 22′ S			20143
● Sun. 5 1h 12m N.M.; 5 h♀ Stationary, 7h 30m ♂ ♀ ④, ♀			
2° 3′ S.; 17h 👌 Stationary			O34**
Mon. 6	. 14	00	10324
Tues. 7 19h σ Stationary			32014
Wed. 8 3h & Greatest Hel. Lat. N			32104
Thur. 9	. 10	50	30124
Fri. 10 2h 4m of 24 C , 24 2° 51' N			13024
Sat. 11			20143
🕽 Sun. 12 1h 47m Moon F.Q.; 8h 48m 🗸 🗟 🕻 , 🖏 4° 45' N	. 7	30	4103*
Mon. 13 19h & Greatest Elong. W., 21° 13'			d4O32
Tues. 14 $23h \sigma \notin 24, \notin 0^{\circ} 18' \text{ N}$			43201
Wed. 15 3h 17m♂♂ €, ♂ 6° 12′ N	. 4	20	43210
Thur. 16			43012
Fri. 17			41302
Sat. 18 1h □ô⊙	. 1	10	42013
@Sun. 19 1h 9m F.M			412O3
Mon. 20	. 22	00	40123
Tues. 21			d3O4*
Wed. 22 9h 34m⊙ enters ♂, Winter commences			32104
Thur. 23 17h $11 \text{ mov} \Psi \oplus 3^\circ 44' \text{ S}$		50	30214
Fri. 24		••	31024
Sat. 25			20134
C Sun. 26 23h 59m Moon L. O		40	
Mon. 27		10	01234
Tues. 28			d1024
Wed. 29		30	
Thur. 30			34021
Fri. 31 14h \notin in \Im ; 17h 27m \checkmark b \mathbb{C} , b 1° 9′ S			43102
Sat. 32			42031

PHENOMENA OF JUPITER'S SATELLITES, 1926

E-Eclipse, O-occultation, T-transit, S-shadow, D-disappearance, R-reappearance I-ingress, e-egress. The Roman numerals denote the satellites. 75th Meridian Civil Time.

	FEBRUARY									JUL	Y			
	d h 26 6	m Sa 1 I	it. Pl	nen. TI		d 3	h 1 2	m 34	Sat. III	Phen. d TE	h 3	42	I	Phen. TI
		MARC	H			4	23 0 1	$2 \\ 13 \\ 10 \\ 30 \\ 20 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 3$	I I I I	ED 19 SI TI Se	$3 \\ 21 \\ 22$	19 18 29 8	I I I I	ED OR SI TI
d 10 23 24	h m S 5 46 II 4 55 II 4 56 I		$ \begin{array}{ccc} h & n \\ 5 & 30 \\ 4 & 47 \\ 4 & 39 \end{array} $	n Sat I IV II	. Phen. Te ED SI	67	$2\\3\\23\\2\\1$	27 35 46 58 56	I I I I I V	Te SI 20 OR OR OD	23 0 3 21 22	46 25 24 44 22	I I II I III	Se Te ED OR OR
		APRI				10	1 1 3 1	31 39 56 7		TI 21 Se ED 22 SI	22 23	27 41 21 34		SI TI Se Te
1 2 4 10 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TI OR I ED 24 Te	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	I II I I II II	TI Te Se SI TI Se	11	$1\\3\\4\\22\\1\\22$	$56 \\ 24 \\ 13 \\ 25 \\ 33 \\ 39$	I I I I I I I	TI 23 Se 26 Te ED OR 27 Te	$21 \\ 23 \\ 23 \\ 23$	35 14 23 52 40 9	IV I I I I I I I	OR ED SI TI Se Te
	- 10 11	MAY				$ \begin{array}{c} 13 \\ 14 \\ 15 \end{array} $	0 22 0 3	$49 \\ 44 \\ 16 \\ 3$	II II II IV	ED Se 28 Te 29 SI	23 1 1 1	29 42 3 57	I III II II	OR OR SI TI
1 2 3	4 24 II 3 24 I 2 57 I 4 15 I	ED Se	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	II II I III	TI Se Te Te	$ \frac{17}{18} =$	2 3	1 0	III I	SI SI 30 31		57 57 13	II II IV	Se OR SI
9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c} 3 & 34 \\ 1 & 24 \\ 1 & 33 \end{array} $	I IV II	ED Se SI	-	0	49	T 1 7	AUGU	$\frac{ST}{22}$	27		Te
11 17 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I ER TI OR I ED 27	$ \begin{array}{ccc} 2 & 8 \\ 3 & 6 \\ 4 & 17 \\ 1 & 43 \end{array} $	I I I I II III III	TI Se TI OR OR Se TI	1 2 3	$ \begin{array}{c} 0 \\ 2 \\ 4 \\ 1 \\ 3 \\ 22 \end{array} $	49 6 8 17 36 34 53 37	IV IV I I I I I I I	ED 17 SI TI 18 Se Te 18 ED 19	$ \begin{array}{c} 22 \\ 19 \\ 20 \\ 22 \\ 23 \\ 23 \\ 23 \end{array} $	27 28 42 17 23 29 34 47	II IV IV I I I I I	Se Se Se OD TI SI Te
		JUNE	6			4	$0\\1\\22\\22$	$ \begin{array}{c} 13 \\ 13 \\ \overline{3} \\ 19 \end{array} $	III I I I	ED OR Se Te 20	$ \begin{array}{c} 1 \\ 20 \\ 23 \\ 20 \end{array} $	$52 \\ 49 \\ 13 \\ 12$	I I I I	Se OD ER Te
2 3 4 8 10 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OR Te I SI OR 22 I OR ED 25 TI ED 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	II I II II IV III III I I I I I	ED OR TI Se ER ED ER SI TI ED	5 6 7 8 10 11	$ \begin{array}{r} 3 \\ 4 \\ 21 \\ 1 \\ 20 \\ 3 \\ 0 \\ 2 \\ 4 \\ 21 \end{array} $	$\begin{array}{r} 40\\ 12\\ 52\\ 11\\ 13\\ 11\\ 20\\ 32\\ 57\\ 13\\ 40\\ \end{array}$	II II II II II I I I I I I I I I I I I	SI TI 21 ED OR Te 22 SI TI ED OR 23 ED SI 25	$ \begin{array}{r} 20 \\ 2 \\ 21 \\ 22 \\ 0 \\ 1 \\ 21 \\ 22 \\ 0 \\ 1 \\ 4 \end{array} $	$ \begin{array}{r} 21 \\ 46 \\ 23 \\ 2 \\ 58 \\ 39 \\ 49 \\ 11 \\ 42 \\ 5 \\ 6 \\ \hline 6 $	I III III III III III II II II II II II	Se OD TI SI Te Se TI SI Te Se OD
12 13 14 15 17 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Te I ER	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I I II II IV II III	OR Se Te SI TI Se OR ED	12 14 15	$21 \\ 23 \\ 0 \\ 21 \\ 0 \\ 3 \\ 21 \\ 21 \\ 19 \\ 19 \\ 19$	$ \begin{array}{r} 46 \\ 57 \\ 23 \\ 27 \\ 25 \\ 38 \\ 41 \\ 34 \\ 35 \\ \end{array} $	I I I II III III III III III	TI Se 26 Te OR ED OR Se 27 Te TI SI	$1\\ 3\\ 3\\ 22$	$23 \\ 13 \\ 29 \\ 30 \\ 47 \\ 33 \\ 8 \\ 39 \\ 58 \\ 56$	IV I I I I I I I I	OD TI SI Te OD ER TI SI Te

				6	DI	1			C	D1
AUGUST—Continued	d 16	h 21	m 31	II	.Phen. O D	d	h 23	m 4	III	.Phen. O D
d h m Sat. Phen. d h m Sat. Phen.	18	19 19	4 28	II II	SI Te	5 8	20 18	20 21	I III	E R SI
22 15 I Se 0 48 II SI 28 19 37 I ER 2 57 II Te		21	54	11	Se	0	$\overline{21}$	46	ĪV	ΤĪ
29 0 41 III TI 3 41 II Se 2 4 III SI 31 21 51 II ER	19	23 21	59 8	I I	O D TI	10	21 18	$\frac{51}{31}$	III II	Se OD
30 0 4 II TI	19	22	23	I	ŝÎ	11	21	19	I	TI
	20	$\frac{23}{18}$	$\frac{25}{27}$	I	Te OD	12	$\frac{22}{18}$	$\frac{39}{38}$	I I	SI OD
SEPTEMBER		22	0 53	Ī	ĔR TE		$\frac{19}{22}$	$0 \\ 15$	II I	Se ER
19 1 53 III ER 22 12 II Se	21	$17 \\ 18$	54	ĪII	OR	13	18	5	I	Te
2 2 57 I TI 18 0 55 I TI		$\frac{19}{20}$	8 26	I III	Se ED	15	$\frac{19}{20}$	$\frac{25}{32}$	I III	Se Te
3 24 I SI 1 43 I SI 3 0 17 I OD 22 15 I OD	22	0	-0	III	ĒR		22	23	III	SI
3 3 I ER 19 1 22 I ER	23	$\frac{21}{19}$	77	IV II	Se T I	17	$\frac{18}{21}$	$\frac{53}{10}$	IV II	ED OD
21 53 I SI 19 53 IV TI			$\frac{140}{58}$	II II	SI Te	19	$\frac{18}{19}$	$\frac{47}{1}$	II II	SI Te
23 41 I Te 20 12 I SI 4 0 10 I Se 21 39 I Te	26	23	1	I	TI		20	$3\overline{4}$	Ī	OD
21 32 I ER 22 29 I Se	27	$\frac{18}{20}$	$\frac{52}{20}$	II	ER OD	20	$\frac{21}{17}$	$\frac{36}{45}$	I I I	Se T I
6 2 20 II TI 20 0 41 IV Te 7 20 25 II OD 19 50 I ER	28	18	48	I	SI		19 20	42	Ī	SI Te
8 0 28 II ER 22 1 2 II OD 8 23 54 III ER 23 0 43 III OD		$\frac{19}{19}$	$\frac{8}{46}$	III I	OD Te		21	21	Ī	Se
9 19 36 II SE 20 8 II TI		$\frac{21}{22}$	$\frac{4}{46}$	I III	Se OR	$\frac{21}{22}$	$\frac{18}{21}$	$\frac{39}{3}$	I III	ER TI
10 2 2 I OD 21 56 II SI 23 9 I TI 23 0 II Te	29	18	24	I	ĒR	25	21	12	IV	Te
23 48 I SI 24 0 48 II Se	1	N 17	OV1 50	EMB III	ER Se	26	18 20	$\frac{49}{7}$	II III	TI ER
2 5 I Se 26 0 2 I OD	-	21	40	II	ΤI		$\frac{21}{21}$	$\frac{23}{40}$	II II	SI Te
20 29 I OD 21 10 I TI 22 48 IV ER 21 43 III Se	3	$\frac{21}{22}$	$\frac{30}{14}$	II I	ER OD	27	$\overline{19}$	43	Ī	ΤI
23 27 I ER 22 7 I SI	4	$\frac{19}{20}$	$\frac{1}{24}$	I	TI SI	28	$\frac{21}{18}$	$0 \\ 45$	II	SI ER
19 53 I Te 23 27 I Te 20 34 I Se 27 0 24 I Se		21	41	١ I	Te	29	20	34	Ĩ	ER
14 22 43 II OD 18 29 I OD 15 21 15 III OD 21 46 I ER	=	23	0	I	Se	29	17	46	1	Se
16 19 20 II SI 28 18 53 I Se				т	DECE	۱ /۲ I	2121	.		
20 40 II Te 30 22 30 II TI				1	JECE	IVI I	3EI	X		
OCTOBER	3	$\frac{19}{20}$	$\frac{7}{37}$		OR ED	20	$\frac{18}{20}$	$\frac{53}{11}$	I I	ER TI
	.	21	30	II	TI		17	26	I	OD
1 22 II Te 9 19 2 II OD	45		$\frac{45}{58}$	IV I	ER OD		$17 \\ 18$	$\frac{42}{28}$	III II	Te SI
2 21 38 II ER 10 0 16 II ER 3 21 25 III Te 21 29 III TI	6	21	$\frac{24}{25}$	II I	ER SI		$\frac{18}{19}$	$\frac{35}{10}$	III II	SI Te
22 10 III SI 11 19 18 II Se	⁶	18	28	I	Те	22	18	3	1	Se
22 59 I TI 22 8 I OD 4 0 3 I SI 12 19 17 I TI	10	$\frac{19}{19}$	$\frac{42}{45}$	I III	Se OD	28	$\frac{18}{19}$	$^{29}_{5}$	III II	TI TI
1 16 I Te 20 27 I SI		18	43	II	OD	0	19	27	I.	OD
20 18 I OD 21 33 I Te 23 41 I ER 22 44 I Se	13	$\frac{20}{18}$	$\frac{57}{11}$	I I	OD TI	29	$\frac{17}{17}$	$\frac{32}{42}$	IV I	SI SI
5 18 31 I SI 13 20 5 I ER 19 43 I Te 14 19 7 IV OD	-	$19 \\ 20$	$\frac{21}{28}$	I	SI Te		$18 \\ 19$	$\frac{59}{59}$	Ī	Te Se
20 48 I Se 19 59 III ER	14	18	1	III	Se	30	19	$\frac{59}{39}$	1 11	ER
6 22 8 IV SI 23 55 IV OR		18	41	II	Se					

Jupiter's Satellites.—During the last four months of the year the configurations are given for the day 0. The times given in the N.A. make this necessary. The configurations for Sept. 30, Oct. 31, and Nov. 30 are given for Oct. 0, Nov. 0, and Dec. 0. This should cause no confusion to the thinking reader of the HANDBOOK. The configuration for the date Dec. 31, which was not given in the 1926 or 1927 N.A. was found by a graphical method.

METEORS AND SHOOTING STARS

On almost any clear night any one observing the sky for a few minutes will see one or more shooting stars. They are particularly numerous during the autumn months and on account of the rotation of the earth are better seen during the early morning hours than in the evening.

At certain times there are striking displays, located in particular portions of the sky. These are considered to be due to *meteor swarms*. The principal ones are given in the following table.

Name of Shower	Duration	Greatest Display		adiant A.	Poin De	
<u> </u>			h	m		ð
Quadrantids	Dec. 28-Jan. 9	Jan. 3	15	20	+	53
Aurigids	Feb. 7-23	Feb. 10	5	0	+	4 I
Lyrids	April 16-22	April 21	18	4	+	33
η Aquarids	April 29-May 8	May 4-6	22	32		2
Herculids	May 13-29	May 24	16	36	+	30
Scorpiids	May-June-July	June 4	16	48	_	21
Sagittids	June-July	July 28	20	12	+	24
Capricornids	July-Aug.	July 22	20	20	-	12
ð Áquarids	July 18-Aug. 12	July 28-31	22	36	- 1	II
α β Perseids	July-AugSept.	Aug. 16	3	12	+	43
Perseids	July 8-Aug. 25	Aug. 11-12	3	4	+	57
Draconis	Aug. 18-25	Aug. 23	19	24	+	61
e Perseids	AugSept.	Sept. 15	4	8	+	35
Arietids	(AugSept. Oct.	Sept. 21	2	4	+	19
Anenus	SeptOct.	Oct. 15	2	4	+	9
Orionids	Oct. 9-29	Oct. 19	6	8	+	15
μ Ursids Maj.	OctNovDec.	Nov. 16-25	10	16	+	41
Taurids	November	Nov. 21	4	12	+	23
Leonids	Nov. 9 20	Nov. 14-15	10	0	+	23
Andromedes	Nov. 20-30	Nov. 20 23	I	40	+	43
Geminids	Dec. 1-14	Dec. IT	7	12	+	33

Of these the chief ones are the Perseids, the Leonids and the Andromedes.

The Perseids furnish an annual display of considerable strength, and are perhaps the best known of all. The swarm appears to have an orbit identical with that of the great Comet 1862 III., the period of which is 120 years.

The Leonids follow in the orbit of Tempel's Comet of 1866, of period 33 years.

The Andromedes are thought to be remnants of Biela's Comet. They were especially numerous in 1872, 1885, 1898, but in recent years have not been so prominent.

The above table was prepared for the HANDBOOK by Mr. W. F. Denning, F.R.A.S., of Bristol, England; and for further interesting information regarding this subject (and almost any other subject in which the amateur is interested) reference may be made to his *Telescopic Work for Starlight Evenings*.

	Mean Dista from Sun	Mean Distance from Sun	Sidereal Period	Period	Mean Diame-	Mass	Density Volume	Volume	Axial
Name	⊕ = 1	Millions of Miles	Mean Solar Days	Years	ter Miles	⊕ =1	Water =1	⊕ = 1	Rotation
ğ Mercury	0.387	36.0	87.97	0.24	3009	0.0556	4.7(?)	0.055	88d
Q Venus	0.723	67.2	224.70	0.62	7575	0.817	4.94	0.88	225d
⊕ Earth	1.000	92.9	365.26	1.00	7917.8	1.000	5.55	1.000	23h 56m 4s
o ⁷ Mars	1.524	141.5	686.97	1.88	4216	0.108	3.92	0.151	24h 37m 23s
24 Jupiter	5.203	483.3	4332.58	11.86	86728	318.4	1.32	1314	9h 55m ±
þ Saturn	9.539	886.1	10759.2	29.46	72430	95.2	0.72	765	10h 14m ±
O Uranus	19.191	1782.8	30685.9	84.02	30878	14.6	1.22	59	10h 45m ±
₩ Neptune	30.071	2793.4	60187.6	164.79	32932	16.9	1.11	72	<i>~</i> .
• Sun		:	:	:	864392	333400	1.39	1301100	25d 7h 48m ⊥
C Moon.	From 	From $\oplus 238,857$ mls.	27.32	0.075	2160	0.0123	3.39	0.020	27d 7h 43m 11.5s

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

SATELLITES OF THE SOLAR SYSTEM

Name	STRLLAR MAGNITUDE.	Mean Distance in Miles		PEI	REA RIOI m.		Discoverer	Dati	
			IE	EA	RJ	H			
The Moon	••	238,840	27	7	43	11	1		
			M	AR	s				
1. Phobos 2. Deimos	14 13	$5,850 \\ 14,650$	1	7 6	39 17	15 54	Asaph Hall Asaph Hall	Aug. 17, Aug. 11,	1877 1877
			UP:			1			
5. (Nameless).	13	ر 112,500	UF.		57	23	Downard	Sent 0	1000
1. Io	$6\frac{15}{6\frac{1}{2}}$	261,000	1		27		Barnard Galileo	Jan. 7.	1892 1610
2. Europa	$6\frac{1}{2}$	415,000			13		Galileo	Jan. 8,	1610
3. Ganymede . 4. Callisto	6 7	664,000 1,167,000	7 16			33 11	Galileo Galileo		1610 1610
6. (Nameless).	14	7,372,000			00 d		Perrine		1904
7. (Nameless).	16	7,567,900	2		67 o		Perrine		1905
8. (Nameless). 9. (Nameless).	17 19	15,600,000 18,900,000) d. ears		Melotte Nicholson		1908 1914
9. (11ameress).	17		SA'	•				oury	1)13
1. Mimas	15	117,000		22		6	W. Herschel	July 18,	1780
2. Enceladus.	14	157,000	1	8	53	7	W. Herschel	Aug. 29,	1789
3. Tethys	11	186,000		21 17	18		J. D. Cassini	Mar. 21,	1684
4. Dione 5. Rhea	11 10	$238,000 \\ 332,000$			41 25	$\frac{9}{12}$	J. D. Cassini J. D. Cassini	Mar. 21, Dec. 23,	
6. Titan	9	771,000	15^{-1}	22	41	23	Huygens	Mar. 25,	1655
7. Hyperion	16	934,000	21		39		G. P. Bond	Sept. 16,	1848
8. Iapetus 9. Phoebe	$\frac{11}{17}$	2,225,000 8,000,000	79		54 5.5		J. D. Cassini W.H.Pickering	Oct. 25, 1898	
10. Themis	17		20			0	W.H.Pickering	1905	
			UR.	AN	US				
1. Ariel	15	120,000	2	12	29	21	Lassell	Oct. 24,	1851
2. Umbriel	16	167,000	4			37		Oct 24,	
3. Titania 4. Oberon	13 14	273,000 365,000	13		56 7	29 6	W. Herschel W. Herschel	Jan 11, Jan. 11,	1787 1787
		Ň	IEP	TU	NE				
1. (Nameless).	13	221,500	5	21	2	44	Lassell	Oct. 10,	1846

DOUBLE STARS

Close scrutiny of the sky reveals the fact that many of the stars are composed of two or more components, that is, they are *double* or *multiple* stars. Over 15,000 such objects have been discovered.

A star may appear double in two ways. First, one may just happen to be nearly in line with the other as seen from the earth. Second, the two bodies may be physically connected, each revolving about their common centre of gravity. The former are called *optical doubles*, the latter *binary stars*. In the course of time the binaries exhibit a change in the distance between the components and also in the direction of the line joining them, that is, in the position angle.

While the close pairs require a large instrument for their detection, there are many within the range of small instruments. Such observations also allow one to determine the quality of the instrument employed. It has been found that a telescope having an objective 1 inch in diameter should be able to distinguish two stars 4''.56 apart, and the resolving power is inversely proportional to the diameter of the objective. Thus a telescope of 3-inch aperture should separate stars 1/3 of 4''.56, or 1''.52 apart; for one of aperture 10 inches, stars 1/10 of 4''.56, or 0''.45 apart should be seen separate; and so on. With the Yerkes refractor, of aperture 40 inches, a double star with distance 0''.11 can be detected.

In choosing a double star for testing a telescope care should be taken not to select a binary, with varying distance between its components.

The stars in the following short lists can be identified from almost any star atlas, and observation of them will prove of great interest to the amateur.

Star	Mags.	Dist.	Star	Mags.	Dist.
$\begin{array}{c} \text{Mizar}\\ \text{Castor}\\ \gamma \text{ Virginis .}\\ \gamma \text{ Arietis}\\ \zeta \text{ Aquarii} \end{array}$	2.4, 4.0 2.5, 3.0 3.0, 3.2 4.2, 4.5 3.5, 4.4	$14.5 \\ 5.6 \\ 5.0 \\ 8.9 \\ 3.5$	$\begin{array}{c} \gamma \text{ Leonis} \\ \beta \text{ Scorpii} \\ \theta \text{ Serpentis.} \\ 44i \text{ Boötis} \\ \pi \text{ Boötis} \end{array}$	$\begin{array}{c} 2.5, 4.0\\ 2.5, 5.5\\ 4.4, 6.0\\ 5.0, 6.0\\ 4.3, 6.0 \end{array}$	$3.0 \\ 13.0 \\ 21.0 \\ 4.8 \\ 6.0$

I. THE MOST LUMINOUS PAIRS

Star	Magnitudes	Distance	Colors
γ Andromedæ		10	Orange, Green.
a CanumVenat.	3.2, 5.7	20	Golden, Lilac.
β Cygni	3.3, 5.5	34	Golden, Sapphire.
ε Boötis	2.4, 6.5	2.9	Golden, Sapphire.
95 Herculis	5.5, 5.8	6	Golden, Azure.
a Herculis	4, 5.5	4.7	Ruby, Emerald.
γ Delphini	3.4, 5	11	Golden, Bluish Green.
32 Eridani	4.7, 7	6.7	Topaz, Bright Green.
ε Hydræ	3.5, 7.5	3.5	Yellow, Blue.
ζ Lyræ	4.5, 5.5	44	Yellow, Green.
<i>i</i> Cancri	4.5, 5	30	Pale Orange, Blue.
o Cygni	4.3, 7.5, 5.5	337.8,106.8	Yellow, Blue.
24 Coma Beren.	5.6, 7	21	Orange, Lilac.
• Cephei	5.4, 8	2.5	Golden, Azure.
94 Aquarii	5.5, 7.5	11	Rose, Greenish.
39 Ophiuchi	5.7, 7.5	12	Yellow, Blue.
41 Aquarii	5.8, 8.5	4.8	Yellow Topaz, Blue.
2 Canum Venat	6, 9	11	Golden, Azure
52 Cygni	4.6, 9	7	Orange, Blue.
55 Piscium	6, 9	6	Orange, Blue.
κ Geminorum	3.8, 9	9	Grange, Blue.
ρ Orionis	5.1, 9	6.8	Orange, Blue.
54 Hydræ	5.2, 8	9	Yellow, Violet.
η Persei	4.2, 8.5	28	Yellow, Blue.
Ø Draconis	4.8, 6	31	Yellow, Lilac.
• Draconis	4.7, 8.5	32	Golden, Lilac.
η Cassiopeiæ	4.7,7	5.7	Golden, Purple.
23 Orionis	5.4, 7	32	White, Blue.
δ Herculis	3.6, 8	18	White, Violet.
• Capricorni	6.3, 7	22	Bluish.
17 Virginis	6.5, 7	20	Rose.
۶ Boötis	4.5, 6.5	4.2	Reddish Yellow.

II, THE FINEST COLORED PAIRS

The colors given above are according to Flammarion. For slight variations and also for a much longer list consult Webb's "Celestial Objects."

VARIABLE STARS

The study of variable stars is especially suited to amateur observers. In it they can make observations of permanent scientific value, since all the brighter and more interesting objects are within the range of modest instruments. An ordinary field glass or a small telescope is all that is required.

In recent years there has been organized the American Association of Variable Star Observers, with a working membership of about 70, and reports of observations are published monthly in *Popular Astronomy*. The recording secretary is Leon Campbell, Harvard Observatory, Cambridge, Mass., and additional observers are desired.

The novae or "new" stars comprise one class of variables, and all the recent brighter objects of this sort have been discovered by amateurs. The longperiod variable Omicron Ceti, or *Mira*, was discovered by Fabricius in 1596, while Algol, the best-known variable of short-period, was discovered by Goodricke, a deaf mute, in 1783.

Several attempts have been made to classify the variable stars; but a scientific system of classification, in harmony with the chief deductions of theory as well as the facts of observation, is still wanting. The best known system is that formulated by Professor E. C. Pickering in 1880, and reproduced (with slight additions) in his "Provisional Catalogue of Variable Stars" (1903). This includes five classes, two of which are subdivided, as follows:—

	EXAMPLES
I. New or temporary stars	Nova, 1572
II. Variables of long period:	
a. Ordinary stars of this class	Ceti
b. Stars subject to "occasional sudden and irregular out-	
bursts of light which gradually diminishes"	
III. "Variables of small range or irregular variation, according	
to laws as yet unknown"a	Orionis
IV. Variables of short period:	
a. "Ordinary" cases $\ldots \delta$	Cephei
b. Stars with "minima successively bright and faint" β	Lyræ
V. Stars of the Algol type eta	Persei

Name	Limiting Mags.	Period)	CLASS	Discoverer
NAME o Ceti o Ceti ρ Persei $for ersei$ (Algol) β Persei (Algol) λ Tauri W Eridani RW Tauri RW Tauri R Leporis	$\begin{array}{c} \text{Mags.} \\ \hline \\ 7.0-9.2 \\ 1.7-9.5 \\ 3.4-4.2 \\ 8.6-9.1 \\ 2.1-3.2 \\ 3.3-4.2 \\ 8.1-<12.5 \\ 8-11 \\ 6-8? \\ 1-1.4 \\ 5.8-12.3 \\ 3.2-4.2 \\ 5.7-6.8 \\ 3.8-4.3 \\ 6.6-13.3 \\ 5.7-6.3 \\ 8.0-10.2 \\ 6.3-6.8 \\ 7.9-8.6 \\ 4.6-10.5 \\ 3.5-9.7 \\ 5.0-6.2 \\ 3.1-3.9 \\ 6.0-6.7 \\ 4.4-5.4 \\ 4.8-7.8 \\ 3.4-4.1 \\ 4.5-13.5 \\ 3.7-4.5 \\ 5.5-6.1 \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m. 49.6 48.9 52.2 27.2 27.2 41.5 15.8 37.8 46.8 0.2 51.4 7.7 17.1 59.2 14.0 11.8	V. II. V. V. V. II. V. II. V. II. V. II. V. V. II. V. V. II. IV. IV	DISCOVERER W. Ceraski. 1880 Fabricius. 1596 Schmidt. 1854 Blajko. 1904 Montanari. 1669 Baxendell. 1848 Fleming. 1898 Fleming. 1895 J. Herschel. 1840 Gore. 1885 Schmidt. 1865 Gould. 1871 Schmidt. 1848 Sawyer. 1887 Mind. 1848 Paul. 1888 Müller & Kempf. 1903 Koch. 1782 Montanari 1670 Schmidt. 1859 W. Herschel. 1795 Gould. 1871 Schmidt. 1866 Pigott. 1795 Gould. 1795 Goodricke. 1784 Kirch. 1686 Pigott. 1784 Gore. 1784 Gore. 1784
14.1904 Cygni Y Cygni δ Cephei U Pegasi	$\begin{array}{c} 10.7 - 11.6 \\ 7.1 - 7.9 \\ 3.7 - 4.6 \\ 9.3 - 9.9 \end{array}$	$\begin{array}{ccc}1&11\\5&8\end{array}$	14.2 57.5 47.7 59.7	V. IV.	Ceraski

THE DISTANCES OF THE STARS

The measurement of the distances of the stars is one of the most important problems in astronomy. Without such information it is impossible to form any idea as to the magnitude of our universe or the distribution of the various bodies in it.

The parallax of a star is the apparent change of position in the sky which the star would exhibit chone would pass from the sun to the earth at a time when the line joining earth to sun is at right angles to the line drawn to the star; or, more accurately, it is the angle subtended by the semi-major axis of the earth's orbit when viewed perpendicularly from the star. Knowing the parallax, the distance can be deduced at once.

For many years attempts were made to measure stellar parallaxes, but without success. The angle to be measured is so exceedingly small that it was lost in the unavoidable instrumental and other errors of observation. The first satisfactory results were obtained by Bessel, who in 1838, by means of a heliometer, succeeded in determining the parallax of 61 Cygni, a 6th magnitude star with a proper motion of 5'' a year. On account of this large motion the star was thought to be comparatively near to us, and such proved to be the case. At about the same time Henderson, at the Cape of Good Hope, from meridian-circle observations, deduced the parallax of Alpha Centauri to be 0".75. For a long time this was considered to be the nearest of all the stars in the sky, but in 1913 Innes, director of the Union Observatory, Johannesburg, South Africa, discovered a small 11th mag. star, 2° 13' from Alpha Centauri, with a large proper motion, and to which, from his measurements, he assigned a parallax of 0".78. Its brightness is only 1/20,000 that of Alpha Centauri. In 1916 Barnard discovered an 11th mag. star in Ophiuchus with a proper motion of 10" per year, the greatest on record, and its parallax is about $0^{\prime\prime}.53$. It is believed to be next to Alpha Centauri in distance from us.

The distances of the stars are so enormous that a very large unit has to be chosen to express them. The one generally used is the light-year, that is, the distance travelled by light in a year, or $186,000\times60\times60\times24\times365\frac{1}{4}$ miles. A star whose parallax is 1" is distant 3.26 light years; if the parallax is 0".1, the distance is 32.6 l.-y.; if the parallax is 0".27 the distance is $3.26 \div .27 = 12$ l.-y. In other words, the distance is inversely proportional to the parallax. In recent years the word *parsec* has been introduced to express the distances of the stars. A star whose distance is 1 parsec is such that its *par*-allax is 1 *sec*-ond. Thus 1 parsec is equivalent to 3.26 l.-y., 10 parsecs = 32.6 l.-y., etc.

In later times much attention has been given to the determination of parallaxes, chiefly by means of photography, and now several hundred are known with tolerable accuracy.

values obtained.							
		R.A.	Dee	cl.	Vis. Mag.		Distance
Name	(1	.900)	(190	0)	Harvard	Parallax	Light Years
	h	m	.,	"			1.00
Prox. Cen	14	22.9	-62	15	10.5	0.78	4.08
* aCentauri	14	32.8	-60	25	0.33	.759	4.30
Barnard		52.9	+ 4	$\frac{28}{28}$	9.67	.533	6.12
Lal. 21185	10	57.9	+36	38	7.60	.403 .376	8.09 8.67
* aCan. Maj	$\begin{vmatrix} 6 \\ 11 \end{vmatrix}$	40.7	-16_{57}	$\frac{35}{2}$	-1.58	.339	9.62
Innes	11	$rac{12.0}{7.7}$	$ -57 \\ -44$	59^{2}	$\begin{array}{c} (12) \\ 8.3 \end{array}$.319	10.22
C.Z. 5h 243 τ Ceti	$\begin{vmatrix} 5\\1 \end{vmatrix}$	39.4	-16	$\frac{59}{28}$	3.65	.318	10.22
* aCan. Min	7	$39.4 \\ 34.1$	+ 5	$\frac{20}{29}$	0.48	.312	10.25
ε Erid	3	28.2	-9	48	3.81	.311	10.48
*61 Cygni		2.4	+38	15	5.57	.306	10.65
Lac. 9352	$\overline{22}$	59.4	-36	$\tilde{26}$	7.44	.292	11.16
* ∑2398	18	41.8	+59	29	9.33	.287	11.36
e Ind i	21	55.7	-57	12	4.74	.284	11.48
* Groom. 34	0	12.5	+43	27	7.98	.281	11.60
* Krüger 60	22	24.5	+57	12	9.64	. 262	12.44
Lac. 8760	21	11.4	-39	15	6.65	.251	12.99
Oe. Arg. 17415-6.	17	37.0	+68	26	9.2	.247	13.20
Van Maanen	0	43.9	+4	55	12.3	.246	13.25
Gould 32416	23	59.5	-37	51	8.5	.203	15.87
aAquilae	19	45.9	+8	36	0.89	.200	16.30
O^2 Erid	4	10.7	- 7	49	4.48	.198	16.5
*70 Oph	18	10.4	$+ 2 \\ -37$	31	4.28	.192 .191	17.0 17.1
Cordoba 32416 +HR 7703	$\begin{vmatrix} 23 \\ 20 \end{vmatrix}$	$59.5 \\ 4.6$	-37 -36	$\frac{51}{21}$	8.3 5.34	.191	17.1 17.2
 * ηCassiop 		43.0	+57	17^{21}	3.64	.190	
Alb. 8164		43.0 44.0	+1	52	8.7	.183	17.8
σ Drac		32.6	+69	29^{-10}	4.78	.182	17.9
HR 8832	23	8.5	+56	$\overline{37}$	5.65	.177	18.4
* HR 6416		11.5	-46	32	5.58	.175	18.6
* A Oph		9.2	-26	27	5.29	.174	18.7
* HR 6426	17	12.1	-34	53	5.89	.170	19.2
<i>e</i> Erid	3	15.9	-43	27	4.30	.152	21.5
* ξUrs. Maj	11	12.9	+32	6	4.41	.150	21.7
δErid	3	38.5	-10	6	3.72	.142	23.0
* aLyrae		33.6	+38	41	0.14	.134	24.3
β Hydri		20.5	-77	49	2.90	.133	24.5
aPis. Aus		52.1	-30	9	1.29	.128	25.5
χ Drac		$\frac{22.9}{37.5}$	+72	$\begin{array}{c} 41 \\ 47 \end{array}$	$3.69 \\ 3.00$	1.127 1.116	$\begin{array}{c}25.7\\28.1\end{array}$
* (Herc		$37.5 \\ 42.5$	+31 + 27	47 47	3.00	.116	28.1 28.1
* μHerc βLeonis	11	42.5 44.0	+15	- 47	2.23	.109	29.9
aBootis	14	11.1	+19	42	0.24	.105	31.1
β Virg	11	45.5	+13 + 2	$\overline{20}$	3.80	.105	31.1
β Can. Ven	12	29.0	+41	54	4.32	.104	31.4
* 85 Peg	$\overline{23}$	56.8	+26	$\overline{34}$	5.85	.101	32.3
βGemin	7	39.2	+28	16	1.21	.095	34.3
a Tauri	4	30.2	+16	18	1.06	.064	£ 0 .9
* aAurigae	5	9.3	+45	54	0.21	.063	51.8
aLeonis	10	3.0	+12	27	1.34	.045	72.5
aErid	1	34.0	-57	45	0.60	.041	79.5
* Urs. Min	1	22.6	+88	46	2.12	.041	79.5
aCentauri	13	56.8	-59	53	0.86	.027	120.7
aOrionis	5	49.8	+7	23	0.92	.022	148.2
aScorp	16	23.3	-26	13	1.22	.019	
a Cygni		$\frac{38.0}{21.7}$	+44	35	1.33	.012	271.7
aCarinae	6	21.7	-52	38	-0.86	.007	465.7

The following list, prepared by Mr. J. A. Pearce, gives some of the latest values obtained.

*Double or multiple star; magnitude of brighter component given.

THE BRIGHTEST STARS

Their Magnitudes, Types, Proper Motions, Distances and Radial Velocities

Prepared by W. E. HARPER

The accompanying table contains the chief known facts regarding 260 stars brighter than apparent magnitude 3.51 as listed in *Harvard Annals*, Volume 50. The position of the star for 1900 is given in the second and third columns. The fourth and fifth columns give the apparent visual magnitude and type taken from the same publication. In a few cases the type is changed to conform with a later determination.

The parallaxes are taken from Schlesinger's Advance Copy of Catalogue of Parallaxes, 1924 Edition, and for such stars the proper motions are copied from the same source. The remaining proper motions were computed using the abbreviated μ_{α} and μ_{δ} as they appeared in the HANDBOOK for 1915, where this table first appeared, and are not necessarily correct to the third decimal place. Three or four spectroscopic parallaxes have been added to those given in Schlesinger's catalogue. The small letter s following the parallax indicates a spectroscopic determination has also been made. The distance is also given in light years in the eighth column as to the lay mind that seems a fitting unit. The absolute magnitude or the magnitude the star would appear to have if it were at a distance of 32.6 light years is given in the ninth column. At that distance the sun would appear as a star of magnitude 5.5. The radial velocities taken from Voûte's list supplemented from our observatory card catalogue is given in the last column. Those starred indicate that the star is a spectroscopic binary for which the velocity of the system is given. Where only the whole number appears the velocity may be regarded as approximate. There are 74 starred out of 235 radial velocities set down or one in three of the bright stars is a spectroscopic binary.

NOTE.—Some of the parallaxes in this table differ slightly from those given in the previous table. The reader should be not surprised at this, and it has not been thought worth while to harmonize the two tables.—EDITOR.

Star	R.A. 1900	Decl. 1900		Mag.	Type	Proper Motion	Parallax	Distance in Light Years		Rad. Vel.
	2	D		Z	H	ďΣ	Ч	ΓD	М	R
······································	h r	n °	1	ľ						km./sec.
a Andromedae	0	3 +28	32	2.2	Aop	. 207		. .	· · · · ·	-13.0*
β Cassiopeiae		4 +58		2.4	F5	. 561	.071 s	46	1.7	+12.8
γ Pegasi	1	8 + 14		2.9	B2	.010				+ 7. *
β Hydri		0 - 77		2.9	G0	2.243	.141	23	3.6	+22.2
a Phoenicis				$\begin{array}{c} 2.4\\ 3.5 \end{array}$	K0 K2	.446	 .026 s	125		$+75.8^{*}$
δ Andromedae α Cassiopeiae		4 + 30		3.5 2.2-2.8		.107	.020 s	125 204		-3.0
β Ceti		9 - 18			K0	.230	.010 s	78		+13.5
$ \gamma$ Cassiopeiae		1 + 60		2.2	B0p	.031	.012 5	91		- 4.7
III Cussiopenie		1,00		2.2	Bop		.000	01	0.0	
β Phoenicis	1	2 - 47	15	3.4	K0	.042				- 0.6
β Andromedae		4 + 35	5	2.4	M0	.219	.045 s	72	0.7	- 2.
δ Cassiopeiae	1	9+59	43	2.8	A5	.306				+ 9.
a Ursae Minoris	2	3 +88		2.1	F8	.043	.007 s	466	-3.7	-14.8*
γ Phoenicis	2	4 - 43	50	3.4	K5	.222				+26.
a Eridani		4 - 57			B5	. 093	.049 s	67	-1.0	
ϵ Cassiopeiae	1	7 + 63		3.4	B3	.043	.001 s	3260		- 7.4
β Arietis		9 + 20			A5	.150	.064 s	51		- 0.6*
a Hydri		6 - 62	3	1	F0	.256				- 5.
$ \gamma$ Andromedae	0	8 +41	91	2.3	K0	. 073	.007 s	466	-3.0	-10.9
a Arietis	2	2 + 22	59	2.2	K2	.242	.033 s	99	-0.2	-14.3
β Trianguli		4 + 34		1	A5	.161	.014	262		*
o Ceti	1	1.		1.7-9.6	M6e	.239	.062	53		+63.9
$ \theta $ Eridani	5	4 -40	42	3.4	A2	.071		[.] .		+20.
a Ceti	5	7 + 3	42	2.8	M1	.080	.011 s	296	-2.0	-25.8
γ Persei	1	8 + 53	7		Gp	.012	.012 s	272		+ 2. *
ρ Persei	5	9 +38	27	3.4 - 4.2	M6	.176	.038 s	86	1.3	+28.6
A Damai		6 40	94	04 2 9	Do	011				
β Persei a Persei	3	1 .		0.1-3.2 1.9	в8 F5	.011	 .015 s	917	-2.2	+5.*
δ Persei	1	$7 + 49 \\ 6 + 47$			гэ B5	.041	.015 s	217 652		-2.4 + 0.7
In Tauri		1 + 23			B5p	.047	.003 s	466		+15.
ζ Persei		8 + 31		1	B1	.023	003 s	3260 :		+21.2
γ Hydri		9 - 74		1	Ma	.128				+16.8
e Persei	1	+39		1	B1	.041	012 s	3260 :		
γ Eridani		3 -13			K5	.133	.018 s	181		+62.2
λ Tauri	5	5+12	12	3.3-4.2	B3	.015	— . 008	3260 :	-6.7	+13.6*
a Reticuli	4 1	3 - 62	43	3.4	G5	.069		1	۱	+35.4

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Star	R.A. 1900	Decl. 1900		Mao	· 9	Type	Proper Motion	Parallax	Distance in Light Years	M	Rad. Vel.	
a Doradus $32 - 55$ 3.5 $A0p$ $.003$ $$ $$ $+26$ π^3 Orionis $44 + 6$ 47 3.3 $F8$ $.474$ $.136$ s 24 4.0 $+24$ ι Aurigae $50 + 33$ 0 2.9 $K2$ $.030$ $.018$ s 181 -0.8 $+18$ ϵ Aurigae $55 + 43$ 41 $3.4 - 4.1$ $F5p$ $.015$ $.002$ s 1630 -5.0 -9 η Aurigae 5 $0 + 41$ 6 3.3 $B3$ $.082$ $.014$ s 233 -1.0 $+33$ ϵ Leporis $1 -22$ 30 3.3 $K5$ $.074$ $.022$ s 148 $0.0 + 1$ β Eridani $3 - 5$ 13 2.9 $A3$ $.117$ $.052$ 63 $1.5 - 8$ μ Leporis $8 -16$ 19 3.3 $A0p$ $.053$ $$ $$ $+28$ $ a$ Aurigae $9 + 4554$ 0.2 $G0$ $.439$ $.075$ 43 -0.4 $+30$ $ \beta$ Orionis $10 - 8$ 19 0.3 $B8p$ $.005$ $.006$ 543 -5.8 $+22$ $ \eta$ Orionis $20 + 6$ 16 1.7 $B2$ $.019$ $.019$ s 172 -1.9 $+19$ β Tauri $20 + 28$ 31 1.8 $B8$ 180 $.0024$ s 136 -4.0 -13 $ l$ Orionis $21 - 70$ 22 2.4 $B0$ $.006$ <td></td> <td></td> <td>h m</td> <td> °</td> <td>'</td> <td></td> <td></td> <td>1</td> <td> </td> <td> </td> <td>1</td> <td>1</td> <td> km./</td> <td>'sec.</td>			h m	°	'			1			1	1	km./	'sec.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	α	Tauri	4 30	+16	18	1.	1	K5	.205	.057 s	57	-0.1	+54	.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	Doradus	32	-55	15	3.	5	A0p	.003				+26	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	π	³ Orionis	44	+ 6	47	3.	3	F8	.474	.136 s	24	4.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ι	Aurigae	50	+33	0	2.	9	K2	. 030	.018 s	181			
ϵ Leporis1-22303.3K5.074.022 s1480.0+ 1 β Eridani3-5132.9A3.117.052 s631.5- 8 μ Leporis8-16193.3A0p.053+28 $ a$ Aurigae9+45540.2G0.439.075 s43-0.4+30 $ \beta$ Orionis10-8190.3B8p.005.006543-5.8+22 $ \gamma$ Orionis19-2293.4B1.000+35 γ Orionis20+ 6161.7B2.019.019 s172-1.9+19 β Tauri20+28311.8B8.180.024 s136-1.3+11 β Leporis24-20503.0G0.095.004 s815-4.0-13 $ \delta$ Orionis27-0222.4B0.006.009 s362-2.8+17a Leporis28-17542.7F0.006.014 s233-1.6+24 $ \iota$ Orionis31-5592.9Oc5.000+216 ζ Tauri32+2153.0B3p.028001 s3260:-7.2+16 $ \zeta$ Orionis36-201.8B0.012.019 s3260:-7.2+16 <td>e</td> <td>Aurigae</td> <td>55</td> <td>+43</td> <td>41</td> <td>3.4-</td> <td>4.1</td> <td>F5p</td> <td>. 015</td> <td>. 002 s</td> <td>1630</td> <td></td> <td></td> <td></td>	e	Aurigae	55	+43	41	3.4-	4.1	F5p	. 015	. 002 s	1630			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	η	Aurigae	5 0	+41	6	3.	3	B3	. 082	.014 s	233	-1.0	+ 3	.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e	Leporis	1	-22	30	3.	3	K5	.074	.022 s	148	0.0	+ 1	.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	β	Eridani	3	- 5	13	2.	9	A3	.117	.052 s	63	1.5	- 8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	μ	Leporis	8	-16	19	3.3	3	A0p	. 053	• • • • • • •			+28	. 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a	Aurigae	9	+45	54	0.5	2	G0	. 439	.075 s	43	-0.4	+30	.2*
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	β	Orionis	10	- 8	19	0.3	3	B8p	. 005	. 006	543	-5.8	+22	.6*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	Orionis	19	- 2	29	3.4	4	B1	. 000				+35	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γ	Orionis	20	+ 6	16	1.'	7	B2	. 019	.019 s	172	-1.9		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	Tauri	20	+28	31	1.	8	B8	.180	.024 s	136	-1.3	+11	
a Leporis $28 - 17 54$ $2.7 F0$ $.006$ $.014 s$ $233 - 1.6 + 24$ $ \iota$ Orionis $31 - 5 59$ $2.9 Oc5$ $.000$ $$ $$ $+24$ ϵ Orionis $31 - 1 16$ $1.8 B0$ $.004$ $.005 s$ $652 - 3.7 + 26$ ς Tauri $32 + 21 5$ $3.0 B3p$ $.028001 s$ $3260 : -7.2 + 16$ $ \varsigma$ Orionis $36 - 2 0$ $1.8 B0$ $.012019 s$ $3260 : -7.2 + 16$ $ \varsigma$ Orionis $36 - 34 8$ $2.8 B5p$ $.040$ $$ $$ κ Orionis $43 - 9 42$ $2.2 B0$ $.009 s$ $.029 s$ $112 2.5 + 19$ β Columbae $47 - 35 48 3.2 K0$ $.397$ $$ $$ $+89$ α Orionis $50 + 7 23 1.0 - 1.4 M1$ $.032 0.17 s$ $192 - 2.8 + 21$ β Aurigae $52 + 44 56 2.1 A0p$ $.046 0.34 s$ $96 - 0.2 - 19$ $ \theta$ Aurigae $53 + 37 12 2.7 A0p$ $.106 0.16 s$ $204 - 1.3 + 28$ η Geminorum $6 9 + 22 32 3.2 - 4.2 M2$ $.062 0.14 s$ $233 - 1.1 + 20$	β	Leporis	24	-20	50	3.	0	G0	. 095	.004 s	815			
a Leporis $28 - 17 54$ $2.7 F0$ $.006$ $.014 s$ $233 - 1.6 + 24$ $ \iota$ Orionis $31 - 5 59$ $2.9 Oc5$ $.000$ $$ $$ $+24$ ϵ Orionis $31 - 1 16$ $1.8 B0$ $.004$ $.005 s$ $652 - 3.7 + 26$ ς Tauri $32 + 21 5$ $3.0 B3p$ $.028001 s$ $3260 : -7.2 + 16$ $ \varsigma$ Orionis $36 - 2 0$ $1.8 B0$ $.012019 s$ $3260 : -8.2 + 17$ a Columbae $36 - 34 8$ $2.8 B5p$ $.040$ $$ $$ κ Orionis $43 - 9 42$ $2.2 B0$ $.009 s$ $.029 s$ $112 2.5 + 19$ β Columbae $47 - 35 48 3.2 K0$ $.397$ $$ $$ $+89$ a Orionis $50 + 7 23 1.0 - 1.4 M1$ $.032 c$ $.017 s$ $192 - 2.8 + 21$ β Aurigae $52 + 44 56 2.1 A0p$ $.046 c$ $.034 s$ $96 - 0.2 - 19$ $ \theta$ Aurigae $53 + 37 12 2.7 A0p$ $.106 c$ $.016 s$ $204 - 1.3 + 28$ η Geminorum $6 9 + 22 32 3.2 - 4.2 M2$ $.062 c$ $.014 s 233 - 1.1 + 20$	δ	Orionis	27	- 0	22	2.4	4	B0	.006	.009 s	362	-2.8	+17	.6*
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a	Leporis	28	-17	54	2.'	7	F0	.006	.014 s	233			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	Orionis	31	- 5	59	2.	9	Oe5	.000				+21	.3*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e	Orionis	31	- 1	16	1.8	8	B0	.004	.005 s	652	-3.7	+26	.3
a Columbae 36 -34 8 2.8 $B5p$ $.040$ $$ $$ $$ κ Orionis 43 -9 42 2.2 $B0$ $.009$ $.029$ 112 2.5 $+19$ β Columbae 47 -35 48 3.2 $K0$ $.397$ $$ $$ $+89$ a Orionis 50 $+7$ 23 $1.0-1.4$ $M1$ $.032$ $.017.s$ 192 -2.8 $+21$ β Aurigae 52 $+44$ 56 2.1 $A0p$ $.046$ $.034.s$ 96 -0.2 -19 $ \theta$ Aurigae 53 $+37$ 12 2.7 $A0p$ $.106$ $.016.s$ 204 -1.3 $+28$ η Geminorum 6 9 $+22$ 32 $3.2-4.2$ $M2$ $.062$ $.014.s$ 233 -1.1 $+20$	ζ	Tauri	32	+21	5	3.	0	B3p	.028	001 s	3260 :			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115	Orionis	36	- 2	0	1.8	8	B0	.012	— . 019 s	3260 :	-8.2	+17	.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	Columbae	36	-34	8	2.8	8	B5p	.040					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	κ	Orionis	43	- 9	42	2.5	2	B0	.009	.029 s	112	2.5	+19	•
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	β	Columbae	47	-35	4 8	3.5	2	K0	.397				+89	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a	Orionis	50	+ 7	23	1.0-	1.4	M1	. 032	.017 _. s	192	-2.8	+21	.3*
η Geminorum 6 9 +22 32 3.2-4.2 M2 .062 .014 s 233 -1.1 +20	β	Aurigae	52	+44	56	2.3	L	A0p	. 046	.034 s	96			
	0	Aurigae	53	+37	12	2.7	7	A0p	.106	.016 s	204	-1.3	+28	. 5
	η	Geminorum	69	+22	32	3.2-4	i .2	M2	. 062	.014 s	233			
	μ	Geminorum	17			3.2	2	M3	.129	.016 s	204	-0.8	+55	.2
β Can. Majoris 18 -17 54 2.0 B1 .003 .012 s 272 -2.6 +33	β	Can. Majoris	18	-17	54	2.0)	B1	. 003	.012 s	272	-2.6	+33	. *
a Carinae $22 - 52 \ 38 - 0.9 \ F0 \ .022 \ .005 \ s \ 652 \ -7.4 + 20$	a	Carinae	22	-52	38	-0.9	9	F0	. 022	.005 s	652			
γ Geminorum 32 + 16 29 1.9 A0 .066 .043 s 76 0.1 - 12	γ	Geminorum	32	+16	29	1.9)	A0	.066	.043 s	76			
ν Puppis 35 -43 6 3.2 B8 020 +26	V	Puppis	35	-43	6	3.2	2	B8	. 020				+26	.0*
ϵ Geminorum 38 + 25 14 3.2 G5 .020 .007 s 466 - 2.6 + 9	e	Geminorum	38	+25	14	3.2	2	G5	. 020	.007 s	466	-2.6	+ 9	. 5
ξ Geminorum 40 +13 0 3.4 F5 .230 .048 s 68 1.8 +26	ξ	Geminorum	40				1	F5	.230	.048 s	68			
α Can. Majoris 41 - 16 35 - 1.6 A0 1.315 .371 s 9 1.2 - 7	a	Can. Majoris	41	-16	35	-1.6	3	A0	1.315	.371 s	9	1 .		
a Pictoris 47 -61 50 3.3 A5 .271	a	Pictoris	47	1			3	A5	.271					
τ Puppis 47 - 50 30 2.8 K0 .094	τ	Puppis	47	-50	30	2.8	3	K0	. 094		1	۱	+37	. *

Star	R.A. 1900	Decl. 1900	Mag.	Type	Proper Motion	Parallax	Distance in Light Years	W	Rad. Vel.
•	h m	0 /				1			km./sec.
$ \epsilon$ Can. Majoris	6 55	1	1	B1	. 000				+28.2
ζ Geminorum	58		3.7-4.3		.007	. 005 s	652	-2.8	+ 6.8*
o ² Can. Majoris	59	-23 41	3.1	B5p	. 000				
δ Can. Majoris	7 4	-26 14	2.0	G2p	.005	.010	326	-2.9	+34. *
L ² Puppis	10	-44 29	3.4-6.2		.334				+52.6
π Puppis	14	1	2.7	K5	.012				+16.3
β Can. Minoris	22	+829	3.1	B8	. 063	.020 s	163	-0.4	
σ Puppis	26	1		K5	.192	· · · · · ·			+87.3
a₂ Geminorum	1	+32 6	1	A0	.201	.077 s	42	1.4	$+ 6.2^*$
a1 Geminorum		+32 6		A0	.209				- 1.0*
a Can. Minoris	1 .	$+ 5^{29}$	1	F5	1.242	.312 s	10	3.0	
β Geminorum		+28 16	1	K0	.623	.101 s	32		+ 3.6
ξ Puppis	45	-24 37	3.5	G6p	. 007	.003 s	1087	-4.2	+ 4.2
ζ Puppis	8 0	-39 43	2.3	Od	.036				
ρ Puppis		-24 1	1	F5	.097	.028 s	116	0.1	+46.
$ \gamma$ Velorum	1	-47 3	1	Oap	.000				
ϵ Carinae	8 20	-59 11	1.7	кo	.032				+11.7
o Urs. Majoris	22	+61 3	3.5	G0	. 166	– . 004 s	3260 :	-6.5	+20.3
€ Hydrae	41	+ 6 47	3.5	F8	. 193	.015 s	217	-0.6	+37.2*
δ Velorum	42	$-54\ 20$	2.0	A0	. 093				
ζ Hydrae		+ 6 20		K0	. 101	.014 s	233		+23.0
ι Urs. Majoris	52	+48 26	3.1	A5	. 500	.070 s	47	2.3	+ 8.
λ Velorum	9 4	-43 2	2.2	K5	.022				1 10 0
β Carinae				A0	.022		· · · · ·		+18.8 -16.0
μ Carinae ι Carinae	14			F0	. 023		· · · · ·		+13.1
a Lyncis		+34 49	1	K5	.214	.002 s			+38.5
κ Velorum	19			B3	.017				+21.9*
a Hydrae	23			K2	.036	.006 s	543	-3.9	
θ Urs. Majoris	-	+52 8	1	F8p	1.096	.056 s	58	1	+15.8
N Velorum	28	-5636	3.0	K5	.041				-13.9
ϵ Leonis	40	+24 14	3.1	G0p	. 045	— . 001 s	3260 :	-6.9	+ 5.1
llv Carinae	45	-64 36	3.1	F0	. 062				+13.2
a Leonis	10 3	1 19 95	1 9	B8	.244	.058 s	56		
g Carinae		+12 27 -60 50		Б8 К5	.244 .045	.058 s		0.1	+ 9.2
$ \gamma $ Leonis		+20 21		K0	.045	.004 s	815		-36.
μ Urs. Majoris		+42 (K5	.082	.004 s			-30.
μ 015. Μαj0115	10		. 0.4	1170	. 0021	.001 5	- 30	. 0.8	······

Star Beck, 19 Decl. 19 Motion Motion Motion M													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Star	A 1900	0007 .17	ecl. 1900		ag.	ype	oper otion	arallax	istance in ght Years	4	ad. Vel.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			e	4	- Ã		X	Η Ĥ	ΠP	Ъ	ED	X	a di
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>, , , , , , , , , , , , , , , , , , , </u>	⊢ ∣h	m	0	1		1	, (km./sec.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	θ	Carinae	1		-63	52	3.0	BO	.063				+16.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				41			1.0-7.4	Pec	.000			.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•			42	-48	54	2.8	G5	.084				+7.1
aUrs. Majoris $58 + 62 \ 17$ 2.0 $G5$ $.137$ $.074 \ s$ 44 $1.4 - 8$. ψ Urs. Majoris $11 \ 4 + 45 \ 2$ 3.2 K0 $.067$ $.049 \ s$ 67 $1.6 - 3.4$ δ Leonis $9 + 21 \ 4$ 2.6 $A3$ $.208$ $.078 \ s$ 42 $2.1 - 18.$ θ Leonis $9 + 15 \ 59$ 3.4 $A0$ $.103$ $.019 \ s$ $172 - 0.2 + 6.8$ λ Centauri $31 - 62 \ 28$ 3.3 $B9$ $.046$ \dots \dots $+11.$ β Leonis $44 + 15 \ 8$ $2.2 \ A2$ $.507$ $.101 \ s$ $32 \ 2.2 + 1.3$ γ Urs. Majoris $49 + 54 \ 15$ $2.5 \ A0$ $.095$ $.004 \ s$ $815 - 4.5 - 10.0$ δ Centauri $12 \ 3 - 50 \ 10$ $2.9 \ B3p$ $.044$ \dots \dots \dots ϵ Corvi $5 - 22 \ 4$ $3.2 \ K0$ $.063 \ .025 \ s$ $130 \ 0.2 + 5.2$ δ Urs. Majoris $10 - 58 \ 12 \ 3.1 \ B3$ $.051 \ \dots \ \dots \ \dots \ -25.$ δ Urs. Majoris $10 + 57 \ 35 \ 3.4 \ A2 \ .113$ $.045 \ s$ $72 \ 1.7 \ -10.7$ γ Corvi $21 - 62 \ 33 \ 1.0 \ B1$ $.048 \ .030 \ 109 \ -1.6 \ +19$ $ \delta$ Corvi $25 \ -15 \ 58 \ 3.1 \ A0 \ .249 \ .010 \ s$ $326 \ -1.9 \ -53.5$ γ Crucis $26 \ -56 \ 33 \ 1.5 \ M6 \ .270 \ \dots \ \dots \ \dots \ -1.425.5$ β Corvi $29 \ -22 \ 51 \ 2.8 \ G5 \ .061 \ .028 \ 116 \ 0.0 \ -7.4$ α Muscae \ 31 \ -68 \ 35 \ 2.9 \ B3 \ .038 \ \dots \				45	-15	40	3.3	K0	.214	.035 s	93	1.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	β	Urs. Majoris		56	+56	55	2.4	A0	. 089	.047 s	69	0.8	-10.9*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a	Urs. Majoris		58	+62	17	2.0	G5	.137	.074 s	44	1.4	- 8.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ψ	Urs. Majoris	11	4	+45	2	3.2	K0	. 067	.049 s	67	1.6	- 3.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	δ	Leonis		9	+21	4	2.6	A3	.208	.078 s	42		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	θ	Leonis		9	+15	59	3.4	A0	.103	.019 s	172	-0.2	+ 6.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	λ.	Centauri		31		28	3.3	B9	.046				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				44	+15	8	2.2	A2	. 507	.101 s	32	2.2	+ 1.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	γ	Urs. Majoris		49	+54	15	2.5	A0	. 095	.004 s	815	-4.5	-10.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			12		1					• • • • • •			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	e	Corvi		-		-		1	1 1	.025 s	130	0.2	+ 5.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				10	-58	12	3.1	-	. 051				
a Crucis $21 - 62 \ 33$ 1.0 $B1$ $.048$ $.030$ 109 -1.6 $+19.$ $ \delta$ Corvi $25 - 15 \ 58$ 3.1 $A0$ $.249$ $.010 \ s$ 326 -1.9 -53.5 γ Crucis $26 - 56 \ 33$ 1.5 $M6$ $.270$ \dots \dots $+21.5$ β Corvi $29 - 22 \ 51$ 2.8 $G5$ $.061$ $.028$ 116 0.0 -7.4 a Muscae $31 - 68 \ 35$ 2.9 $B3$ $.038$ \dots \dots $+13.5$ γ Centauri $36 - 48 \ 24$ 2.4 $A0$ $.200$ \dots $-9.$ γ Virginis $36 - 0 \ 54$ 2.9 $F0$ $.561$ $.073 \ s$ 45 2.2 β Muscae $40 - 67 \ 34$ 3.3 $B3$ $.041$ \dots \dots $+35.5$ β Crucis $42 - 59 \ 9$ 1.5 $B1$ $.054$ $.008 \ s$ $408 \ -4.0$ $+13.$ ϵ Urs. Majoris $50 \ +56 \ 30$ 1.7 $A0p$ $.117$ $.042$ $78 \ -0.2$ -11.9 $ a$ Can. Venat. $51 \ +38 \ 51$ $2.8 \ A0p$ $.233$ $.015 \ s$ $217 \ -1.3 \ +1.0$	δ	Urs. Majoris		10			1		1 1	.045 s	72	1.7	
$ \begin{array}{ $	γ	Corvi		11				B8	.159	• • • • • •			- 7. *
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	a	Crucis		21	-62	33	1.0	B1	.048	.030	109	-1.6	+19.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ	Corvi			1				1 1	.010 s	326	-1.9	-53.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ	Crucis		26	1 1	33	1.5	M6	.270				+21.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	Corvi		29	-22	51	2.8		. 061	. 028	116	0.0	- 7.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a	Muscae		31	-68	35	2.9	B3	1 1			 .	+13.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γ	Centauri		36	-48			1	.200				1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				36					. 561	.073 s	45	2.2	-20.0
ϵ Urs. Majoris 50 +56 30 1.7 A0p .117 .042 78 -0.2 -11.9 a Can. Venat. 51 +38 51 2.8 A0p .233 .015 s 217 -1.3 + 1.0	β	Muscae		40	-67	34	3.3	B3	.041				+35. *
$ \alpha$ Can. Venat. 51 + 38 51 2.8 A0p .233 .015 s 217 - 1.3 + 1.0	β	Crucis		42	-59	9	1.5	B1	. 054	.008 s	408	(1 .
	e	Urs. Majoris		50	1.1		1.7	A0p					
ϵ Virginis 57 +11 30 3.0 K0 .270 .048 s 68 1.4 -13.6	••												1
	e	Virginis		57	+11	30	3.0	K0	.270	.048 s	68	1.4	-13.6
γ Hydrae 13 13 -22 39 3.3 G5 .085 .017 s 192 -0.5 - 5.1			13		1		1	ļ	1	.017 s	192	-0.5	1
ι Centauri 15 -36 11 2.9 A2 .111 + 2.0											1		1
$\ \zeta$ Urs. Majoris 20 +55 27 2.4 A2p .131 .038 s 86 0.3 - 9.6		•			1 .		1					1	
a Virginis $20 -10 \ 38 \ 1.2 \ B2 \ .051 \ .009 \ s \ 362 \ -4.0 \ + \ 1.6$								1					1.
ζ Virginis 30 - 0 5 3.4 A2 .285 .038 86 1.3	•	0					1		1	.038	86	1.3	
ϵ Centauri 34 -52 57 2.6 B1 .091 + 6.					1					• • • • • •	1		1
η Urs. Majoris 44 +49 49 1.9 B3 .116004 s 3260 : -8.1 - 6.					1.						3260 :	-8.1	
<u>μ Centauri 44 -41 59 3.3 B2p .030 +12.6</u>	μ	Centauri		44	-41	59	0 3.3	IB2p	1.030		1	1	1+12.6

						-			
Star	R.A. 1900	Decl. 1900	Mag.	Type	Proper Motion	Parallax	Distance in Light Years	M	Rad. Vel.
	h m	• /		1	1]		[km./sec.
ζ Centauri	13 49		3.1	B2p	.079				
η Boötis	50	+1854	2.8	GO	.370	.098 s	33	2.8	- 0.2*
$\dot{\beta}$ Centauri	57	-59 53	0.9	B1	. 039	. 036	91	-1.3	+12.0*
π Hydrae	14 1	$-26\ 12$	3.5	K0	.165				+27.6
θ Centauri	1	-35 53	2.3	K0	.748				+1.8
a Boötis	11	+19 42	0.2	K0	2.287	.080 s	41		-5.0
γ Boötis	28	+38 45	3.0	F0	.182	.058 s	56	1.8	-35.
η Centauri	29	-41 43	2.6	B3p	. 052				0.
a Centauri	33	-60 25	0.3	G0	3.682	.758	4	4.7	+22.2
a Circini	34	-64 32	3.4	F0 .	.312				+7.3
a Lupi	35	-4658	2.9	B2	. 036				+ 8. *
$ \epsilon$ Boötis	41	+27 30	2.7	K0	. 045	.016 s	204	-1.3	-16.4
a² Librae	45	-15 38	2.9	K2	.129				-17. *
β Urs. Minoris	51	+74 34	2.2	K5	. 028	.011 s	296	-2.6	+17.0
$oldsymbol{eta}$ Lupi	52	-42 44	2.8	B2p	. 066				0.*
κ Centauri	53	-41 42	3.4	B3	. 037		. 		+10. *
σ Librae	58	-24 53	3.4	M6	. 094	.029 s	112	0.7	- 4.2
ζ Lupi	15 5	-51 43	3.5	K0	.132				- 9.2
$\gamma \mathrm{T}\mathrm{Australis}$	10	-68 19	3.1	A0	. 064				
β Librae	12	-91	2.7	B8	.108				-38. *
δ Lupi	15	-40 17	3.4	B2	. 032				
γ Urs. Minoris	21	+72 11	3.1	A2	. 017				- 8.
ι Draconis		+59 19	3.5	K0	. 010	.034 s	96	1.2	-10.2
$oldsymbol{\gamma}$ Lupi		-4050	3.0	B3	. 042				
a Cor. Borealis	1 1	+27 3	2.3	A0	.160	.053 s	62	0.9	+ 0.4*
a Serpentis	1 1	+ 6 44	2.8	K0	.142	. 046 s	71	1.1	+ 3.3
β T Australis	46	-63 7	3.0	F0	.440		· · • • ·	· · · · ·	•••••
π Scorpii	53		3.0	B2p	.042		••••		*
δ Scorpii	54	-22 20	2.5	B0	.042		••••		*
β Scorpii	16 0	-19 32	2.8	B1	.041				- 9.5*
δ Ophiuchi	9	- 3 26	3.0	K8	.159	.040 s	82	1.0	-19.0
e Ophiuchi	13	- 4 27	3.3	K0	. 088	.046 s	71	1.6	- 9.2
$ \sigma$ Scorpii	15	-25 21	3.1	B1	. 033				+ 2.0*
$ \eta$ Draconis	1 1	+61 44	2.9	G5	. 062	.042 s	78		-13.9
a Scorpii	23	$-26\ 12$	1.2	M2p	. 032	.026 s	126	-1.7	- 3.1*
β Herculis		+21 42	2.8	K0	.104	.030 s	109	0.2	-25.5*
τ Scorpii	30	-28 1	2.9	B0	.042				+ 1.5

							1		
Star	R.A. 1900	Decl. 1900	Mag.	Type	Proper Motion	Parallax	Distance in Light Years	M	Rad. Vel.
	h m	0 /	1	İ		· · · · · · · · · · · · · · · · · · ·		1	km./sec.
ζ Ophiuchi	16 32	$-10\ 22$	2.7	BO	.024				-15.0
ζ Herculis	38	+31 47		G0	.601	.111 s	29	3.2	
a T Australis	38	-6851	1.9	K2	.034	.111 5			-3.7
ϵ Scorpii	44	-34 7	$\frac{1.3}{2.4}$	K0	.668				-2.0
μ^1 Scorpii	45		1	B3p	.032	• • • • • • •		•••••	- 2.0
ζ Arae	50	-57 55 -55 50		Ma	.032		• • • • •	••••	- 6.1
κ Ophiuchi		+ 9 32	1	K0	.296	.208 s	116		
k Opniuchi	00	+ 9 32	3.4	KU	. 290	.208 s	116	0.6	-55.3
η Ophiuchi	17 5	-15 36	2.6	AO	.094		,		- 1.1
η Scorpii	5	-13 50 -43 6	3.4	F2	.291				-28.
7 Draconis	8	+65 50	3.2	B5	.023	.019 s	172	-0.4	
a Herculis	10	•	3.1-3.9	-			3260:		
δ Herculis	10		3.1 - 3.9 3.2	A2	.164	002 s . 029 s			-32.4
	1	+2457					$112 \\ 179$	0.5	
π Herculis	12	+365	3.4	K2	.021	.019 s	172		-25.1
θ Ophiuchi	16	-2454	3.4	B3	.030	• • • • • •	••••	••••	- 0.9
β Arae	17	$-55\ 26$		K2	.035	••••	••••	••••	-1.0
v Scorpii	24	-37 13	2.8	B3	. 040	••••	· · • • · ·		• • • • • • •
a Arae	24	-49 48	3.0	B3p	. 085	• • • • • •	.		<i>.</i>
λ Scorpii	27	-37 2	1.7	B2	.040				- 1. *
β Draconis	28	+52 23	3.0	G0	. 012	.004 s	815	-4.0	-19.7
θ Scorpii	30	-42 56	2.0	F0	. 010				+ 5.
a Ophiuchi	30	+12 38	2.1	A5	.264	.049 s	67	0.5	
к Scorpii	36	-3858	2.5	B2	. 032				
β Ophiucni	39	+ 4 37	2.9	K0	.157	.024 s	136	-0.2	-11.5
1 ¹ Scorpii	41	-40 5	3.1	F5p	.000				-27.8
$ \mu $ Herculis	43	+27 47	3.5	G5	.817	.111 s	29	3.7	-15.7
G Scorpii	43	-37 1	3.2	K2	.062				+24.7
ν Ophiuchi	54	- 946	3.5	K0	.118	.026 s	126		+12.6
γ Draconis	54	+51 30		K5	.026	.017 s	192		-27.0
γ Sagittarii	59	$-30\ 26$	3.1	K0	.206	.01.0		1.1	+22. *
/ Sagittain		00 20	0.1	110	.200				1 22.
η Sagittarii	18 11	-36 48	3.2	M6	.223				0.0
δ Sagittarii	10 11	-2952	2.8	KO	.042	•••••		••••	-20.2
η Serpentis	16	-2352 -255	3.4	K0	.898		· · · · · ·	· · · · · ·	
		-250 -3426		A0		.065 s	50		+ 9.5
ε Sagittarii	18		2.0		.139	••••	••••	• • • • •	-11.0
λ Sagittarii	22	$-25\ 29$	2.9	K0	. 197		••••		-43.2
a Lyrae	34	+38 41	0.1	A0	.348	.124 s	26	0.6	-13.8
ϕ Sagittarii	39	-27 6	3.3	B8	. 053				+26. *
$ \beta $ Lyrae	46	•		B2p	.011 -	014 s	3260 :	-6.6	*
σ Sagittarii	49	-26 25	2.1	B3	. 081	••••			- 1.

Star	R.A. 1900	Decl. 1900	Mag.	Type	Proper Motion	Parallax	Distance in Light Years	W	Rad. Vel.
	h m	0 /							km./sec.
γ Lyrae ζ Sagittarii	18 55 56	+32 33 -30 1	$egin{array}{c} 3.3 \ 2.7 \end{array}$	A0 A2		••••	•••• <u>•</u> • ••••	· · · · · ·	-20. * +22.
au Sagittarii	19 1	-27 49	3.4	K0	.265 .				+42. *
ζ Aquilae	10 1	+13 43	3.0	A0	.103	.040 s	82	1 0	-38.6
π Sagittarii	4	-21 11	3.0 3.0	F2	.041	.016 s	204		-10.3
δ Draconis	1 1	+67 29	3.2	K0	.135	.010 s	204 86		+25.1
δ Aquilae	21	+ 25 + 255	3.4	FO	.103	.053 s	57		-32. *
$ \beta $ Cygni		+2745	$3.1 \\ 3.2$	K0p	.010	.007 s	1087		$\begin{bmatrix} -32 \\ -23 \end{bmatrix}$
γ Aquilae	1	+27 $+30$ $+10$ 22	$\frac{3.2}{2.8}$	Kop K2	.018	.003 s	181		-23.
δ Cygni		+10 22 +44 53	$\frac{2.8}{3.0}$	A0	.018	.018 s	86		-37.
		+44 33 + 8 36	0.9	A5	.659	.038 s .204 s	16		
a Aquilae	40	+ 0 30	0.9	AD	.059	.204 s	10	2.4	-33.
θ Aquilae	20 6	-17	3.4	A0	. 035	.015 s	217	-0.7	-29.2*
β Capricorni	15	-15 6	3.2	G0p	.042	.005 s	652		-18.8*
a Pavonis	18	-57 3	2.1	B3	.090.				$+ 2.0^{*}$
γ Cygni	19	+3956	2.3	F8p	. 006 -	– . 002 s	3260:	-7.7	
a Indi	31		3.2	KO	.072				- 0.8
a Cygni	38	+44 55	1.3	A2p	.004	.005	652	-5.2	- 4.
ε Cygni		+33 36	2.6	KO	. 485	.041 s	80		-10. *
ζ Cygni	21 9	+29 49	3.4	K0	. 061	.024 s	136	0.2	+17. *
a Cephei		+29 48 +62 10	$\frac{3.4}{2.6}$	A5	.163	.024 s .083 s	39		-30.7
a Aquarii		-61	$\frac{2.0}{3.1}$	G0			3260 :		+ 6.4
β Cephei	, ,	+70 7	3.3	B1	.020 -	.003 s	$\frac{5200}{466}$		-14.1*
ϵ Pegasi	39		2.5	K0	.013		1630		+ 5.3
δ Capricorni	39 42	•	$\frac{2.3}{3.0}$	A5	.028.395	.002 s .114 s	1030 29	-5.9	T 0.0
γ Gruis	42		$3.0 \\ 3.2$	A0	. 108 .	.114.5			- 3.
y Gruis	40	-37 30	0.4	ло	.108 .			••••	– J.
a Aquarii	22 1	- 0 48	3.2	G0	. 009	.009 s	362	-2.0	+7.1
a Gruis	2	-47 27	2.2	B5	.200				
a Tucanae	12	-60 45	2.9	K2	.085 .				+41.
β Gruis	37	-47 24	2.2	M6	.122 .				+ 1.2
η Pegasi	38	+29 42	3.1	G0		001 s	3260 :	-6.9	$+ 4.3^{*}$
aP Australis	5 2		1.3	A3	.367	.137	24		+ 6.7
β Pegasi	59	+27.32	2.6	M3	.235	.016 s	204		+ 8.6
a Pegasi	59	+14 40	2 . 6	A0	.077	.038 s	86		+ 4. *
γ Cephei	$23 \ 35$	+77 4	3.4	К1	.167	. 069 s	47	2.6	-41.6

GEOGRAPHICAL 1	POSITIONS	OF	SOME	POINTS	II	CANADA
-----------------------	-----------	----	------	--------	----	--------

NAME	LATITUDE N.	Longitude W.	Feet above Sea Level
	0 / //	0 / //	· .
Danff Alta	51 10	115 35	4542
Banff, Alta Barrie, Ont	44 23	79 41	839
Battleford, Sask	52 41	103 20	1620
Brandon, Man	49 51	99 57	1176
Calgary, Alta	51 02 39.21	7 36 15.1	3428
Charlottetown, P.E.I	46 14	63 10	38
Collingwood, Ont	44 30	E0 15	595
Edmonton, Alta	53 31 58.81	113 30 27.0	2188
Father Point, Que	48 31	68 19	20
Fort Churchill	58 51	94 11	
Fort Simpson	61 52	121 43	
Fredericton, N.B.	45 57	66 36	164
Golden, B.C.	51 16	116 55	2550
Gravenhurst, Ont	44 54	79 20	770
Guelph, Ont	43 32 43.7	80 15 09.0	1063
Halifax, N.S.	44 39	63 36	97
Hamilton, Ont	43 16	79 54	303
Herschel Is	69 30	139 15	
Kingston, Ont	44 13	76 29	285
London, Ont	42 59	81 13	808
Medicine Hat	50 1	110 37	2161
Moncton, N.B	46 9	$64 \ 45$	50
Montreal Que	45 30 17.0	73 34 39.45	187
New Westminster, B.C	49 13	122 54	330
No. West River, Ungava.	53 31 31.45	60 10 17.85	
Ottawa, Ont.	45 23 38	75 42 58.20	273.4
Owen Sound, Ont	$44 \ 33 \ 56.42$	80 56 40.5	585
Peterborough, Ont	44 17	78.19	722
Portage la Prairie, Man	49 58	98 17	830
Port Simpson, B.C.	$54 \ 34$	130 26	26
Prince Albert, Sask	53 10	106 0	1432
Quebec, Que	46 48	71 13	296
Regina, Sask	50 27	104 37	1885
Revelstoke, B.C.	51 00 11.25	7 52 49.8	1503
Rose Point, Ont	$45 \ 19 \ 00.73$	80 02 28.5	602
St. Catharines, Ont	$43 \ 10$	79 17	347
St. John, N.B	45 17	66 4	70
St. Johns, Nfd	47 34	$52 \ 42$	125
Stratford, Ont	43 23	81 00	1191
Toronto, Ont	43 39 35 9	79 23 39.75	350
Vancouver, B.C	49 17 48.0	$123 \ 07 \ 05.52$	11
Victoria, B.C.	48 25 31.38	123 21 42.0	55
Windsor, Ont	42 20	83 4	625
Winnipeg, Man	49 53 51.53	97 08 23.53	751
York Factory	57 00	92 28	55

In above table the longitudes of Calgary and Revelstoke are in h. m. s. In arc the values are $105^{\circ} 12' 46''.5$ and $105^{\circ} 25' 27''$ respectively.

INDEX

	AGE
Abbreviations and Symbols	4
Algol, minima of	51
Andromedes (meteors)	54
Anniversaries for 1926	3
Calendar for 1926cover, page	$^{-2}$
Distance of Stars	61
Double Stars	57
Eclipses in 1926	27
Ephemeris of the Sun	6
Festivals and Anniversaries for 1926	3
Geographical Positions of Some Points in Canada	71
Greek Alphabet	4
Jupiter's Satellites, configurations of	51
Jupiter's Satellites, Phenomena of	52
Leonids (meteors)	54
Meteors and Shooting Stars	54
Moon, Phases of the	51
Moon, Occultations of Stars by	8
Moon, Eclipses of	27
Occultation of Stars by the Moon	8
Perseids (meteors)	54
Phenomena (conjunctions, etc.)	51
Planets for the Year	22
Preface	3
Satellites of Jupiter, Configurations of	51
Satellites of Jupiter, Phenomena of	52
Satellites of the Solar System	56
Sky for the Month	50
Solar System, Elements of	55
Solar System, Satellites of	56
Stars, information regarding the brightest	63
Stars, the Distance of the	61
Stars, Double	57
Stars, Variable	59
Sun, Ephemeris of the	6
Sun, Eclipses of	27
Sunrise and Sunset, Explanation of Tables	8
Sunrise and Sunset, Tables of	9
Time, Explanation of Solar and Sidereal	5
Variable Stars	59

Mars above. Venus below. first of each month.

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

The Library and the offices of the General Secretary and the General Treasurer are at 198 College Street, Toronto.

Ordinary meetings are held in Toronto in the Physics Building on alternate Tuesdays, beginning in September and continuing to the end of May. In addition, ordinary meetings are at present held at Montreal, Ottawa, Winnipeg and Victoria. The Society also has organizations at Guelph, Hamilton, Peterborough and Regina, but during the war the meetings were discontinued and have not yet been revived.

The Society publishes a monthly JOURNAL, containing each year about 400 pages of interesting articles, and a yearly HANDBOOK of 72 pages, containing information for the amateur observer. Subscription, \$2.00 a year; single copies of the JOURNAL or HANDBOOK, 25 cents.

Membership in the Society is open to anyone interested in Astronomy and many more members are desired. The annual fee of \$2.00 includes subscription to the publications.

For further information apply to the General Secretary, Mr. F. T. Stanford, at the above address.