THE Observer's Handbook for 1932

PUBLISHED BY

The Royal Astronomical Society of Canada

EDITED BY C. A. CHANT

TWENTY-FOURTH YEAR OF PUBLICATION

TORONTO 198 College Street Printed for the Society 1932

CALENDAR

IANUARY	FEBRUARY	MARCH	APRIL		
Sun. 3 10 17 24 31 Mon. 4 11 18 25 Tues. 5 12 19 26 Wed. 6 13 20 27 Thur. 7 14 21 28 Fr. 18 15 22 29 Sat. 2 9 16 23 30	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
MAY	JUNE	JULY	AUGUST		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Sun. 3 10 17 24 31 Mon. 4 11 18 25 Tues. 5 12 19 26 Wed. 6 13 20 27 Thur. 7 14 21 28 Fri. 1 8 15 22 29 Sat. 2 9 16 23 30	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Sun. 2 9 16 23 30 Mon. 3 10 17 24 31 Tues. 4 11 18 25 Wed. 5 12 19 26 Thur. 6 13 20 27 Fri. 7 14 21 28 Sat. 1 8 15 22 29	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		

THE Observer's Handbook for 1932

PUBLISHED BY

The Royal Astronomical Society of Canada

EDITED BY C. A. CHANT

TWENTY-FOURTH YEAR OF PUBLICATION

TORONTO 198 College Street Printed for the Society 1932

CONTENTS

Preface	-	-	-	- '	-	-	-	3
Anniversari	es and Fes	stivals	-	-	-	-	-	3
Symbols and	d Abbrevi	ations	-	-	-	-	-	4
Solar and Si	idereal Ti	me	-	-	-	-	-	5
Ephemeris of	of the Sun	-	-	-	-	-	-	б
Times of Su	nrise and	Sunset	-	-	- '	-	-	8
Planets for	the Year	-	-	-	-	-	· <u>-</u>	22
Eclipses in 1	1932	-	•	-	-	-	_	28
The Sky and	d Astrono	mical P	henon	nena for	each	Month	-	30
Phenomena	of Jupiter	's Satel	lites	-	-	-	-	54
Meteors and	1 Shooting	g Stars	-	-	-	-	_ '	56
Elements of	the Solar	· Systen	1	-	-	-	-	57
Satellites of	the Solar	System	1 -	-	_	-	-	58
Double Star	rs, with a	short lis	st	-	-	-	-	59
Variable Sta	rs, with a	short l	ist	-	-	-	-	61
Distances of	f the Stars	5	-	-	-	-	-	63
The Brighte	est Stars, t	heii ma	ignituo	les, typ	es, pro	per motio	ons,	
distances	and radia	l veloci	ties	-	-	-		65
Occultations	s of Fixed	Stars b	y the	Moon	-	-	-	73
Astronomica	al Constar	its	-	-	-	-	-	77
Index	-	-	-	-	-	-	-	78

PREFACE

In the present issue of the HANDBOOK is a list of stars occulted by the moon computed for Toronto, but valid for places three hundred miles distant. Computations for other places will be supplied when there is a demand for them. *The American Ephemeris* will hereafter include a list of stars computed for Washington.

It may be stated that four circular star-maps, 9 inches in diameter, roughly for the four seasons, may be obtained from the Director of University Extension, University of Toronto, for one cent each; also a set of 12 circular maps, 5 inches in diameter, with brief explanation, is supplied by *Popular Astronomy*, Northfield, Minn., for 15 cents. Besides these may be mentioned Young's *Uranography*, containing four maps with R.A. and Decl. circles and excellent descriptions of the constellations, price 72 cents; Norton's *Star Atlas and Telescopic Handbook* (10s. 6d.); Olcott's *A Field-book of the Stars* (\$1.50), and *A Firld-book of the Skies* (\$3.50); McKready's *A Beginner's Star Book* (\$5.00).

In the preparation of this HANDBOOK the Editor has been assisted by Miss M. S. Burland and Dr. R. J. McDiarmid, of the Dominion Observatory, Ottawa; Mr. J. H. Horning, Toronto; Mr. W. S. Armstrong and his colleague, Dr. R. K. Young, of the University of Toronto.

The minima of Algol have been computed from an observation by Stebbins (Ap. J., vol. 53, 1921), J.D. 2422619.7866 with the period 2.86731077, given by Hellerick (A.N., vol. 209, p. 227, 1919).

TORONTO, December, 1931.

THE EDITOR.

ANNIVERSARIES AND FESTIVALS, 1932

New Year's DayFri.,	Jan.	1
Epiphany	Jan.	6
Septuagesima Sunday	Jan.	24
Quinquagesima (Shrove		
Sunday)	Feb.	7
Ash Wednesday	Feb.	10
Quadragesima (First		
Sunday in Lent)	Feb.	14
St. DavidTues.,	Mar.	1
St. Patrick Thur.,	Mar.	17
Palm Sunday	Mar.	20
Annunciation (Lady		
Day)Fri.,	Mar.	25
Good Friday	Mar.	25
Easter Sunday	Mar.	27
St. GeorgeSat.,	Apr.	23
Rogation Sunday	May	1
Ascension Day Thur.,	May	5
Accession of King George		
V. (1910)Fri.,	May	6
Pentecost (Whit Sunday)	May	15
Empire (Victoria) Day. Tues.,	May	24
Corpus ChristiThur.,	May	26

Birthday of Queen Mary
(1867) May 26
Birthday of King George
V (1865)Fri., June 3
Birthday of Prince of
Wales (1894) Thur., June 23
St. John Baptist (Mid-
Summer Day)Fri., June 24
Dominion DayFri., July 1
Labour Day Mon., Sept. 5
St. Michael (Michaelmas
Day)
Hebrew New Year (Rosh
Hashanah (5693)Sat., Oct. 1
All Saints' Day Tues., Nov. 1
Remembrance DayFri., Nov. 11
First Sunday in Advent Nov. 27
St. Andrew
Christmas Day Sun., Dec. 25

Thanksgiving Day, date set by Proclamation

SYMBOLS AND ABBREVIATIONS

SIGNS OF THE ZODIAC

r	Aries 0°	Ω Leo	オ Sagittarius240 ^e
Я	Taurus $\ldots .30^{\circ}$	\mathfrak{MP} Virgo 150°	で Capricornus 270°
Д	Gemini $\ldots \ldots 60^{\circ}$	≏ Libra	Aquarius
ଡ	Cancer	M Scorpio 210°	\mathcal{H} Pisces

SUN, MOON AND PLANETS

0	The Sun.	Ø	The Moon generally.	24	Jupiter.
•	New Moon.	Ş	Mercury.	þ	Saturn.
٢	Full Moon.	Ŷ	Venus.	ð	or 뷰 Uranus
D	First Quarter	\oplus	Earth.	Ψ	Neptune
C	Last Quarter.	♂	Mars.		-

ASPECTS AND ABBREVIATIONS

o' Conjunction, or having the same Longitude or Right Ascension & Opposition, or differing 180° in Longitude or Right Ascension Guadrature, or differing 90° in Longitude or Right Ascension Ω Ascending Node; ³ Descending Node.

a or A.R., Right Ascension; δ Declination.

h, m, s, Hours, Minutes, Seconds of Time. "'", Degrees, Minutes, Seconds of Arc.

THE GREEK ALPHABET

A, a,	Alpha.	Ι,ι,	Iota.	Ρ,ρ,	Rho.
Β, β,	Beta.	Κ,κ	Kappa.	Σ, σ, ς,	Sigma.
Γ,γ,	Gamma.	Λ,λ,	Lambda.	Τ, τ,	Tau.
$\Delta, \delta,$	Delta.	Μ,μ,	Mu.	Υ, ν,	Upsilon
Ε, ε,	Epsilon.	Ν, ν,	Nu.	Φ, ϕ	Phi.
Ζ,ζ,	Zeta.	Ξ,ξ,	Xi.	Χ, χ,	Chi.
Η, η,	Eta.	0,0,	Omicron.	$\Psi, \psi,$	Psi.
θ,θ,ϑ,	Theta.	Π,π,	Pi.	Ω,ω,	Omega.

In the Configurations of Jupiter's Satellites (pages 29, 31, etc.), O represents the disc of the planet, d signifies that the satellite is on the disc, * signifies that the satellite is behind the disc or in the shadow. Configurations are for an inverting telescope.

SOLAR AND SIDEREAL TIME

In practical astronomy three different kinds of time are used, while in ordinary life we use a fourth.

I. Apparent Time—By apparent noon is meant the moment when the sun is on the meridian, and apparent time is measured by the distance in degrees that the sun is east or west of the meridian. Apparent time is given by the sun-dial.

2. Mean Time—The interval between apparent noon on two successive days is not constant, and a clock cannot be constructed to keep apparent time. For this reason mean time is used. The length of a mean day is the average of all the apparent days throughout the year. The *real sun* moves about the ecliptic in one year; an imaginary mean sun is considered as moving uniformly around the celestial equator in one year. The difference between the times that the real sun and the mean sun cross the meridian (*i. e.* between apparent noon and mean noon) is the equation of time. (See next page).

3. Sidereal Time—This is time as determined from the stars. It is sidereal noon when the Vernal Equinox or First of Aries is on the meridian. In accurate time-keeping the moment when a star is on the meridian is observed and the corresponding mean time is then computed with the assistance of the Nautical Almanac. When a telescope is mounted equatorially the position of a body in the sky is located by means of the sidereal time.

4. Standard Time--In everyday life we use still another kind of time. A moment's thought will show that in general two places will not have the same mean time; indeed, difference in longitude between two places is determined from their difference in time. But in travelling it is very inconvenient to have the time varying from station to station. For the purpose of facilitating transportation the system of *Standard Time* was introduced in 1883. Within a certain belt approximately 15° wide, all the clocks show the same time, and in passing from one belt to the next the hands of the clock are moved forward or backward one hour.

In Canada we have six standard time belts, as follows; — 60th meridian or Atlantic Time, 4h. slower than Greenwich; 75th meridian or Eastern Time, 5h.; 90th meridian or Central Time, 6h.; 105th meridian or Mountain Time, 7h.; 120th meridian or Pacific Time, 8h.; and 135th meridian or Yukon Time, 9h. slower than Greenwich.

1932 EPHEMERIS OF THE SUN AT 0h GREENWICH CIVIL T

Date	Apparent R.A.	Equation of Time	Apparent Decl.	Date	Apparent R.A.	Equation of Time	Apparent Decl.
Jan. 1 " 4 " 7 " 10 " 13 " 16 " 19 " 22 " 25 " 28 " 31 Feb. 3 " 6 " 9 " 12 " 15 " 6 " 9 " 12 " 15 " 15 " 15 " 15 " 16 " 19 " 22 " 28 " 31 Feb. 3 " 15 " 16 " 19 " 22 " 28 " 31 Feb. 3 " 15 " 16 " 19 " 12 " 15 " 16 " 15 " 15 " 15 " 15 " 15 " 16 " 15 " 15 " 15 " 16 " 15 " 15 " 15 " 16 " 17 " 17 " 15 " 16 " 15 " 16 " 17 " 16 " 16 " 16 " 17 " 16 " 13 " 16 " 16 " 16 " 16 " 13 " 16 " 16 " 13 " 16 " 16 " 16 " 13 " 16 " 16 " 16 " 16 " 16 " 16 " 16 " 16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} {\rm m} & {\rm s} \\ + 2 & 58.0 \\ + 4 & 23.0 \\ + 5 & 44.9 \\ + 5 & 44.9 \\ + 7 & 02.8 \\ + 8 & 15.7 \\ + 9 & 23.0 \\ + 10 & 24.2 \\ + 111 & 18.8 \\ + 12 & 06.5 \\ + 12 & 47.2 \\ + 13 & 20.8 \\ + 13 & 20.8 \\ + 14 & 20.4 \\ + 144 & 18.2 \\ + 14 & 20.4 \\ + 144 & 18.2 \\ + 14 & 20.4 \\ + 141 & 15.5 \\ + 4 & 13 & 33.6 \\ + 13 & 30.6 \\ + 13 & 30.6 \\ + 111 & 15.7 \\ + 8 & 54.4 \\ + 14 & 54.8 \\ + 8 & 54.4 \\ + 14 & 54.8 \\ + 8 & 54.4 \\ + 14 & 54.8 \\ + 8 & 54.4 \\ + 14 & 54.8 \\ + 8 & 54.4 \\ + 8 & 54.4 \\ + 14 & 54.8 \\ + 8 & 54.4 \\ + 14 & 54.8 \\ + 14 $	$\begin{array}{c} \circ & , & , \\ -23 & 07 & 12\\ -22 & 30 & 09\\ -22 & 10 & 09\\ -22 & 10 & 02\\ -21 & 12 & 14\\ -22 & 30 & 09\\ -21 & 12 & 14\\ -20 & 57 & 48\\ -19 & 59 & 51\\ -19 & 18 & 32\\ -17 & 46 & 30\\ -16 & 03 & 01\\ -15 & 07 & 27\\ -14 & 09 & 34\\ -13 & 09 & 36\\ -16 & 03 & 01\\ -15 & 07 & 27\\ -14 & 09 & 34\\ -11 & 04 & 08\\ -9 & 59 & 09 & 36\\ -12 & 20 & 744\\ -11 & 04 & 08\\ -9 & 59 & 09 & 36\\ -16 & 66 & 01\\ -5 & 26 & 26\\ -4 & 16 & 12\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -3 & 05 & 29\\ -1 & 54 & 29\\ -1 & 5$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} h \ m \ s \\ 0 \ 47 \ 56 \\ 0 \ 58 \ 53 \\ 1 \ 09 \ 51 \\ 1 \ 20 \ 52 \\ 1 \ 31 \ 56 \\ 1 \ 43 \ 02 \\ 1 \ 54 \ 02 \\ 2 \ 15 \ 64 \\ 2 \ 28 \ 07 \\ 2 \ 39 \ 34 \\ 2 \ 28 \ 07 \\ 3 \ 26 \ 14 \\ 2 \ 42 \ 62 \\ 3 \ 38 \ 07 \\ 3 \ 26 \ 14 \\ 4 \ 26 \\ 4 \ 38 \ 42 \\ 4 \ 51 \ 2 \ 38 \ 07 \\ 3 \ 50 \ 20 \ 74 \\ 4 \ 14 \ 14 \\ 4 \ 26 \\ 4 \ 38 \ 42 \\ 4 \ 51 \ 5 \ 40 \ 42 \\ 5 \ 53 \ 11 \\ 5 \ 40 \ 42 \\ 5 \ 53 \ 11 \\ 6 \ 05 \ 39 \\ 6 \ 18 \ 07 \\ 6 \ 30 \ 34 \\ \end{array} $	$ \begin{array}{c} m & s \\ + 3 & 29.3 \\ + 2 & 36.7 \\ + 1 & 45.8 \\ + 0 & 57.1 \\ + 0 & 10.9 \\ - 0 & 32.3 \\ - 1 & 12.2 \\ - 1 & 48.18 \\ - 2 & 46.8 \\ - 3 & 08.9 \\ - 3 & 26.0 \\ - 3 & 38.0 \\ - 3 & 38.0 \\ - 3 & 345.0 \\ - 3 & 345.0 \\ - 3 & 345.0 \\ - 3 & 345.0 \\ - 3 & 345.0 \\ - 3 & 36.2 \\ + 1 & 306.0 \\ - 2 & 44.0 \\ - 2 & 18.0 \\ - 2 & 18.0 \\ - 2 & 18.0 \\ - 2 & 44.0 \\ - 2 & 18.0 \\ - 2 & 44.0 \\ - 2 & 18.0 \\ - 1 & 15.7 \\ - 0 & 40.6 \\ + 0 & 34.2 \\ + 1 & 51.6 \\ + 2 & 30.0 \\ + 3 & 07.4 \\ \end{array} $	$\begin{array}{c} \circ & , & , & , \\ + 5 & 08 & 45 \\ + 6 & 17 & 24 \\ + 8 & 31 & 35 \\ + 9 & 36 & 49 \\ + 10 & 40 & 35 \\ + 11 & 42 & 46 \\ + 12 & 43 & 13 \\ + 13 & 41 & 49 \\ + 14 & 38 & 24 \\ + 15 & 24 & 56 \\ + 17 & 14 & 36 \\ + 18 & 01 & 40 \\ + 18 & 45 & 59 \\ + 19 & 27 & 27 \\ + 20 & 41 & 22 \\ + 21 & 13 & 36 \\ + 12 & 42 & 34 \\ + 22 & 08 & 07 \\ + 22 & 08 & 07 \\ + 22 & 08 & 07 \\ + 22 & 08 & 07 \\ + 22 & 32 & 26 & 39 \\ + 23 & 14 & 59 \\ + 23 & 14 & 59 \\ + 23 & 26 & 39 \\ + 23 & 26 & 39 \\ + 23 & 26 & 39 \\ + 23 & 23 & 35 & 52 \\ \end{array}$

Date	Apparent R.A.	Apparent Equation Apparent R.A. of Time Decl.		Date	Apparent R.A.	Equation of Time	Apparent Decl.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \text{m} & \text{s} \\ +3 & 43.15 \\ +4 & 47.08 \\ +5 & 36.5 \\ +5 & 54.73 \\ +5 & 54.73 \\ +5 & 54.73 \\ +6 & 616.99 \\ +6 & 619.02 \\ +5 & 542.2 \\ +5 & 542.2 \\ +5 & 542.2 \\ +5 & 542.2 \\ +5 & 542.2 \\ +5 & 542.2 \\ +1 & 10.88 \\ +2 & 209.1 \\ +1 & 10.25.4 \\ +2 & 031.08 \\ -1 & 230.8 \\ +2 & 333.4 \\ +0 & 333.4 \\ -5 & 5449.4 \\ -1 & 5449.4 \\ -1 & 9 & 499.2 \\ \end{array} $	$\begin{array}{c} \circ & , & , & , \\ +23 & 04 & 58 \\ +22 & 30 & 24 \\ +22 & 32 & 17 \\ +22 & 10 & 38 \\ +21 & 45 & 35 \\ +21 & 17 & 11 \\ +20 & 10 & 45 & 33 \\ +20 & 10 & 45 & 33 \\ +20 & 10 & 25 & 66 \\ +18 & 52 & 10 & 32 & 266 \\ +18 & 52 & 30 & 66 \\ +18 & 52 & 22 & 11 \\ +16 & 33 & 34 \\ +15 & 43 & 33 & 266 \\ +12 & 55 & 54 \\ +11 & 56 & 32 & 22 \\ +10 & 55 & 27 \\ +9 & 52 & 46 \\ +11 & 56 & 27 \\ +9 & 52 & 46 \\ +12 & 55 & 54 \\ +11 & 56 & 32 \\ +10 & 55 & 27 \\ +9 & 52 & 46 \\ +3 & 12 & 55 & 54 \\ +3 & 12 & 10 \\ +2 & 02 & 42 \\ +0 & 17 & 16 \\ +3 & 12 & 10 \\ +2 & 02 & 42 \\ +0 & 17 & 16 \\ -1 & 127 & 29 \\ -2 & 37 & 38 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} m & s \\ -10 & 46.6 \\ -11 & 41.2 \\ -12 & 32.6 \\ -13 & 20.1 \\ -14 & 03.2 \\ -14 & 41.4 \\ 03.2 \\ -15 & 40.7 \\ -16 & 00.9 \\ -16 & 12.4 \\ -16 & 20.2 \\ -16 & 12.4 \\ -16 & 20.2 \\ -16 & 12.4 \\ -15 & 34.2 \\ -15 & 34.2 \\ -15 & 34.2 \\ -15 & 34.2 \\ -13 & 40.0 \\ -12 & 47.1 \\ -11 & 47.4 \\ -10 & 41.6 \\ -9 & 30.2 \\ -8 & 13.9 \\ -6 & 53.4 \\ -5 & 29.3 \\ -2 & 34.2 \\ -1 & 04.5 \\ +0 & 25.4 \\ +1 & 54.4 \\ \end{array}$		

1932 EPHEMERIS OF THE SUN AT 0h GREENWICH CIVIL TIME

To obtain the R.A. of Mean Sun, subtract the Equation of Time from the Right Ascension; adding 12h to this gives the Sidereal Time at 0h G.C.T. In the Equation of Time the Sign + means the watch is faster than the Sun, -that it is slower. To obtain the Local Mean Time, in the former case add the Equation of Time to and in the latter case subtract it from, apparent or sun-dial time.

TIMES OF SUNRISE AND SUNSET

In the tables on pages 10 to 21 are given the times of sunrise and sunset for places in latitudes 44° , 46° , 48° , 50° and 52° , which cover pretty well the populated parts of Canada. The times are given in Mean Solar Time, and in the table on the page following this, are given corrections to change these times to the Standard or Railroad times of the cities and towns named, or for places near them.

How the Tables are Constructed

The time of sunrise and sunset at a given place, in mean solar time, varies from day to day, and depends principally upon the declination of the sun. Variations in the equation of time, the apparent diameter of the sun and atmospheric refraction at the points of sunrise and sunset also affect the final result. These quantities, as well as the solar declination, do not have precisely the same values of corresponding days from year to year, and so it is impossible to give in any general table the exact time of sunrise and sunset day by day.

With this explanation the following general table has been computed, givin³ the rising and setting of the upper limb of the sun, corrected for refraction, using the values of the solar declination and equation of time given in the Nautical Almanac for 1899; these are very close average values and may be accepted as approximately correct for years. It must also be remembered that these times are computed for the sea horizon, which is only approximately realised on land surfaces, and is generally widely departed from in hilly and mountainous localities. The greater or less elevation of the point of view above the ground must also be considered, to get exact results.

The Times for Any Station

In order to find the time of sunrise and sunset for any place on any day, first from the list below find the approximate latitude of the place and the correction, in minutes, which follows the name. Then find in the monthly table the time of sunrise and sunset for the proper latitude, on the desired day, and apply the correction.

44 [°]		46°		48°	48°		50°		52°	
m	ins.	m	ins.		mins.	1	nins.	n	nins.	
Barrie	+ 17	Charlotte-		Port Arth	ur + 57	Brandon	+40	Calgary	+ 36	
Brantford	+21	town	+13	Victoria	+ 13	Indian		Edmon-	. 0	
Chatham	+ 29	Fredericton	+ 26		U	Head	- 5	tor	+ 34	
Goderich	+ 27	Montreal	- 6			Kamloops	+ 2	Prince	. 51	
Guelph	+21	Ottawa	+ 3			Kenora	+ 18	Alber	t+ ∡	
Halif ax	+ 14	Parry Sound	+ 20			Medicine		Saska-		
Hamilton	+20	Quebec	- 15			Hat	+ 22	toor	1+ 6	
Kingston	+ 6	Sherbrooke	- I 2			Moosejaw	+ 2			
London	+ 25	St. John,				Moosomin	+40			
Orillia	$+ 1\bar{8}$	N.B.	+ 24			Nelson	- 11			
Owen Sound	l + 24	Sydney	+ i			Portage La				
Peterboro	+13	Three Rivers	- 10			Prairie	+ 33			
Port Hope	+ 14					Regina	- 2			
Stratford	+ 24					Vancouver	+ 12			
Toronto	+ 18					Winnipeg	+28			
Windsor	+32				(13				
Woodstock	+23									
Yarmouth	+ 24	[

Example.—Find the time of sunrise at Owen Sound, also at Regina, on February 11.

In the above list Owen Sound is under "44°", and the correction is + 24 min. On page 11 the time of sunrise on February 11 for latitude 44° is 7.05; add 24 min. and we get 7.29 (Eastern Standard Time). Regina is under "50°", and the correction is -2 min. From the table the time is 7.18 and subtracting 2 min. we get the time of sunrise 7.16 (Central Standard Time).

JANUARY

	Latitu	de 44°	Latitu	le 46 °	Latitu	de 48 °	Latitu	de 50 °	Latitud	le 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
1 2 3 4 5	h. m. 7 35 7 35 7 35 7 35 7 35 7 35 7 35	h. m. 4 33 4 34 4 35 4 36 4 37	h. m. 7 42 7 42 7 42 7 42 7 42 7 42 7 42	h. m. 4 26 4 26 4 27 4 28 4 29	h. m. 7 50 7 50 7 50 7 50 7 50 7 50	h. m. 4 18 4 19 4 20 4 21 4 22	h. m. 7 59 7 59 7 59 7 59 7 58 7 58 7 58	h. m. 4 9 4 10 4 11 4 12 4 13	h. m. 8 9 8 8 8 8 8 7 8 7	h. m. 3 59 4 0 4 2 4 3 4 4
6 7 8 9 10	7 35 7 35 7 34 7 34 7 34 7 34	4 38 4 39 4 40 4 41 4 42	$\begin{array}{c} 7 & 42 \\ 7 & 42 \\ 7 & 41 \\ 7 & 41 \\ 7 & 41 \\ 7 & 41 \end{array}$	4 30 4 32 4 33 4 34 4 35	7 49 7 49 7 49 7 49 7 49 7 48	4 23 4 24 4 25 4 26 4 27	7 58 7 58 7 57 7 57 7 57 7 56	4 14 4 16 4 17 4 18 4 19	8 6 8 6 8 5 8 5 8 5 8 4	4 6 4 7 4 8 4 9 4 11
11 12 13 14 15	7 34 7 33 7 33 7 32 7 32 7 32	4 43 4 44 4 45 4 46 4 48	7 40 7 40 7 39 7 39 7 39 7 38	4 36 4 38 4 39 4 40 4 41	7 48 7 47 7 47 7 46 7 45	4 29 4 3 ⁰ 4 3 ¹ 4 33 4 34	7 56 7 55 7 55 7 54 7 53	4 21 4 22 4 23 4 25 4 26	8 4 8 3 8 2 8 1 8 0	4 12 4 14 4 15 4 17 4 19
16 17 18 19 20	7 31 7 30 7 30 7 29 7 28	4 49 4 50 4 52 4 53 4 53 4 54	7 38 7 37 7 36 7 35 7 34	4 42 4 44 4 45 4 47 4 48	$\begin{array}{c} 7 & 45 \\ 7 & 44 \\ 7 & 43 \\ 7 & 4^2 \\ 7 & 4^1 \end{array}$	4 36 4 37 4 38 4 40 4 41	7 52 7 52 7 51 7 50 7 49	4 28 4 29 4 31 4 32 4 34	8 0 7 59 7 58 7 57 7 56	4 21 4 22 4 24 4 26 4 27
21 22 23 24 25	7 28 7 27 7 26 7 25 7 25 7 25	4 55 4 57 4 58 4 59 5 1	7 34 7 33 7 32 7 31 7 30	$\begin{array}{r} 4 & 49 \\ 4 & 51 \\ 4 & 52 \\ 4 & 54 \\ 4 & 55 \end{array}$	7 40 7 40 7 39 7 38 7 36	4 43 4 44 4 46 4 47 4 49	7 48 7 46 7 45 7 44 7 43	4 36 4 37 4 39 4 41 4 42	$\begin{array}{cccc} 7 & 55 \\ 7 & 54 \\ 7 & 5^2 \\ 7 & 5^1 \\ 7 & 5^0 \end{array}$	4 29 4 31 4 32 4 34 4 36
26 27 28 29 30	7 24 7 23 7 22 7 21 7 20	5 2 5 3 5 5 5 6 5 8	7 29 7 28 7 27 7 26 7 25	4 56 4 58 4 59 5 1 5 3	7 35 7 34 7 33 7 32 7 30	$\begin{array}{r} 4 & 50 \\ 4 & 5^2 \\ 4 & 54 \\ 4 & 55 \\ 4 & 57 \end{array}$	7 42 7 40 7 39 7 38 7 36	4 44 4 46 4 47 4 49 4 51	7 49 7 47 7 46 7 45 7 43	4 38 4 39 4 41 4 43 4 44
31	7 18	5 9	7 23	5 4	7 29	4 58	7 35	4 52	7 42	4 4ó

1)	Latitu	de 44°	Latituc	le 46 °	Latitu	de 48 °	Latitu	de 50°	Latitud	le 52°
Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
т	h. m.	h. m.	h. m.							
2	7 16	5 12	7 22	5 5	7 20	5 0	7 33	4 54	7 40	4 48
3	7 15	5 13	7 20	5 /	7 25	5 1	7 32	4 50	7 30	4 50
4	7 14	5 14	7 19	5 10	7 24	5 5	7 20	4 50	7 30	4 52
5	7 13	5 15	7 18	5 11	7 22	5 6	7 27	4 59 5 I	7 34	4 54 4 56
6 7	7 12 7 10	5 17 5 18	7 17 7 15	5 12 5 14	7 21 7 19	58 59	726 724	53 55	7 31	4 57 4 59
° 9	7978	5 20 5 21	7 13 7 12	5 15 5 17	7 18 7 16	5 11 5 13	7 23 7 21	56 58	7 27 7 25	5 I 5 3
10	, .	5 23	/ 11	5 18	7 15	5 14	7 19	5 10	7 23	55
II	75	5 24	7 10	5 19	7 13	5 16	7 18	5 11	7 21	5 7
I 2	73	5 25	78	5 21	7 12	5 17	7 16	5 13	7 10	50
13	72	5 27	76	5 23	7 10	5 19	7 14	5 15	7 18	5 10
14	6 <u>59</u>	528 529	74 73	5 24 5 26	78 76	5 21 5 22	7 12 7 10	5 17 5 18	7 16 7 14	5 I2 5 I4
16 17 18 19 20	6 58 6 56 6 55 6 53 6 52	5 31 5 32 5 34 5 35 5 36	7 I 7 0 6 58 6 56 6 54	5 27 5 29 5 30 5 32 5 33	7 5 7 3 7 1 6 59 6 58	5 24 5 26 5 27 5 29 5 30	79 777 75 73 71	5 20 5 22 5 23 5 25 5 27	7 12 7 10 7 9 7 7 7 5	5 16 5 18 5 19 5 21 5 23
21 22 23 24 25	6 50 6 48 6 47 6 45 6 44	5 38 5 39 5 40 5 42 5 43	6 53 6 51 6 49 6 47 6 46	5 35 5 36 5 38 5 39 5 41	6 56 6 54 6 52 6 50 6 49	5 32 5 33 5 35 5 36 5 38	6 59 6 57 6 55 6 53 6 51	5 29 5 30 5 32 5 34 5 35	7 3 7 0 6 58 6 56 6 54	5 25 5 27 5 29 5 31 5 33
26 27 28	6 42 6 40 6 38	5 44 5 45 5 47	6 44 6 42 6 41	5 42 5 43 5 45	6 47 6 45 6 43	5 39 5 41 5 42	6 49 6 48 6 45	5 37 5 38 5 40	6 51 6 49 6 47	5 34 5 36 5 38

FEBRUARY

MARCH

C.	Latitu	de 44°	Latitud	e 46°	Latitud	le 48°	Latitude 50°	Latitude 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Suntise	S unset	Sunrise Sunset	Sunrise Sunset
I 2 3 4 5	h m 6 37 6 35 6 34 6 32 6 30	h m 5 48 5 49 5 50 5 52 5 53	h m 6 39 6 37 6 35 6 33 6 31	h m 5 46 5 47 5 49 5 50 5 52	h m 6 41 6 39 6 37 6 35 6 33	h m 5 44 5 45 5 47 5 48 5 50	h m h m 6 43 5 42 6 41 5 44 6 39 5 45 6 37 5 47 6 35 5 48	$ \begin{array}{c ccccc} h & m & h & m \\ 6 & 43 & 5 & 41 \\ 6 & 42 & 5 & 42 \\ 6 & 40 & 5 & 44 \\ 6 & 38 & 5 & 45 \\ 6 & 36 & 5 & 47 \\ \end{array} $
6 7 8 9 10	6 28 6 26 6 25 6 23 6 21	$\begin{array}{cccc} 5 & 55 \\ 5 & 56 \\ 5 & 57 \\ 5 & 58 \\ 6 & 0 \end{array}$	6 30 6 28 6 26 6 24 6 22	5 53 54 556 557 557 559	6 31 6 29 6 27 6 25 6 23	5 51 5 53 5 54 5 56 5 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 13 14 15	6 19 6 18 6 16 6 14 6 12	6 1 6 2 6 4 6 5 6 6	6 20 6 18 6 16 6 15 6 13	6 0 6 1 6 3 6 4 6 5	6 21 6 19 6 17 6 15 6 13	5 59 6 0 6 2 6 3 6 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 23 5 57 6 21 5 59 6 19 6 1 6 16 6 3 6 14 6 4
16 17 18 19 20	6 10 6 8 6 7 6 5 6 3	6 7 6 8 6 10 <u>6 11</u> 6 12	6 II 6 9 6 7 6 5 6 3	6 7 6 8 6 9 6 11 6 12	6 II 6 9 6 7 6 5 6 3	6 6 6 8 6 9 6 11 6 12	6 II 6 6 6 9 6 8 6 7 6 9 6 5 6 II 6 3 6 I3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 22 23 24 25	6 I 5 59 5 58 5 56 5 54	6 13 6 14 6 16 6 17 6 18	6 I 5 59 5 57 5 55 5 53	6 14 6 15 6 16 6 17 6 19	6 I 5 59 5 56 5 54 5 5 ²	6 14 6 15 6 17 6 18 6 20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 27 28 29 30	5 52 5 50 5 48 5 47 5 45	6 19 6 21 6 22 6 23 6 24	5 51 5 49 5 47 5 46 5 44	6 20 6 22 6 23 6 24 6 25	5 50 5 48 5 46 5 44 5 42	6 21 6 23 6 24 6 26 6 27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
31	5 43	6 25	5 42	6 27	5 40	6 28	5 38 6 30	5 36 6 32

Den	Latitu	de 44 °	Latituc	le 46 °	Latitu	1de 48°	Latitude	50 °	Latitu	de 52°
Mont	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise S	Sunset	Sunrise	Sunset
I 2 3 4 5	h. m. 5 41 5 39 5 38 5 36 5 36 5 34	h. m. 6 27 6 28 6 29 6 30 6 32	h. m. 5 40 5 38 5 36 5 34 5 32	h. m. 6 28 6 30 6 31 6 32 6 33	h. m. 5 38 5 36 5 34 5 32 5 30	h. m. 6 30 6 31 6 33 6 34 6 36	h. m. h 5 36 6 5 34 6 5 32 6 5 30 6 5 28 6	m. 31 33 35 36 38	h. m. 5 34 5 32 5 30 5 27 5 25	h. m. 6 34 6 36 6 37 6 39 6 41
6 7 8 9 10	5 32 5 30 5 29 5 27 5 25	6 33 6 34 6 35 6 36 6 37	5 30 5 28 5 26 5 24 5 23	6 34 6 36 6 37 6 39 6 40	5 28 5 26 5 24 5 22 5 20	6 37 6 38 6 40 6 41 6 43	5 26 6 5 24 6 5 21 6 5 19 6 5 17 6	39 41 42 44 46	5 23 5 21 5 19 5 16 5 14	6 43 6 44 6 46 6 48 6 49
11 12 13 14 15	5 24 5 22 5 20 5 18 5 17	6 38 6 40 6 41 6 42 6 43	5 21 5 19 5 17 5 15 5 14	$ \begin{array}{r} 6 & 41 \\ 6 & 43 \\ 6 & 44 \\ 6 & 45 \\ 6 & 46 \end{array} $	5 18 5 16 5 14 5 12 5 10	$\begin{array}{cccc} 6 & 44 \\ 6 & 45 \\ 6 & 47 \\ 6 & 48 \\ 6 & 50 \end{array}$	5 15 6 5 13 6 5 11 6 5 9 6 5 7 6	47 49 50 52 53	5 11 5 9 5 7 5 5 5 3	6 51 6 53 6 54 6 56 6 58
16 17 18 19 20	5 15 5 13 5 11 5 10 5 8	6 45 6 46 6 47 6 48 6 49	5 12 5 10 5 8 5 6 5 5	6 48 6 49 6 50 6 52 6 53	5 8 5 6 5 5 5 3 5 1	6 51 6 53 6 54 6 55 6 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55 56 58 59 1	5 I 4 58 4 56 4 54 4 52	7 0 7 1 7 3 7 5 7 6
21 22 23 24 25	5 7 5 5 5 3 5 2 5 0	6 50 6 52 6 53 6 54 6 56	5 3 5 1 4 59 4 58 4 56	6 54 6 56 6 57 6 58 7 0	4 59 4 57 4 55 4 54 4 52	6 58 7 0 7 1 7 3 7 4	4 55 7 4 53 7 4 50 7 4 49 7 4 47 7	2 4 6 7 9	4 50 4 48 4 46 4 44 4 42	7 8 7 10 7 11 7 13 7 14
26 27 28 29 30	4 59 4 57 4 56 4 54 4 53	6 57 6 58 6 59 7 0 7 1	4 54 4 53 4 51 4 50 4 48	7 I 7 2 7 3 7 5 7 6	4 5 ⁰ 4 48 4 47 4 45 4 43	7 5 7 7 7 8 7 10 7 12	4 45 7 4 43 7 4 41 7 4 39 7 4 38 7	10 12 13 15 16	4 40 4 38 4 36 4 34 4 32	7 16 7 18 7 19 7 21 7 22

APRIL

MAY

	Latitu	de 44°	Latitu	le 46 °	Latitu	de 48°	Latituo	le 50°	Latitud	le 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
1 2 3 4 5	h. m. 4 5 ¹ 4 50 4 48 4 47 4 46	h. m. 7 3 7 4 7 5 7 6 7 8	h. m. 4 47 4 45 4 43 4 42 4 41	h. m. 7 7 7 9 7 10 7 11 7 13	h. m. 4 42 4 40 4 38 4 37 4 35	h. m. 7 12 7 14 7 15 7 17 7 18	h. m. 4 36 4 34 4 32 4 31 4 29	h. m. 7 18 7 20 7 21 7 23 7 24	h. m. 4 30 4 28 4 26 4 24 4 22	h. m. 7 24 7 26 7 27 7 29 7 31
6 7 8 9 10	4 44 4 43 4 42 4 40 4 39	7 9 7 10 7 11 7 12 7 13	4 39 4 38 4 36 4 35 4 35 4 34	7 14 7 15 7 16 7 17 7 19	$\begin{array}{r} 4 & 34 \\ 4 & 3^2 \\ 4 & 3^1 \\ 4 & 29 \\ 4 & 28 \end{array}$	7 19 7 21 7 22 7 23 7 25	4 27 4 26 4 24 4 22 4 21	7 26 7 27 7 29 7 30 7 32	4 21 4 19 4 17 4 15 4 13	7 33 7 34 7 36 7 38 7 39
11 12 13 14 15	4 38 4 37 4 36 4 35 4 35 4 34	7 14 7 16 7 17 7 18 7 19	$\begin{array}{r} 4 & 3^2 \\ 4 & 3^1 \\ 4 & 3^0 \\ 4 & 49 \\ 4 & 28 \end{array}$	7 20 7 21 7 23 7 24 7 25	4 26 4 25 4 24 4 22 4 21	7 26 7 28 7 29 7 30 7 31	4 20 4 18 4 16 4 15 4 14	7 33 7 34 7 36 7 37 7 39	4 11 4 10 4 8 4 7 4 5	7 4 ¹ 7 42 7 44 7 45 7 47
16 17 18 19 20	4 32 4 31 4 30 4 30 4 30 4 29	7 20 7 21 7 22 7 23 7 24	4 26 4 25 4 24 4 23 4 22	7 26 7 27 7 28 7 30 7 31	4 20 4 18 4 17 4 16 4 15	$\begin{array}{cccc} 7 & 33 \\ 7 & 34 \\ 7 & 35 \\ 7 & 3^6 \\ 7 & 3^8 \end{array}$	4 12 4 11 4 10 4 8 4 7	$\begin{array}{c} 7 & 40 \\ 7 & 4^2 \\ 7 & 43 \\ 7 & 44 \\ 7 & 4^6 \end{array}$	4 4 4 3 4 1 4 0 3 58	7 48 7 50 7 51 7 52 7 54
21 22 23 24 25	4 28 4 27 4 26 4 25 4 24	7 25 7 26 7 27 7 28 7 29	4 21 4 20 4 19 4 18 4 17	7 32 7 33 7 34 7 35 7 36	4 14 4 13 4 12 4 11 4 10	7 39 7 40 7 41 7 43 7 44	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 7 & 47 \\ 7 & 48 \\ 7 & 49 \\ 7 & 5^1 \\ 7 & 5^2 \end{array}$	$\begin{array}{cccc} 3 & 57 \\ 3 & 56 \\ 3 & 55 \\ 3 & 53 \\ 3 & 5^2 \end{array}$	7 55 7 56 7 58 7 59 8 J
26 27 28 29 30	4 24 4 23 4 22 4 22 4 21	7 30 7 31 7 32 7 33 7 34	4 16 4 16 4 15 4 14 4 14	7 37 7 38 7 39 7 40 7 41	4 9 4 8 4 7 4 6 4 5	7 45 7 46 7 47 7 48 7 49	4 0 3 59 3 58 3 58 3 58 3 57	7 53 7 54 7 56 7 57 7 58	3 5 ¹ 3 5 ⁰ 3 49 3 47 3 46	8 2 8 3 8 5 8 6 8 8
31	4 21	7 34	4 13	7 42	4 5	7 50	3 56	7 59	3 45	89

Day of	Latitu	de 44°	Latituc	le 46 °	Latitu	de 48°	Latitu	de 50°	Latitu	de 52°
Jonth	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
1 2 3 4	h. m. 4 20 4 19 4 19 4 18	h. m. 7 35 7 36 7 37 7 38	h. m. 4 I2 4 I2 4 II 4 II 4 II	h. m. 7 43 7 44 7 44 7 45	h. m. 4 4 4 4 4 3 4 3	h. m. 7 51 7 52 7 52 7 53	h. m. 3 56 3 55 3 54 3 54	h. m. 8 0 8 1 8 2 8 3	h. m. 3 45 3 44 3 44 3 43	h. m. 8 IO 8 II 8 II 8 II 8 I2
5 6 7 8 9 10	4 18 4 17 4 17 4 17 4 17 4 17 4 16	7 39 7 39 7 40 7 41 7 41 7 42	4 10 4 10 4 10 4 10 4 9 4 9 4 9	7 46 7 47 7 48 7 48 7 48 7 49 7 49 7 49	4 2 4 2 4 1 4 1 4 1 4 1 4 0	7 54 7 55 7 56 7 57 7 57 7 57 7 58	$\begin{array}{c} 3 & 57 \\ 3 & 53 \\ 3 & 52 \\ 3 & 52 \\ 3 & 52 \\ 3 & 51 \\ 3 & 51 \end{array}$	8 4 8 4 8 5 8 6 8 7 8 8	3 43 3 43 3 42 3 42 3 42 3 41 3 41	8 13 8 14 8 15 8 15 8 15 8 16 8 17
11 12 13 14 15	4 16 4 16 4 16 4 16 4 16 4 16	7 42 7 43 7 43 7 44 7 44 7 1 4	4 9 4 9 4 8 4 8 4 8 4 8	7 50 7 51 7 51 7 52 7 52	4 0 4 0 4 0 4 0 4 0 4 0	759 759 80 80 81	3 50 3 50 3 50 3 50 3 50 3 50	8 8 8 9 8 10 8 10 8 11	3 41 3 41 3 40 3 40 3 40 3 40	8 18 8 18 8 19 8 19 8 19 8 20
16 17 18 19 20	4 16 4 17 4 17 4 17 4 17 4 17	$\begin{array}{ccc} 7 & 45 \\ 7 & 45 \\ 7 & 45 \\ 7 & 46 \\ 7 & 46 \\ 7 & 46 \end{array}$	4 8 4 8 4 8 4 8 4 8 4 8	7 53 7 53 7 54 7 54 7 54 7 54	4 0 4 0 4 0 4 0 4 0 4 0	8 I 8 2 8 2 8 2 8 2 8 3	3 50 3 50 3 50 3 50 3 50 3 50	8 11 8 12 8 12 8 12 8 12 8 13	3 40 3 40 3 39 3 39 3 39 3 39	8 21 8 21 8 22 8 23 8 23
21 22 23 24 25	4 17 4 18 4 18 4 18 4 18 4 18	7 46 7 46 7 46 7 47 7 47 7 47	4 8 4 9 4 9 4 10 4 10 4 10	7 54 7 55 7 55 7 55 7 55 7 55	4 0 4 0 4 I 4 I 4 I	8 3 8 3 8 3 8 3 8 3 8 3 8 3	3 50 3 50 3 51 3 51 3 51 3 51	8 13 8 13 8 13 8 13 8 13 8 13	3 39 3 39 3 40 3 40 3 40 3 40	8 23 8 23 8 23 8 23 8 23 8 23
26 27 28 29 30	4 19 4 19 4 19 4 20 4 20	7 47 7 47 7 47 7 47 7 47 7 47	4 IO 4 II 4 II 4 I2 4 2	7 55 7 55 7 55 7 55 7 55 7 54	4 2 4 2 4 3 4 3 4 4	8 3 8 3 8 3 8 3 8 3 8 3	3 52 3 52 3 53 3 53 3 53 3 54	8 13 8 13 8 13 8 13 8 13 8 13	3 41 3 41 3 42 3 42 3 42 3 43	8 23 8 23 8 23 8 23 8 23 8 23

JUNE

JULY

	Latitu	de 44°	Latitue	le 46°	Latitue	le 48°	Latitu	de 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
1 2 3 4 5	h. m. 4 21 4 21 4 22 4 22 4 22 4 23	h. m. 7 47 7 46 7 46 7 46 7 46 7 46	h. m. 4 13 4 14 4 14 4 15 4 15	h. m. 7 54 7 54 7 54 7 54 7 54 7 53	h. m. 4 4 4 5 4 6 4 6 4 7	h. m. 8 3 8 2 8 2 8 2 8 2 8 2 8 2	h. m. 3 55 3 56 3 56 3 56 3 57 3 58	h. m. 8 12 8 12 8 12 8 12 8 11 8 11	h. m. 3 44 3 45 3 46 3 47 3 48	h. m. 8 23 8 22 8 22 8 22 8 21 8 21
6 7 8 9	4 24 4 24 4 25 4 26 4 27	7 45 7 45 7 45 7 45 7 44 7 43	4 16 4 17 4 18 4 18 4 19	$\begin{array}{cccc} 7 & 53 \\ 7 & 53 \\ 7 & 52 \\ 7 & 5^2 \\ 7 & 5^1 \end{array}$	4 8 4 9 4 10 4 10 4 11	8 1 8 1 8 0 8 0 7 59	3 59 4 0 4 0 4 1 4 2	8 10 8 10 8 9 8 9 8 9 8 8	3 48 3 49 3 50 3 51 3 52	8 20 8 20 8 19 8 19 8 18
11 12 13 14 15	4 28 4 29 4 29 4 30 4 31	7 43 7 42 7 42 7 41 7 41 7 40	4 20 4 21 4 22 4 23 4 24	7 50 7 50 7 49 7 48 7 48 7 48	4 12 4 13 4 14 4 15 4 16	7 59 7 58 7 57 7 56 7 56 7 56	4 3 4 4 4 5 4 6 4 7	8 7 8 7 8 6 8 5 8 4	3 53 3 54 3 56 3 57 3 58	8 17 8 16 8 15 8 14 8 13
16 17 18 19 20	4 32 4 33 4 34 4 34 4 34 4 36	7 40 7 39 7 38 7 38 7 38 7 37	+ 25 4 26 4 27 4 28 4 29	7 47 7 46 7 45 7 44 7 43	4 17 4 18 4 19 4 20 4 21	7 55 7 54 7 53 7 52 7 51	4 8 4 10 4 11 4 12 4 13	8 3 8 2 8 1 8 0 7 59	3 59 4 0 4 2 4 3 4 4	8 12 8 11 8 10 8 9 8 8
21 22 23 24 25	4 37 4 38 4 39 4 40 4 40	7 36 7 35 7 34 7 33 7 32	4 30 4 31 4 32 4 33 4 34	7 42 7 41 7 40 7 39 7 38	4 23 4 24 4 25 4 26 4 27	7 50 7 49 7 48 7 47 7 46	4 15 4 16 4 17 4 18 4 20	7 58 7 57 7 56 7 54 7 53	4 5 4 7 4 8 4 10 4 11	8 7 8 5 8 4 8 2 8 1
26 27 28 29 30	4 41 4 42 4 44 4 45 4 46	7 31 7 30 7 29 7 28 7 27	4 35 4 36 4 38 4 39 4 40	7 37 7 36 7 35 7 34 7 33	4 28 4 30 4 31 4 32 4 33	7 44 7 43 7 42 7 40 7 39	4 21 4 22 4 24 4 25 4 26	7 52 7 50 7 49 7 47 7 46	4 12 4 14 4 15 4 17 4 18	8 0 7 5 ⁸ 7 57 7 55 7 54
31	4 47	7 26	4 41	7 32	4 35	7 38	4 28	7 44	4 20	7 52

AUGUST

	Latitu	de 44°	Latitude	46°	Latitu	de 48°	Latitu	1de 50 °	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise Su	nset	Sunrise	Sunset	Sunrise	Sunset	S unrise	Sunset
I 2 3 4 5	h m 4 48 4 49 4 50 4 51 4 52	h m 7 24 7 23 7 22 7 21 7 19	h m h 4 42 7 4 44 7 4 45 7 4 46 7 4 47 7	m 30 29 27 26 24	h m 4 36 4 37 4 39 4 40 4 41	h m 7 36 7 35 7 33 7 32 7 30	h m 4 29 4 31 4 32 4 33 4 35	h m 7 43 7 41 7 40 7 38 7 37	h m 4 21 4 23 4 24 4 26 4 28	n m 7 50 7 49 7 47 7 45 7 43
6 7 8 9 10	4 53 4 54 4 56 4 57 4 58	7 18 7 17 7 15 7 14 7 12	$\begin{array}{c cccc} 4 & 48 & 7 \\ 4 & 49 & 7 \\ 4 & 5^1 & 7 \\ 4 & 5^2 & 7 \\ 4 & 53 & 7 \end{array}$	23 22 20 19 17	4 43 4 44 4 45 4 46 4 48	7 29 7 27 7 26 7 24 7 22	4 36 4 38 4 39 4 40 4 42	7 35 7 33 7 3 ² 7 30 7 28	4 29 4 31 4 32 4 34 4 36	7 4 ¹ 7 40 7 38 7 36 7 34
11 12 13 14 15	$\begin{array}{cccc} 4 & 59 \\ 5 & 0 \\ 5 & 2 \\ 5 & 3 \\ 5 & 4 \end{array}$	7 II 7 9 7 8 7 6 7 5	4 54 7 4 56 7 4 57 7 4 58 7 4 59 7	16 14 12 11 9	$\begin{array}{r} 4 & 49 \\ 4 & 51 \\ 4 & 5^2 \\ 4 & 53 \\ 4 & 55 \end{array}$	7 21 7 19 7 17 7 16 7 14	4 44 4 45 4 47 4 48 4 50	7 26 7 25 7 23 7 21 7 19	4 37 4 39 4 40 4 42 4 44	7 32 7 30 7 28 7 26 7 24
16 17 18 19 20	5 5 5 6 5 7 5 8 5 10	7 3 7 2 7 0 6 <u>59</u> 6 <u>57</u>	5 I 7 5 2 7 5 3 7 5 4 7 5 6 7	8 6 4 3 1	4 56 4 57 4 59 5 0 5 2	7 12 7 10 7 9 7 7 7 5	4 51 4 53 4 54 4 55 4 55 4 57	7 17 7 15 7 13 7 12 7 9	$\begin{array}{rrrr} 4 & 45 \\ 4 & 47 \\ 4 & 48 \\ 4 & 50 \\ 4 & 5^2 \end{array}$	7 22 7 20 7 18 7 16 7 14
21 22 23 24 25	5 11 5 12 5 13 5 14 5 15	$\begin{array}{cccc} 6 & 55 \\ 6 & 54 \\ 6 & 5^2 \\ 6 & 5^0 \\ 6 & 49 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59 57 56 54 52	5 3 5 4 5 6 5 7 5 8	$\begin{array}{cccc} 7 & 3 \\ 7 & 1 \\ 6 & 59 \\ 6 & 57 \\ 6 & 56 \end{array}$	$\begin{array}{cccc} 4 & 59 \\ 5 & 0 \\ 5 & 2 \\ 5 & 3 \\ 5 & 4 \end{array}$	7 7 7 5 7 3 7 1 7 0	4 53 4 55 4 5 ⁶ 4 5 ⁸ 5 ⁰	7 12 7 10 7 8 7 6 7 4
26 27 28 29 30	5 16 5 18 5 19 5 20 5 21	6 47 6 45 6 44 6 42 6 40	5 13 6 5 14 6 5 16 6 5 17 6 5 18 6	50 48 46 45 43	5 10 5 11 5 12 5 14 5 15	$\begin{array}{cccc} 6 & 54 \\ 6 & 52 \\ 6 & 50 \\ 6 & 48 \\ 6 & 46 \end{array}$	$\begin{array}{cccc} 5 & 6 \\ 5 & 8 \\ 5 & 9 \\ 5 & 10 \\ 5 & 12 \end{array}$	6 57 6 55 6 53 6 51 6 49	5 I 5 3 5 4 5 6 5 8	7 2 7 0 6 58 6 56 6 54
31	5 22	6 38	5 19 6	41	5 17	6 44	5 14	6 47	5 10	6 51

	T	1 440	Ι <u>τ</u>	1. 100	T	1 400		1 800		1 100
Davof	Latitu	de 44*	Latituc	1e 40	Latitu	de 48~	Latitu	de 50°	Lat.tu	de 52°
Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
I 2 3 4 5	h. m. 5 23 5 24 5 25 5 27 5 28	h, m, 6 36 6 35 6 33 6 31 6 29	h. m. 5 20 5 22 5 23 5 24 5 26	h. m. 6 39 6 37 6 35 6 33 6 31	h. m. 5 18 5 19 5 21 5 22 5 23	h. m. 6 42 6 40 6 38 6 36 6 34	h. m. 5 15 5 16 5 18 5 20 5 21	h. m. 6 45 6 43 6 40 6 38 6 36	h. m. 5 11 5 13 5 15 5 17 5 19	h. m. 6 49 6 46 6 44 6 42 6 39
6 7 8 9 10	5 29 5 30 5 31 5 32 5 33	6 28 6 26 6 24 6 22 6 20	5 27 5 28 5 3 ⁰ 5 31 5 32	6 29 6 27 6 26 6 24 6 22	5 25 5 26 5 27 5 29 5 30	6 32 6 30 6 28 6 26 6 24	5 23 5 24 5 25 5 27 5 28	6 34 6 32 6 30 6 28 6 25	5 20 5 22 5 24 5 26 5 27	6 37 6 34 6 32 6 30 6 27
11 12 13 14 15	5 34 5 36 5 37 5 33 5 33	6 19 6 17 6 15 6 13 6 11	5 33 5 34 5 36 5 37 5 38	6 20 6 18 6 16 6 14 6 12	5 31 5 33 5 34 5 36 5 37	6 22 6 20 6 17 6 15 6 13	5 30 5 31 5 33 5 34 5 36	6 23 6 21 6 19 6 17 6 14	5 29 5 30 5 32 5 33 5 35	6 25 6 23 6 21 6 18 6 16
16 17 18 19 20	5 40 5 41 5 42 5 41 5 45	6 9 6 8 6 6 6 4 6 2	5 37 5 41 5 42 5 44 5 45	6 IO 6 8 6 6 6 4 6 2	5 38 5 40 5 41 5 42 5 44	6 II 6 9 6 7 6 5 6 3	5 38 5 39 5 41 5 42 5 43	6 12 6 10 6 8 6 5 6 3	5 36 5 38 5 39 5 4 ¹ 5 4 ²	6 14 6 11 6 9 6 7 6 4
21 22 23 24 25	5 46 5 47 5 48 5 49 5 50	6 0 5 58 5 56 5 55 5 53	5 46 5 47 5 48 5 5° 5 5 ¹	$\begin{array}{ccc} 6 & 0 \\ 5 & 58 \\ 5 & 56 \\ 5 & 54 \\ 5 & 52 \end{array}$	5 45 5 47 5 48 5 50 5 51	6 1 5 59 5 56 5 54 5 52	5 45 5 46 5 48 5 50 5 51	6 I 5 59 5 56 5 54 5 52	5 44 5 46 5 48 5 49 5 51	6 2 6 0 5 58 5 55 5 53
26 27 28 29 3 ⁰	5 52 5 53 5 54 5 55 5 56	5 51 5 49 5 47 5 45 5 43	5 52 5 54 5 55 5 56 5 57	5 50 5 48 5 46 5 44 5 43	5 52 5 54 5 55 5 57 5 58	5 50 5 48 5 46 5 44 5 42	5 52 5 54 5 55 5 57 5 58	5 50 5 48 5 46 5 44 5 41	5 53 5 54 5 56 5 58 5 59	5 51 5 48 5 46 5 44 5 41

SEPTEMBER

Month	Sunrise h m	Sunset	Sumiao				1			
	h m		Sumse	Sunset	S unrise	Sunset	S unrise	S unset	Sunrise	Sunset
2 3 4 5	5 58 5 59 6 0 6 1 6 2	h m 5 41 5 40 5 38 5 36 5 36 5 34	h m 5 58 6 0 6 1 6 2 6 4	h m 5 41 5 39 5 37 5 35 5 33	h m 5 59 6 1 6 2 6 4 6 5	h m 5 40 5 38 5 36 5 36 5 34 5 32	h m 6 0 6 2 6 3 6 5 6 6	h m 5 39 5 37 5 35 5 35 5 33 5 31	h m 6 1 6 3 6 5 6 6 6 8	h m 5 39 5 37 5 35 5 32 5 30
6	6 4	5 32	6 5	5 31	6 7	5 30	6 8	5 28	6 io	5 28
7	6 5	5 31	6 6	5 30	6 8	5 28	6 10	5 26	6 11	5 25
8	6 6	5 29	6 8	5 28	6 9	5 26	6 11	5 24	6 13	5 23
9	6 8	5 27	6 9	5 26	6 11	5 24	6 12	5 22	6 15	5 21
10	6 9	5 25	6 10	5 24	6 12	5 22	6 14	5 20	6 16	5 19
11	6 10	5 24	6 12	5 22	6 14	5 20	ο ⁵ 16	5 18	6 18	5 17
12	6 11	5 22	6 13	5 20	6 15	5 18	6 17	5 16	6 19	5 15
13	6 12	5 20	6 14	5 18	6 17	5 16	6 19	5 14	6 21	5 13
14	6 13	5 19	6 16	5 16	6 18	5 14	6 21	5 12	6 23	5 10
15	6 15	5 17	6 17	5 14	6 20	5 12	6 22	5 10	6 24	5 8
16	6 16	5 15	6 18	5 13	6 21	5 10	6 24	5 7	6 26	5 6
17	6 17	5 13	6 20	5 11	6 22	5 8	6 26	5 5	6 27	5 4
18	6 19	5 12	6 21	5 9	6 24	5 6	6 27	5 3	6 29	5 1
19	6 20	5 10	6 22	5 8	6 25	5 5	6 28	5 2	6 31	4 59
20	6 21	5 9	6 24	5 6	6 27	5 3	6 30	5 0	6 33	4 57
21	6 22	5 7	6 25	5 4	6 28	5 1	6 32	$\begin{array}{rrrr} 4 & 57 \\ 4 & 56 \\ 4 & 54 \\ 4 & 5^2 \\ 4 & 5^0 \end{array}$	6 35	4 55
22	6 24	5 6	6 27	5 2	6 30	4 59	6 34		6 37	4 53
23	6 25	5 4	6 28	5 1	6 31	4 58	6 35		6 39	4 51
24	6 26	5 2	6 30	4 59	6 33	4 56	6 37		6 40	4 48
25	6 28	5 1	6 31	4 57	6 34	4 54	6 38		6 42	4 46
26	6 29	4 59	6 32	4 56	6 36	4 5 ²	6 40	4 48	6 44	4 44
27	6 30	4 57	6 34	4 54	6 38	4 5 ⁰	6 42	4 46	6 46	4 42
28	6 32	4 56	6 35	4 52	6 39	4 48	6 43	4 44	6 48	4 40
29	6 33	4 55	6 37	4 51	6 41	4 47	6 45	4 42	6 50	4 38
30	6 34	4 55	6 38	4 49	6 42	4 45	6 47	4 41	6 52	4 36

OCTOBER

	Latitu	de 44°	Latitud	le 46 °	Latitu	ide 48°	Latitu	de 50°	Latitu	de 52°
Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
1 2 3 4 5	h. m. 6 37 6 38 6 40 6 41 6 42	h. m. 4 51 4 49 4 48 4 47 4 45	h. m. 6 41 6 42 6 44 6 45 6 47	h. m. 4 46 4 45 4 44 4 42 4 41	h. m. 6 45 6 47 6 48 6 50 6 51	h. m. 4 42 4 41 4 39 4 38 4 36	h. m. 6 50 6 52 6 53 6 55 6 57	h. m. 4 37 4 36 4 34 4 32 4 31	h. m. 6 55 6 57 6 59 7 1 7 2	h. m. 4 33 4 31 4 29 4 27 4 26
6	6 43	4 44	6 48	4 39	6 53	4 35	6 58	4 29	7 4	4 24
7	6 44	4 43	6 49	4 38	6 54	4 33	7 0	4 28	7 6	4 22
8	6 46	4 42	6 51	4 37	6 56	4 32	7 2	4 26	7 8	4 21
9	6 47	4 41	6 52	4 36	6 58	4 30	7 3	4 25	7 9	4 19
10	6 49	4 40	6 54	4 35	6 59	4 29	7 5	4 23	7 11	4 18
11	6 50	4 38	6 55	4 33	7 I	4 28	7 7	4 22	7 13	4 16
12	6 51	4 37	6 56	4 32	7 2	4 26	7 8	4 20	7 15	4 15
13	6 53	4 36	6 58	4 31	7 4	4 25	7 10	4 19	7 16	4 13
14	6 54	4 35	6 59	4 30	7 5	4 24	7 11	4 18	7 18	4 12
15	6 55	4 34	7 1	4 29	7 7	4 23	7 13	4 16	7 20	4 10
16	6 57	4 33	7 2	4 28	7 8	4 21	7 15	4 15	7 21	4 9
17	6 58	4 32	7 4	4 27	7 10	4 20	7 16	4 14	7 23	4 7
18	6 59	4 32	7 5	4 26	7 12	4 19	7 18	4 13	7 25	4 6
19	7 0	4 31	7 6	4 25	7 13	4 18	7 20	4 11	7 26	4 5
20	7 2	4 30	7 8	4 24	7 14	4 17	7 21	4 10	7 28	4 4
21	7 3	4 29	7 9	4 23	7 15	4 17	7 23	4 9	7 30	4 3
22	7 4	4 28	7 10	4 22	7 17	4 16	7 24	4 8	7 32	4 2
23	7 6	4 28	7 12	4 22	7 19	4 15	7 26	4 7	7 33	4 0
24	7 7	4 27	7 13	+ 21	7 20	4 14	7 28	4 6	7 35	3 59
25	7 8	4 26	7 14	4 20	7 21	4 13	7 29	4 5	7 37	3 58
26 27 28 29 30	7 9 7 10 7 12 7 13 7 14	4 26 4 25 4 25 4 24 4 24 4 24	7 16 7 17 7 18 7 19 7 21	4 19 4 19 4 18 4 18 4 18 4 17	7 23 7 24 7 25 7 27 7 28	4 12 4 12 4 11 4 10 4 10	7 31 7 32 7 33 7 35 7 36	4 4 4 4 4 3 4 2 4 2	7 38 7 40 7 41 7 43 7 44	3 57 3 56 3 55 3 55 3 55 3 54

NOVEMBER

	Latitu	de 44°	Latitu	de 46°	Latitu	de 48°	Latitu	1de 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	S unrise	Sunset
I 2 3 4 5	h m 7 15 7 16 7 17 7 18 7 19	h m 4 23 4 23 4 23 4 23 4 23 4 22	h m 7 22 7 23 7 24 7 25 7 26	h m 4 16 4 16 4.16 4 16 4 16 4 15	h m 7 29 7 31 7 32 7 33 7 34	h m 4 9 4 9 4 8 4 8 4 8 4 8	h m 7 37 7 39 7 40 7 41 7 42	h m 4 I 4 0 4 0 3 59	h m 7 46 7 47 7 48 7 50 7 51	h m 3 54 3 53 3 52 3 52 3 51
6 7 8 9 10	7 20 7 21 7 22 7 23 7 24	4 22 4 22 4 22 4 22 4 22 4 22	7 27 7 29 7 30 7 30 7 31	4 15 4 15 4 15 4 15 4 15 4 15	7 35 7 36 7 37 7 37 7 37 7 38	4 8 4 7 4 7 4 7 4 7 4 7	7 43 7 45 7 46 7 47 7 48	3 59 3 59 3 59 3 59 3 58 3 58	7 53 7 54 7 55 7 56 7 57	3 51 3 50 3 50 3 50 3 50 3 50
11 12 13 14 15	7 25 7 26 7 26 7 27 7 28	4 22 4 22 4 22 4 22 4 22 4 23	7 32 7 33 7 34 7 35 7 3 ⁶	4 15 4 15 4 15 4 15 4 15 4 15	7 40 7 41 7 42 7 43 7 44	4 7 4 7 4 7 4 7 4 7 4 7	$\begin{array}{c} 7 & 49 \\ 7 & 5^{\circ} \\ 7 & 5^{1} \\ 7 & 5^{2} \\ 7 & 53 \end{array}$	3 58 3 58 3 58 3 58 3 58 3 58 3 58	7 58 7 59 7 59 8 0 8 1	3 50 3 50 3 49 3 49 3 49 3 49
16 17 18 19 20	7 29 7 30 7 3 ⁰ 7 3 ¹ 7 3 ¹	4 23 4 23 4 24 4 24 4 24 4 24	7 36 7 37 7 38 7 38 7 38 7 39	4 15 4 16 4 16 4 16 4 16 4 17	7 44 7 45 7 46 7 46 7 46 7 47	4 7 4 8 4 8 4 8 4 8 4 9	$\begin{array}{cccc} 7 & 53 \\ 7 & 54 \\ 7 & 55 \\ 7 & 55 \\ 7 & 56 \\ 7 & 5^6 \end{array}$	3 58 3 59 3 59 3 59 3 59 4 0	$ \begin{array}{rrrr} 8 & 2 \\ 8 & 3 \\ 8 & 4 \\ 8 & 4 \\ 8 & 5 \\ \end{array} $	3 49 3 49 3 50 3 50 3 51
21 22 23 24 25	7 32 7 32 7 33 7 33 7 33 7 34	4 25 4 25 4 26 4 27 4 27	7 39 7 40 7 40 7 41 7 41 7 41	4 17 4 18 4 18 4 19 4 20	7 47 7 48 7 48 7 49 7 49 7 49	4 9 4 10 4 10 4 11 4 12	7 56 7 57 7 57 7 58 7 58 7 58	4 0 4 I 4 I 4 2 4 3	8 5 8 6 8 6 8 7 8 7	3 51 3 52 3 52 3 53 3 53
26 27 28 29 3 ⁰	7 34 7 34 7 34 7 35 7 35	4 28 4 28 4 29 4 30 4 31	7 42 7 42 7 42 7 42 7 42 7 42 7 42	4 20 4 21 4 22 4 22 4 23	7 50 7 50 7 50 7 50 7 50 7 50	4 12 4 13 4 14 4 15 4 16	7 58 7 59 7 59 7 59 7 59 7 59	4 3 4 4 4 5 4 6 4 7	8 8 8 8 8 8 8 8 8 8 8 8	3 54 3 54 3 55 3 56 3 57
31	7 35	4 32	7 42	4 24	7 50	+ 17	7 59	4 8	88	3 58

DECEMBER

THE PLANETS DURING 1932

By R. J. McDiarmid

In the following notes on the planets a general account of the phenomena resulting from their motions is given. Fuller details regarding any particular phenomenon will be found on the pages headed "The Sky for the Month" (pages $30, 32, \ldots$).

MERCURY

Among the planets, Mercury is notable in several respects. It is the smallest in diameter, the smallest in mass, the nearest to the sun and the swiftest in its orbital motion. It also has the most eccentric orbit, with the greatest inclination to the ecliptic.

Its apparent separation from the sun is never great, its maximum value ranging from 18° to 28° . In the year 1932, it reaches greatest elongation seven times. At such times when we search for it, in the west just after sunset, or in the east just before sunrise, it is never high above the horizon, and even with clear sky the planet is not easily located, although it is as bright as a first magnitude star.

On account of the inclination of the ecliptic to the horizon, Mercury is usually best seen, in northern latitudes, as an evening star in the spring, or as a morning star in the autumn.

The greatest eastern elongations in 1932 (Mercury, an evening star), are on March 23, $18^{\circ} 40'$; July 20, $26^{\circ} 54'$; November 14, $22^{\circ} 36'$.

The greatest western elongations (Mercury, a morning star), are on January 10, 23° 27'; May 8, 26° 25'; September 3, 18° 04'; December 23, 22° 00'.

The March elongation is the best of the year for evening observation, while the elongation of September is the most suitable for morning observation.

Venus

The next planet in order from the sun is Venus, by far the brightest and most conspicuous of all in our skies. It is nearly the earth's twin in respect to magnitude, density and general constitution, if not in other physical conditions.

Venus comes closest to the earth of any body except Eros, the moon, and an occasional comet. Its mean distance from the sun is 67 millions of miles and its distance from the earth ranges from 26 million to 160 million miles.

It is so brilliant that it is easily seen with the naked eye in the day time for several weeks when near its greatest elongation. At the beginning of the year Venus is seen as an evening star. On April 19 the planet reaches greatest eastern elongation, when it is nearly 46° east of the sun. Venus reaches its greatest brilliancy May 22, having then stellar magnitude -4.2, nearly fifteen times as bright as Sirius,—a beautiful object for observation.

Venus continues as an evening star till early summer; on June 29 it is in inferior conjunction with the sun; sometime later it is seen in the eastern sky as a morning star. It reaches maximum brightness a second time on August 5, and on September 7 attains its greatest elongation, 46° west of the sun.

On October 19 Venus and Jupiter are in conjunction and will appear as a most interesting morning observation.

Fig. 1. Path of Venus among the Stars during 1932. The position of the planet on the first of each month is shown by a little circle. From June to August it is retrograding, as it is coming between the earth and the sun, and hence is invisible. This is indicated by the wavy line across the path.

MARS

At the beginning of the year Mars is in the constellation Sagittarius, and on account of its proximity to the sun is not visible. On February 1 it is in conjunction with the sun and it is not till the autumn that it appears as an evening star, of magnitude +1.4 (a little brighter than Polaris), and gradually increases in brightness; by the end of the year Mars is nearly of the same brightness (magnitude +0.3) as Vega.

Fig. 2. Path of Mars among the Stars, May-December, 1932.

JUPITER

Jupiter, the next planet beyond Mars, is easily the largest and most massive of all the planets, and in brightness it is second only to Venus.

A small telescope will give a good view of the planet, since a magnification of sixty diameters gives to it an apparent diameter equal to that of the moon as seen by the naked eye. Bands are seen on its surface, parallel to the equator. They are believed to be clouds, though they are much more permanent than the cloud formations on the earth's surface.

Jupiter is known to possess nine moons. The four largest (two of them larger than Mercury), can be seen with field glasses, but the others are extremely faint bodies and require the most powerful instruments to detect them.

On February 7 Jupiter is in opposition to the sun, and is visible all night. On August 26 the planet is in conjunction with the sun and for some time is not visible, appearing again in the late autumn as a morning star.

On October 19 Jupiter and Venus are in conjunction and will appear as a fascinating observation for morning observers.

SATURN

Saturn possesses a remarkable set of rings and has ten satellites. It is considered to be one of the finest objects in the sky for the v sual astronomer.

During 1932 the rings of Saturn are well placed for examination.

Saturn during November and early December, 1931, is an evening star. On account of its increasing proximity to the sun it is not visible in January, 1932, and is in conjunction with the sun on January 16. By March 1 it is again visible as a morning star. On July 24 Saturn is in opposition to the sun, crossing the meridian at midnight, and is therefore visible all night.

During the autumn it is an evening star.

Fig. 3. Path of Jupiter among the Stars during 1932. The position of the planet is marked on its path for the first of each month.

URANUS

Uranus was discovered by Sir William Herschel in 1781. Before that time Saturn's path was considered the outermost boundary of the solar system, and when the planet was first seen by Herschel he thought it must be a comet. A year later its true nature was recognized. The planet has four satellites, two discovered by Herschel a few years after his discovery of the planet. In 1851 Lassell rediscovered and observed these two satellites, Oberon and Titania, and independently discovered and observed the two fainter satellites, Ariel and Umbriel. The satellites are very faint, about magnitude 14.

The period of Uranus about the sun is 84 years, and consequently its motion in the heavens is slow. Its period of rotation is 1034 hours. It is of the sixth magnitude and can be seen with the naked eye, but its motion is better observed by the aid of a field glass. A large telescope is necessary to show an appreciable disc. Uranus is in conjunction with the sun on April 9. Sometime later it is visible in the morning. On October 14 it is in opposition to the sun and is visible the entire night.

Fig. 4. Path of Saturn among the Stars during 1932. Position on the first of each month is marked.

Fig. 5. Path of Uranus among the Stars during 1932. Position on the first of each month is marked.

NEPTUNE

Neptune was discovered in 1846, as the result of the mathematical discussion of the planet Uranus, which, for some unknown reason, was not following the path predicted for it. The discovery is one of the most interesting romances in the history of astronomy.

Neptune, until two years ago, was considered the most distant planet of the solar system, being 2,800 millions of miles from the sun, and requiring 165 years to complete a revolution. The discovery of a new member of the solar system, Pluto, at Flagstaff Observatory, Arizona, in 1930, has robbed Neptune of this distinction.

Neptune is in opposition to the sun on February 26, and is visible all night at the beginning of the year. On August 31 it is in conjunction with the sun and is not visible. Neptune appears as an eighth magnitude star and hence can be seen only with a telescope. It has a single satellite, with magnitude about 13. The satellite was discovered by Lassell a few months following the discovery of the planet.

Pluto

Percival Lowell, founder and late Director of the Lowell Observatory, Flagstaff, Arizona, through his researches on the motions of the planets Uranus and Neptune, was led in 1915 to predict the position of a body beyond Neptune which was producing small perturbations of these planets. From his extensive mathematical investigations, he gave its position in the heavens within about five degrees.

In the discovery of this planet history seems to have repeated itself closely, except in one tragic detail—Percival Lowell did not live to see his prediction confirmed.

The body was discovered by the staff of the Lowell Observatory at Flagstaff about the beginning of the year 1930. Since its discovery, many observations have been recorded from photographs dating back to 1919. The discussion of these observations confirms, to a certain degree, Lowell's prediction. The period of revolution of the new planet about the sun is 248 years, one and a half times the period of Neptune; the estimated mass based on certain assumptions is nearly that of the earth, while the distance from the sun is approximately 900 millions of miles farther than Neptune.

The stellar magnitude of the new planet is about 14.

It should be stated that other astronomers had sought for planets beyond Neptune. Among them W. H. Pickering, formerly on the staff of Harvard Observatory and now living in Jamaica, after extensive investigations predicted the position of the planet with fair accuracy. He also predicts that another planet, which he calls P, is to be found in 1932.0 in R.A. 20h 8m, Decl. 53° 9' S.

ECLIPSES, 1932

In the year 1932 there will be four eclipses, two of the sun and two of the moon. 1. An Annular Eclipse of the Sun, March 7, 1932, invisible in North America.

Circumstances of the Eclipse

		α	n	m	
Eclipse begins	March	7	0	31.0)	
Central eclipse begins	. "	7	2	27.1	EST
Central eclipse ends	. "	7	3	24.2	E .5.1.
Eclipse ends	. "	7	5	20.1^{j}	

2. Partial Eclipse of the Moon, March 22, 1932, invisible in Toronto. The beginning visible generally in Eastern Asia, Australia, the Pacific Ocean, North America, except the northeastern part, and the extreme western part of South America; the ending visible generally in Asia, except the southwestern part, the Indian Ocean, the Pacific Ocean, and the extreme northwestern part of North America.

Circumstances of the Eclipse

••••••••••••••••••••••••••••••••••••••							
		d	h	m			
Moon enters penumbra	Iarch	22	4	58.7)			
Moon enters umbra	" "	22	5	59.2			
Middle of eclipse	4.4	22	7	32.2	- E.S.T.		
Moon leaves umbra	44	22	9	5.2			
Moon leaves penumbra	44	22	10	5.6)			
Magnitude of eclipse = 0.973 (Moon's diameter = 1.0)							

3. A Total Eclipse of the Sun, August 31, 1932, visible as total at Montreal, and partial at Ottawa and Toronto.

Circumstances of the Eclipse

		d	h	m	
Eclipse begins	August	31	12	44.5_{1}	
Central eclipse begins	"	31	14	4.2	
Central eclipse at local apparent noon	**	31	14	16.8	. E.S.T.
Central eclipse ends	"	31	16	2.6	
Eclipse ends	"	31	17	22.1)	

Maximum duration of total phase on the central line is 1m 44.8s and at Montreal duration of total phase is 24 seconds. For fuller information see the Journal of the R.A.S.C. for Dec. 1930, or the pamphlet published by the American Ephemeris, obtainable from the Superintendent of Documents, Washington, D.C., price 25 cents.

4. A Partial Eclipse of the Moon, September 14, 1932, invisible in Toronto. The beginning visible generally in Europe, Africa, the eastern part of the Atlantic Ocean, the Indian Ocean, Asia and Australia; the ending visible generally in the northeastern part of North America, South America, the Atlantic Ocean, Europe, Africa, Western Asia and the Indian Ocean.

Circumstances of the Eclipse

	· · · · ·				
		d	h	m	
Moon enters penumbra	.September	14	13	5.2)
Moon enters umbra		14	14	18.2	
Middle of eclipse		14	16	0.5	E.S.T.
Moon leaves umbra		14	17	42.8	
Moon leaves penumbra	. "	14	18	55.7	ļ

Magnitude of eclipse = 0.982 (Moon's diameter = 1.0)

THE SKY FOR JANUARY, 1932

By MIRIAM S. BURLAND

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During January the sun's R.A. increases from 18h 41m to 20h 54m, and its Decl. changes from 23° 7' S. to 17° 30' S. The equation of time (see p. 6) increases from 2m 58s to 13m 30s. Due to this rapid rise in value the time of mean noon appears, for the first ten days of the month, to remain at the same distance from the time of sunrise, that is the forenoons as indicated by our clocks are of the same length. On the 21st the sun enters the sign Aquarius, the second winter zodiacal sign. On January 2nd the earth is in perihelion.

The Moon-For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 18h 2m, Decl. $22^{\circ} 25'$ S., and transits at 10.30. On the 11th it reaches its greatest elongation west, and on that date rises about $1\frac{1}{2}$ hours before the sun.

Venus on the 15th is in R.A. 21h 51m, Decl. 14° 46' S., and transits at 14.19. It is an evening star of magnitude -3.4, and on the 15th, sets about $2\frac{1}{2}$ hours after the sun.

Mars on the 15th is in R.A. 20h 0m, Decl. $21^{\circ} 39'$ S., and transits at 12.26. It is too close to the sun during the month for observation. It is in Sagittarius at the beginning of the month, but near the end moves into the constellation of Capricornus.

Jupiter on the 15th is in R.A. 9h 33m, Decl. 15° 31' N., and transits at 2.00. On that date it rises about 6.40 in the evening. It is in the constellation of Leo, and has a magnitude of -2.1. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 19h 50m, Decl. 21° 10' S., and transits at 12.15. It is too close to the sun for observation. On the 17th it is in conjunction with the sun, after which it becomes a morning star.

Uranus on the 15th is in R.A. 0h 59m, Decl. 5° 34' N., and transits at 17.23. Neptune on the 15th is in R.A. 10h 39m, Decl. 9° 25' N., and transits at 3.05.

JANUARY

ASTRONOMICAL PHENOMENA

(75th Meridian Civil Time)

Minima of Algol Onfigurations of Jupiter's Satellites at 2h 15m

				h	m	
	Fri.	1	$23h \oplus$ in Perihelion	20	40	d34O2
	Sat.	2				43012
	Sun.	3				42130
	Mon.	4		17	30	42013
	Tues.	5				41023
	Wed.	6	0h 45m ♂ \$ € , \$ 7° 22′ N.; 20h □ & ⊙			42013
đ	Thur.	7	18h 28.7m N.M.	14	20	42130
	Fri.	8	4h 5m of of C, of 3° 40' N.; 7h 35m. of b C, b 4° 33'			
			N			30412
	Sat.	9				3024*
	Sun.	10	5h 34m o´♀€,♀ 1° 36' N.; 22h ♀ Greatest elong.			
			W. 23° 27′	11	10	23104
	Mon.	11	$4h \circ \sigma b$, $\sigma 0^{\circ} 56' S$.			20134
	Tues.	12				10234
	Wed.	13	· · · · · · · · · · · · · · · · · · ·	8	00	dO134
	Thur.	14	23h 42m ♂ 🏵 🕼 , 👌 2° 24′ S			d2104
D	Fri.	15	15h 55.0m Moon F.Q.			30124
	Sat.	16	19h of $\mathfrak{b} \odot$	- 4	50	3042^{*}
	Sun.	17	·····			42310
	Mon.	18				42013
	Tues.	19		1	40	41023
	Wed.	20				40213
	Thur.	21	23h & in V	22	30	42103
	Fri.	22	······································			43021
6	Sat.	23	8h 44.1m F.M			34102
	Sun.	24	12h 42m of 24 (10° , 24° , 22° S	19	10	d324O
	Mon.	25	19h 36m $\sigma' \Psi \mathbb{G}$, Ψ 1° 4' S			20134
	Tues.	26	•••••••••••••••••••••••••••••••••••••••			10234
	Wed.	27		16	00	O2134
	Thur.	28				21034
	Fri.	29				3014*
C	Sat.	30	4h 32.2m Moon L.Q.	12	50	31024
	Sun.	31	····			32014

Explanation of symbols and abbreviations on page 4

THE SKY FOR FEBRUARY, 1932

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During February the sun's R.A. increases from 20h 54m to 22h 47m, and its Decl. changes from 17° 30' S. to 7° 45' S. The equation of time reaches a maximum value of 14m 23s on the 12th (see p. 6). For changes in the length of day see p. 11. On the 19th the sun enters Pisces, the third winter sign of the zodiac.

The Moon—For its phases and conjunctions with the planets, see opp. page. Mercury on the 15th is in R.A. 21h 16m, Decl. 18° 1' S., and transits at 11.42.

It is a morning star at the beginning of the month, and is approaching the sun. On the 26th it is in superior conjunction with the sun, and after that date becomes an evening star.

Venus on the 15th is in R.A. 0h 11m, Decl. 0° 33' N., and transits at 14.36. It is an evening star and by the end of the month its magnitude has increased to -3.6. It sets about $2\frac{1}{2}$ hours after the sun on the 15th.

Mars on the 15th is in R.A. 21h 39m, Decl. 15° 12' S., and transits at 12.03. On the 1st it is in conjunction with the sun, and cannot be observed during the month. About the 20th the planet moves into the constellation of Aquarius.

Jupiter on the 15th is in R.A. 9h 18m, Decl. 16° 48' N., and transits at 23.38. On the 7th it is in opposition with the sun and is in good position for observation all night. About the 10th it enters the constellation of Cancer. Its magnitude remains at -2.1. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 20h 5m, Decl. $20^{\circ} 30'$ S., and transits at 10.28. It is now a morning star, and on the 15th rises about 1 hour before the sun. It enters the constellation of Capricornus about the 10th.

Uranus on the 15th is in R.A. 1h 2m, Decl. 5° 56' N., and transits at 15.24. Neptune on the 15th is in R.A. 10h 36m, Decl. 9° 42' N., and transits at 1.00.

FEBRUARY

ASTRONOMICAL PHENOMENA

(75th Meridian Civil Time)

Minima of Algol Configurations of Jupiter's Satellites at 1h 0m

				h	m	
	Mon.	1	$1h \circ \circ' \odot; 5h \notin in Aphelion$			2034^{*}
	Tues.	2		9	40	14023
	Wed.	3	$6h \circ \mathfrak{Q} \mathfrak{P}, \mathfrak{Q} = 1^{\circ} 18' S$			40123
	Thur.	4	21h 19m $o' p @, p 4° 25' N$	-		42103
~	Fri.	5	$2h \ 13m \ o \ Q(\underline{0}, \underline{0}, 2^{\circ} 51' \text{ N} \dots)$	6	30	43201
W	Sat.	6	5h 49m $\sigma \sigma' @ \sigma' 2^{\circ} 30' N.;$ 9h 45.1m N.M			43102
	Sun.	7	$10h \partial^{\circ} 2 \odot \dots$			43201
	Mon.	8		3	20	4210*
	Tues.	9	16h 15m $\mathcal{O} \mathcal{Q}$, \mathcal{Q} , \mathcal{Q} 0° 58′ S			d4O23
	Wed.	10				40123
	Thur.	11	9h 30m ♂ ී ℚ , Š 2° 41′ S	0	10	21034
	Fri.	12	· · · · · · · · · · · · · · · · · · ·			32014
•	Sat.	131	n 6 ⁴ Greatest Hel. Lat. S	21	00	31024
Ð	Sun.	14	13h 15.7m Moon F.Q			d3O14
	Mon.	15	•••••••••••••••••••••••••••••••••••••••			21304
	Tues.	16		17	50	01234
	Wed.	17				01243
	Thur.	18	•••••••••••••••••••••••••••••••••••••••			21043
	Fri.	19		14	40	42301
~	Sat.	20	16h 41m $\sigma' 4\mathbb{Q}$, $24^{\circ} 34'$ S.; 20h $\sigma \not\in \sigma'$, $\not\in 1^{\circ} 4'$ S.			43102
U	Sun.	21	$13h \notin$ Greatest Hel. Lat. S.; $21h 7.4m F.M$			d43O1
	Mon.	22	$3h \ 49m \ \sigma' \Psi @, \Psi \ 1^{\circ} \ 5' \ S$	11	20	42130
	Tues.	23	•••••••••••••••••••••••••••••••••••••••			40123
	Wed.	24				4023*
	Thur.	25	$2h \varphi$ in $\xi \xi$	8	10	42103
-	Fri.	26	5h $\mathcal{O} \Psi \odot$; 16h $\mathcal{O} \Psi \odot$ Superior			42301
	Sat.	27	$2h \circ \forall \mathfrak{S}, \forall 0^{\circ} 48' N \dots$			3102*
0	Sun.	28	13h 3.0m Moon L.Q	5	00	30214
	Mon.	29	•••••••••••••••••••••••••••••••••••••••			21304

Explanation of symbols and abbreviations on page 4

THE SKY FOR MARCH, 1932

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During March the sun's R.A. increases from 22h 47m to 0h 41m, and its Decl. changes from 7° 45' S. to 4° 23' N. The equation of time decreases from 12m 34s to 4m 5s (see p. 6). For changes in the length of the day see p. 12. On the 20th at 19h 54m (G.C.T.) the sun enters the first spring sign of the zodiac. Aries and Spring begins. On that day the sun crosses the equator going north. On the 7th there is an annular eclipse of the sun, but it is invisible in the northern hemisphere.

The Moon—For its phases and conjunctions with the planets, see opp. page. On the 22nd there is a partial eclipse of the moon, the beginning being visible on the North American continent except the northeastern part.

Mercury on the 15th is in R.A. 0h 34m, Decl. 4° 20' N., and transits at 13.05. It is an evening star throughout the month, reaching its greatest elongation east on the 23rd. On that date it is about 18° above the western horizon at sunset and in good position for observation.

Venus on the 15th is in R.A. 2h 16m, Decl. 14° 58' N., and transits at 14.47. Its magnitude is continuing to increase. At sunset on the 15th the planet may be seen about 40° above the western horizon.

Mars on the 15th is in R.A. 23h 6m, Decl. 6° 54' S., and transits at 11.36. It is now a morning star, but too close to the sun for observation. It is in the constellation of Aquarius.

Jupiter on the 15th is in R.A. 9h 5m, Decl. 17° 44' N., and transits at 21.32. At sunset on that date it is about 40° above the eastern horizon. It is still a bright object in the constellation of Cancer. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 20h 17m, Decl. $19^{\circ} 55'$ S., and transits at 8.46. At sunrise on the 15th it is about 18° above the southeastern horizon. Its altitude is still rather low for good observation. Its magnitude is +0.9.

Uranus on the 15th is in R.A. 1h 7m, Decl. $6^{\circ} 28'$ N., and transits at 13.35. Neptune on the 15th is in R.A. 10h 33m, Decl. $10^{\circ} 0'$ N., and transits at 22.59.
MARCH

ASTRONOMICAL PHENOMENA

Minima of Algol onfigurations of Jupiter's Satellites at Oh Om

(75th_Meridian Civil Time)

				h	m	
	Tues.	1				$O134^*$
	Wed.	2		1	50	10234
	Thur.	3	8h 51m of b C, b 4° 20' N			d2O34
	Fri.	4		22	4 0	d2O14
	Sat.	5				31024
	Sun.	6	10h 01m $\checkmark \checkmark \checkmark 0^{\circ} $ 0° 38′ N			d3O21
۲	Mon.	7	2h 44.3m N.M.; Annular eclipse of \odot invisible at			
			Toronto; 23h 55m ♂ 🕸 🕻 , 🛱 0° 49′ S	19	30	42310
	Tues.	8				42031
	Wed.	9	9h ♂ in Perihelion; 19h 26m ♂ ô €, ô 2° 51' S			41023
	Thur.	10		16	20	42013
	Fri.	11	1h 04m $\circ \circ \circ \mathbb{Q}$, $\circ \circ 2^{\circ} 21'$ S.; 14h $\circ \circ 1^{\circ}$ in Ω			42O3*
	Sat.	12				43102
	Sun.	13	***************************************	13	10	34012
-	Mon.	14	•••••••••••••••••••••••••••••••••••••••			32140
Ð	Tues.	15	7h 41.0m Moon F.Q.			20314
	Wed.	16	5h β in Perihelion	10	00	10234
	Thur.	17	······································			20134
	Fri.	18	22h 42m of \mathfrak{A} , \mathfrak			2034*
	Sat.	19		6	40	31024
	Sun.	20	13h 29m $\mathcal{O} \Psi \mathbb{G}$, Ψ 1° 9' S.; 14h 54m \odot enter Υ ,			
			Spring commences .			30124
~	Mon.	21	$15h \circ \emptyset \otimes , \emptyset 2^{\circ} 54' N$			32104
3	Tues.	22	7h 37.4m F.M.; Partial eclipse of \mathbb{Q} , invisible a	t		
	117 1	00	Toronto	3	30	2014*
	Wed.	23	7h Q Greatest elong. E. 18° 40′			14023
	I nur.	24	•••••••••••••••••••••••••••••••••••••••	~	~~	d4013
	Fri.	25	111 9 C	0	20	42103
	Sat.	20	IIn Q Greatest Hel. Lat. N	0.1	10	d4302
Æ	Sun.	21	901 42 5 M I. O	21	10	43012
U.	Tuor.	4ð 20	220 43.0 WIOON L.U.			43210
	Tues.	29 20	$10h \ 20m \ 10h \ 6 h \ 49 \ 11/ N$	10	00	4201*
	Thur	0U 91	26 8 Stationary in D A	18	00	41023
	i nur.	91	$i \neq Stationary in K.A$			0213^{*}

THE SKY FOR APRIL, 1932

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During April the sun's R.A. increases from 0h 41m to 2h 32m, and its Decl. changes from 4° 23' N. to 14° 57' N. The equation of time changes from +4m 5s to -2m 55s (see p. 6). For changes in the length of day see p. 13. On the 20th the sun enters Taurus, the second spring zodiacal sign.

The Moon—For its phases and conjunctions with the planets, see opp. page. Mercury on the 15th is in R.A. 1h 1m, Decl. 7° 44' N., and transits at 11.26. It is approaching the sun and on the 10th is in inferior conjunction with it. After that date it becomes a morning star and at sunrise on the 30th is about 9° above the eastern horizon.

Venus on the 15th is in R.A. 4h 33m, Decl. 25° 11' N., and transits at 15.01. It is a brilliant object in the evening sky and in good position for observation. On the 19th it reaches its greatest elongation east and sets about $4\frac{1}{4}$ hours after the sun.

Mars on the 15th in in R.A. 0h 35m, Decl. 2° 48' N., and transits at 11.02. It is a morning star, though rather close to the sun for observation. At sunrise on the 15th it is about 10° above the eastern horizon. It is in Cetus most of the month.

Jupiter on the 15th is in R.A. 9h 2m, Decl. 17° 56' N., and transits at 19.26. The planet crosses the meridian about $\frac{1}{2}$ hour after sunset on the 15th. Its magnitude is decreasing, and by the end of the month is -1.7. It is in Cancer all month. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 20h 26m, Decl. $19^{\circ} 28'$ S., and transits at 6.53. It rises about 3 hours before the sun on the 15th, and its position for morning observation is improving. Its magnitude is +0.9 and the planet is in Capricornus. On the 24th it is in quadrature with the sun.

Uranus on the 15th is in R.A. 1h 13m, Decl. 7° 8' N., and transits at 11.40. Neptune on the 15th is in R.A. 10h 30m, Decl. 10° 15' N., and transits at 20.55.

APRIL

Minima of Algol Onfigurations of Jupiter's Satellites at

ASTRONOMICAL PHENOMENA

(75th Meridian Civil Time)

				h	m	
	Fri.	1	•••••••••••••••••••••••••••••••••••••••			3014*
	Sat.	2		14	50	3024*
	Sun.	3	· · · · · · · · · · · · · · · · · · ·			32104
	Mon.	4	15h 37m of o ⁷ C , o ⁷ 1° 34′ S			23014
0	Tues.	5	20h 21.1m N.M	11	4 0	10234
	Wed.	6	4h 59m ♂ Ô €, Ô 2° 58′ S.; 10h 1m ♂ 🖗 €, 🖗 0° 40′			
			N			02143
	Thur.	7				21043
	Fri.	8	12h 24 Stationary in R.A	8	30	4301*
	Sat.	9	5h ♂ Ĝ ⊙; 22h ♂ ឳ ồ, ₿ 3° 12′ N			43102
	Sun.	10	1h 12m $\circ \circ \circ \mathfrak{Q}$, $\circ \circ \circ \mathfrak{1}^{\circ}$ 59' S.; 6h $\circ \circ \mathfrak{P} \odot$ Inferior			43210
	Mon.	11		5	20	423O1
	Tues.	12				41023
Ð	Wed.	13	22h 15.5m Moon F.Q			40123
	Thur.	14		2	00	42103
	Fri.	15	6h 48m of 24 , 2 , 2° 47' S			42301
	Sat.	16	$22h 51m \checkmark \Psi \mathbb{G} \Psi 1^{\circ} 9' S. \dots$	22	50	31042
	Sun.	17	•••••••••••••••••••••••••••••••••••••••			d32O4
	Mon.	18	$22h \notin in \mathcal{O} \dots \dots$			2304*
	Tues.	19	14h \bigcirc Greatest elong. E. 45° 42'	19	40	10234
0	Wed.	20	14h Q Greatest Hel. Lat. N.; 16h 27.1m F.M			01234
	Thur.	21	$3h \circ \varphi \circ \gamma, \varphi \circ 15' N \dots$			21034
	Fri.	22	15h $\&$ Stationary in R.A.	16	30	20314
	Sat.	23				31024
	Sun.	24	16h $\Box b \odot$			dd3O1
	Mon.	25	•••••••••••••••••••••••••••••••••••••••	13	20	2430*
_	Tues.	26				41023
Œ	Wed.	27	3h 38m ♂ 𝔅 𝔅 , 𝔅 3° 57′ N.; 10h 14.0m Moon L.Q			40123
	Thur.	28		10	10	42103
	Fri.	29	4h \nsubseteq in Aphelion; 14h $\circ \circ^{7} \textcircled{\circ}$, $\circ^{7} \circ^{9} 0^{\circ}$ 10' S			42031
	Sat.	30	•••••			43102

THE SKY FOR MAY, 1932

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During May the sun's R.A. increases from 2h 32m to 4h 35m, and its Decl. changes from $14^{\circ} 57'$ N., to $22^{\circ} 0'$ N. The equation of time increases from 2m 55s to a maximum of 3m 47s on the 15th, and then decreases to 2m 27s at the end of the month (see p. 6). For changes in the times of sunrise and sunset see p. 14. On the 21st the sun enters Gemini, the third sign of the zodiac.

The Moon-For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 1h 51m, Decl. 8° 8' N., and transits at 10.22. On the 8th it reaches its greatest elongation west and on that date, rises about 1 hour before the sun.

Venus on the 15th is in R.A. 6h 29m, Decl. $26^{\circ} 59'$ N., and transits at 14.58. It is still a very prominent evening star and on the 22nd attains its greatest brilliancy, -4.2. At sunset on the 15th it is about 35° above the western horizon.

Mars on the 15th in in R.A. 2h 0m, Decl. $11^{\circ} 34'$ N., and transits at 10.29. It is a morning star and on the 15th rises about one hour before the sun. It is in Pisces at the beginning of the month, but enters the constellation of Aries about the 10th.

Jupiter on the 15th is in R.A. 9h 9m, Decl. $17^{\circ} 21'$ N., and transits at 17.37. On the 4th it is in quadrature with the sun. Its magnitude is still decreasing and is -1.5 at the end of the month. It is in the constellation of Cancer. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 20h 29m, Decl. 19° 21' S., and transits at 4.58. On the 15th it rises shortly after midnight and may be seen low in the south. Its magnitude is increasing somewhat and by the end of the month is +0.7.

Uranus on the 15th is in R.A. 1h 20m. Decl. 7° 45' N., and transits at 9.48.

Neptune on the 15th is in R.A. 10h 29m, Decl. $10^\circ~20'~{\rm N.},$ and transits at 18.56.

MAY

ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)

Minima of Algol configurations of Jupiter's Satellites at Sol, 45m

				h	m	
	Sun.	1		7	00	34021
	Mon.	2				32410
	Tues.	3	8h 57m 🗸 🖞 🕻 , 🖞 5° 16′ S.; 14h 14m 🏹 े 🤅 , 👌 3° 7′ S.;			
			20h 30m ර ් ල් (, ් 3° 30′ S	3	50	d0***
	Wed.	4	$2h \square 2 \odot \dots$			01234
۲	Thur.	5	13h 11.5m N.M.			12034
	Fri.	6	15h of \$\$ \$\$, \$\$ 2° 38' S			20134
	Sat.	. 7		0	40	31024
	Sun.	8	4h & Greatest elong. W. 26° 25'			30214
	Mon.	9	11h 35m ♂♀€,♀ 1° 15′ S	21	30	32104
	Tues.	10				014**
	Wed.	11	· · · · · · · · · · · · · · · · · · ·			4023*
	Thur.	12	16h 53m of 24 (C), 24 2° 31′ S	18	10	41203
Ð	Fri.	13	9h 2.2m Moon F.Q			42013
	Sat.	14	6h 42m of $\Psi \mathbb{G}$, Ψ 0° 59' S.; 19h b Stationary in R.A.			41302
	Sun.	15	······································	15	00	43012
	Mon.	16	11h Ψ Stationary in R.A			43210
	Tues.	17	· · · · · · · · · · · · · · · · · · ·			42301
	Wed.	18	15h σ´ ϕ σ̄', ϕ 2° 28′ S	11	50	4032*
	Thur.	19	13h & Greatest Hel. Lat. S			412O3
E	Fri.	20	0h 8.6m F.M			20143
	Sat.	21	· · · · · · · · · · · · · · · · · · ·	8	40	13024
	Sun.	22	$18h \ Q$ Greatest brilliancy			30124
	Mon.	23	·····			32104
	Tues	24	12h 17m $\sigma' \flat \mathbb{C}$, \flat 3° 40′ N	5	30	23014
	Wed.	25	·····			10324
Œ	Thur.	26	13h $\Box \Psi \odot$; 23h 54.5m Moon L.Q			ddO34
	Fri.	27		2	20	20143
	Sat.	28				d14O2
	Sun.	29		23	10	43012
	Mon.	30	23h 27m ♂ 🌣 🕻 , 👌 3° 23′ S			43120
	Tues.	31				43201

THE SKY FOR JUNE, 1932

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During June the sun's R.A. increases from 4h 35m to 6h 39m, and its Decl. from 22° 0' N. to its maximum value of 23° 27' N. on the 22nd and then drops to 23° 9' N., at the end of the month. On the 21st, the sun reaches summer solstice and enters Cancer, the first summer zodiacal sign, and Summer comcommences. The duration of daylight is now at its longest and does not change appreciably for some days, see p. 15. For changes in the equation of time see p. 6. The increase in this quantity at the end of the month, taken with the shortening of daylight causes the local mean time of sunset to appear almost constant for several days at the end of June and the beginning of July.

The Moon—For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 5h 41m, Decl. 24° 33' N., and transits at 12.12. It is approaching the sun and is not favourably situated for observation. On the 13th it is in superior conjunction with the sun, after that date it becomes an evening star. It sets about $1\frac{1}{4}$ hours after the sun on the 30th.

Venus on the 15th is in R.A. 7h 3m, Decl. 22° 51' N., and transits at 13.27. During the month its magnitude decreases from -4.2 to -2.8. It is rapidly approaching the sun, and on the 29th is in inferior conjunction with that body, and cannot be observed.

Mars on the 15th is in R.A. 3h 30m, Decl. 18° 40' N., and transits at 9.57. Its position for observation as a morning star, is improving. About the 15th of the month it enters the constellation of Taurus.

Jupiter on the 15th is in R.A. 9h 26m, Decl. 16° 3' N., and transits at 15.52. At sunset on that date the planet is about 35° above the western horizon. It is in Cancer at the beginning of the month, but enters Leo about the 10th. Its magnitude reaches -1.4 by the end of the month. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 20h 26m, Decl. $19^{\circ} 36'$ S., and transits at 2.53. On the 15th it rises in the southeast about 10.30 and is favourably situated for observation. Its magnitude reaches +0.5 at the end of the month.

Uranus on the 15th is in R.A. 1h 25m, Decl. 8° 14' N., and transits at 7.51. Neptune on the 15th is in R.A. 10h 30m, Decl. 10° 15' N., and transits at 16.55.

JUNE

ASTRONOMICAL PHENOMENA

Minima of Algol Configurations of Jupiter's Satellites at

(75th	Meridian	Civil	Time)
-------	----------	-------	-------

				h	m	
	Wed.	1	22h 59m ♂ ♂ ₫ , ♂ 4° 41′ S	20	00	41032
	Thur.	2				40123
	Fri.	3	5h 46m ♂ ⊈ €, ₿ 5° 35′ S			42O3*
۲	Sat.	4	4h 16.0m N.M	16	50	4103*
	Sun.	5				34012
	Mon.	6	17h 12m $\sigma' \mathbb{Q}\mathbb{C}$, \mathbb{Q} 2° 56′ S			31204
	Tues.	7	1h Q Stationary in R.A.; 13h & in Ω	13	30	32014
	Wed.	8	-			10324
	Thur.	9	5h 4m of 24 (, 24 2° 3′ S			01234
	Fri.	10	13h 14m $\checkmark \Psi \mathbb{G}$, Ψ 0° 42′ S	10	20	21034
Ð	Sat.	11	16h 39.5m Moon F.Q			d2O34
	Sun.	12	4h & in Perihelion			30124
	Mon.	13	$2h \circ \emptyset \odot$ Superior	7	10	31204
	Tues.	14	• • • •			32401
	Wed.	15	16h ♀ in ♡			41032
	Thur.	16	· · · · · · · · · · · · · · · · · · ·	4	00	40123
	Fri.	17				42103
E	Sat.	18	7h 38.1m F.M.			d42O3
-	Sun.	19		0	50	4302*
	Mon.	20	20h 13m $\sigma' b @, b 3^{\circ} 28' N$			d4310
	Tues.	21	10h 23m O enters 69. Summer commences	21	40	32401
	Wed.	22	0h $\sigma' \not\in Q$, $\not\in 3^{\circ}$ 18' N.: 10h $\not\in$ Greatest Hel. Lat. N.			1302*
	Thur.	23	,			01234
	Fri.	24		18	30	21034
Ø	Sat.	25	15h 35.9m Moon L.O.			20134
	Sun.	26				3024*
	Mon.	27	8h 40m ~ ô @ . ô 3° 42′ S	15	20	31024
	Tues.	28				32014
	Wed.	29	Oh $\sigma \circ \Theta$ Inferior.			13024
	Thur.	30	22h 38m ơ ở 🕼 . ở 5° 5′ S.	12	10	04132
		55			10	U 1104

THE SKY FOR JULY, 1932

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During July the sun's R.A. increases from 6h 39m to 8h 44m, and its Decl. decreases from 23° 9' N. to 18° 9' N. The equation of time increases from 3m 31s on the 1st to 6m 21s on the 27th and then drops to 6m 12s at the end of the month. On the 23rd the sun enters Leo, the second summer sign of the zodiac. For changes in the length of day, see p. 16. On the 3rd the earth is in aphelion.

The Moon-For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 9h 24m, Decl. 15° 30' N., and transits at 13.53. It is an evening star during the month. On the 20th it reaches its greatest elongation east and may then be seen at sunset about 10° above the western horizon.

Venus on the 15th is in R.A. 5h 58m, Decl. 17° 59' N., and transits at 10.26. It is now a morning star, rising on the 15th about 1 hour before the sun. Its magnitude is again increasing and is -4.2 by the end of the month.

Mars on the 15th is in R.A. 4h 59m, Decl. 22° 46' N., and transits at 9.28. At sunrise on the 15th, the planet is about 25° above the eastern horizon. It is in the constellation of Taurus.

Jupiter on the 15th is in R.A. 9h 48m, Decl. 14° 15' N., and transits at 14.15. It is approaching the sun and is not favourably situated for observation. On the 15th it sets about $1\frac{1}{2}$ hours after the sun. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 20h 18m, Decl. 20° 4' S., and transits at 0.47. On the 15th it rises about 30 minutes after sunset and during the month is in good position for observation, being visible all night. On the 22nd, it reaches its greatest brilliancy for the year, when its magnitude is +0.3. On the 24th it is in opposition with the sun and then rises soon after sunset. It is in the constellation of Capricornus.

Uranus on the 15th is in R.A. 1h 27m, Decl. $8^{\circ} 29'$ N., and transits at 5.55. Neptune on the 15th is in R.A. 10h 33m, Decl. $10^{\circ} 0'$ N., and transits at 15.04.

JULY

ASTRONOMICAL PHENOMENA

Minima of Algol Configurations

(75th Meridian Civil Time)

				h	m	
	Fri.	1				41203
	Sat.	2				42013
•	Sun.	3	3h 24m $\sigma' \oplus \mathbb{G}$, \oplus 8° 48' S.; 15h \oplus in Aphelion; 17h			
			19.7m N.M	9	00	41302
	Mon.	4				d4302
	Tues.	5	12h 24m $\sigma' \notin \mathbb{G}, \notin 2^\circ 9' S$			43201
	Wed.	6	19h 41m of 210, 21 1° 30' S	5	40	4310*
	Thur.	7	19h 47m $\sigma' \Psi @, \Psi 0^{\circ} 25' S$			40132
	Fri.	8				41203
	Sat.	9	19h ♂ in Ω	2	30	2013*
Ð	Sun.	10	22h 6.8m Moom F.O			10324
	Mon.	11	~	23	20	30124
	Tues.	12				3204*
	Wed.	13	······			31204
	Thur.	19		20	10	O3124
	Fri.	15	$21h \square \textcircled{O} \bigcirc : 21h \oiint in \circlearrowright$			12034
	Sat.	16				20143
E	Sun.	17	16h 6.4m F.M	17	00	10432
-	Mon.	18	$2h 42m \sigma \beta \mathbb{G}, \beta 3^{\circ} 26' N$			34012
	Tues.	19				43210
	Wed.	20	$3h \varphi$ in Aphelion; $14h \varphi$ Greatest elong, E, $26^{\circ} 54'$;			
			15h ^Q Stationary in R.A.	13	50	43210
	Thur.	21				4012*
	Fri.	22	21h of 2 2 2° 21′ S.			
	Sat.	23		10	40	
	Sun.	24	9h ♂b ⊙; 17h 30m ♂ ĉ €, ĉ 4° 0′ S			
Œ	Mon.	25	8h 41.5m Moon L.O.			
	Tues.	26	$3h \notin$ in Aphelion	7	30	
	Wed.	27	*			
	Thur.	28				
	Fri.	29	10h & Stationary in R.A.: 19h 58m of of @, of 4° 51' S.	4	10	
	Sat.	30	4h 7m of Q (, Q 10° 41' S			
	Sun.	31				

THE SKY FOR AUGUST, 1932

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During August the sun's R.A. increases from 8h 44m to 10h 40m, and its Decl. decreases from 18° 9' N. to 8° 27' N. The equation of time decreases from 6m 12s to 0m 7s. The sun enters Virgo, the third summer zodiacal sign on the 23rd. For changes in the length of day see p. 17. On the 31st there is a total eclipse, visible as such in part of eastern Canada. See p. 27.

The Moon—For its phases and conjunctions with the planets, see opp. page. Mercury on the 15th is in R.A. 9h 49m, Decl. 8° 9' N., and transits at 12.12. It is an evening star at the beginning of the month, but is approaching the sun. On the 17th it is in inferior conjunction with that body, after which the planet may be seen in the morning sky.

Venus on the 15th is in R.A. 6h 37m, Decl. $18^{\circ} 28'$ N., and transits at 9.04. On the 5th it attains its greatest brilliancy, -4.2. It is in good position for observation in the morning.

Mars on the 15th is in R.A. 6h 29m, Decl. 23° 44' N., and transits at 8.56. It is a morning star in the constellation of Gemini. On the 15th it rises about 4 hours before the sun.

Jupiter on the 15th is in R.A. 10h 13m, Decl. $12^{\circ} 1'$ N., and transits at 12.38. The planet is too close to the sun for observation. On the 26th it is in conjunction with the sun. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 20h 9m, Decl. 20° 36' S., and transits at 22.32. It is an evening star and at sunset on the 15th may be seen about 10° above the southeastern horizon. It is still visible all night in the constellation of Capricornus.

Uranus on the 15th is in R.A. 1h 27m, Decl. 8° 28' N., and transits at 3.54. Neptune on the 15th is in R.A. 10h 37m, Decl. 9° 37' N., and transits at 13.02.

AUGUST

ASTRONOMICAL PHENOMENA

Configurations of Jupiter's Satellites at

Minima of Algol

(75th Meridian Civil Time)

	Mon.	1		h 1	m 00	
0	Tues. Wed. Thur.	2 3 4	4h 41.8m N.M.; 16h \clubsuit Stationary in R.A 12h52m \circlearrowleft 2 \blacksquare , 2 0° 54' S.; 16h 3m \circlearrowright \And \circlearrowright \circlearrowright 5° 44' S. 3h 51m \circlearrowright \varPsi \Downarrow 0° 13' S.; 20h \circlearrowright Greatest brilliancy	21	50	che
	Fri. Sat. Sun.	5 6 7	12h o´ ÿ 2l, ÿ 5° 38' S.	18	40	iena of t
Ð	Mon. Tues. Wed.	8 9 10	2h 40.4m Moon F.Q.	15	30	phenon
	Thur. Fri. Sat.	11 12 13	12h Q Greatest Hel. Lat. S	12	20	Sun the
E	Sun. Mon. Tues.	14 15 16	7h 26m ♂ b @, b 3° 32' N 12h ♀ Greatest Hel. Lat. S 2h 41.6m F.M	9	10	r to the
•	Wed. Thur. Fri.	17 18 19	9h ♂ ♀ ⊙ Inferior	6	00	f Jupite
	Sat. Sun. Mon.	20 21 22	1h 18m ♂ Ĉ ℂ , Ĉ 4° 8′ S	2	50	kimity o
	Tues.	2 3		23	40	pro
¢.	Wed. Fri. Sat.	24 26 27	2h 21.3m Moon L.Q. 11h ♀ Stationary in R.A.; 16h ♂ ♀⊙ 15h 37m ♂ ♂ ♥ , ♂ 14° 4′ S.; 22h 4m ♂ ♀♥ , ♀ 8° 9′ S.	20	30	n of the
	Sun. Mon. Tues.	28 29 30	5h 19m ♂ 貸 ⓓ , 单 3° 54′ S	17	10	Jy reaso
C	Wed.	31	4h 𝗇 Ψ⊙; 8h 19m 𝑌 𝔄 𝔅 , 𝔄 0° 18' S.; 14h 8m 𝑌 Ψ𝔅 , Ψ 0° 6' S.; 14h 54.6m N.M.; Total eclipse of ⊙ visible as partial eclipse at Toronto		ŀ	

THE SKY FOR SEPTEMBER, 1932

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During September the sun's R.A. increases from 10h 40m to 12h 28m, and its Decl. changes from $8^{\circ} 27'$ N. to $3^{\circ} 1'$ S. On the 1st the equation of time is 0m 7s, it becomes zero on that day and then increases to 10m 9s at the end of the month. For changes in the length of day, see p. 18. On the 23rd the sun crosses the equator going south and enters Libra, the first autumn sign of the zodiac.

The Moon—For its phases and conjunctions with the planets, see opp. page. On the 14th there is a partial eclipse of the moon, the ending being visible generally in the northeastern part of North America.

Mercury on the 15th is in R.A. 10h 47m, Decl. 9° 34' N., and transits at 11.13. On the 3rd it reaches its greatest elongation west and is then most favourably situated for morning observation. At sunrise on that date, the planet is about 15° above the eastern horizon. At the end of the month it is too close to the sun for observation, being in superior conjunction with that body on the 29th.

Venus on the 15th is in R.A. 8h 32m, Decl. 16° 56' N., and transits at 8.57. It is well situated for morning observation. On the 7th it reaches its greatest elongation west and at sunrise on that date is about 40° above the eastern horizon.

Mars on the 15th is in R.A. 7h 55m, Decl. 21° 44' N., and transits at 8.19. It rises about 1 a.m. on the 15th, and may be seen in the constellation of Gemini till about the 16th and then in Cancer for the remainder of the month.

Jupiter on the 15th is in R.A. 10h 38m, Decl. 9° 36' N., and transits at 11.02. It is now a morning star though rather close to the sun for observation. Its magnitude is -1.2 and the planet is in the constellation of Leo. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 20h 2m, Decl. 20° 57' S., and transits at 20.24. It is in Capricornus and rises about $2\frac{1}{2}$ hours before sunset on the 15th. Its magnitude is now +0.6.

Uranus on the 15th is in R.A. 1h 24m, Decl. 8° 11' N., and transits at 1.49. Neptune on the 15th is in R.A. 10h 41m, Decl. 9° 12' N., and transits at 11.04.

SEPTEMBER

ASTRONOMICAL PHENOMENA

igurations Minima of Algol E

(75th Meridian Civil Time)	
----------------------------	--

	-	_		h	m	
	Thur.	1	•••••••••••••••••••••••••••••••••••••••	14	00	
	Fri.	2				
	Sat.	3	11h \mathfrak{P} Greatest elong. W. 18° 4'; 12h \mathfrak{P} in \mathfrak{Q}			
	Sun.	4	•••••••••••••••••••••••••••••••••••••••	10	50	
	Mon.	5	•••••••••••••••••••••••••••••••••••••••			
-	Tues.	6				
Ð	Wed.	7	7h 48.9m Moon F.Q.; $17h \varphi$ Greatest elong. W. 45° 58'	7	40	
	Thur.	8	3h & in Perihelion			
	Fri.	9	· · · · · · · · · · · · · · · · · · ·			
	Sat.	10	11h 15m ♂ b @, b 3° 38′ N	4	30	
	Sun.	11	•••••••••••••••••••••••••••••••••••••••			
	Mon.	12				41203
	Tues.	13	$7h \circ 24, 20^{\circ} 46' \text{ N}.; 20h \circ 2\Psi, 20^{\circ} 58' \text{ N}$	1	20	4O312
E	Wed.	14	16h 6.1m F.M.; Partial eclipse of C invisible at			
			Toronto			d4310
	Thur.	15		22	10	32041
	Fri.	16	•••••			31024
	Sat.	17	7h 29m ♂ Ĉ ℂ , Ĉ 4° 6′ S			dO24*
	Sun.	18	10h \mathfrak{P} Greatest Hel. Lat. N.; 16h \mathfrak{O} $\mathfrak{Q} \mathfrak{P}$, \mathfrak{Q} $\mathfrak{0}^{\circ} \mathfrak{9}'$ N.	19	00	20134
	Mon.	19	······································			21034
	Tues.	20	······································			O1324
	Wed.	21	•••••••••••••••••••••••••••••••••••••••	15	40	13024
C	Thur.	22	19h 46.9m Moon L.Q			32014
	Fri.	23	1h 16m \odot enters \simeq , Autumn commences			31024
	Sat.	24	•••••••	12	30	43012
	Sun.	25	9h 41m ♂ ♂ ⓓ , ♂ 2° 45′ S			4203^{*}
	Mon.	26	12h 59m $\sigma' \heartsuit \mathbb{Q}$, \heartsuit 3° 37' S			42103
	Tues.	27		9	20	40123
	Wed.	28	2h 3m ơ $\Psi \mathbb{G}$, Ψ 0° 1' N.; 4h 59m ơ $2 \mathbb{G}$, 2 l 0° 21' N.			41302
	Thur.	29	$4h \circ \emptyset \odot$ Superior			43201
C	Fri.	30	0h 29.8m N.M.; 4h 15m $\circ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	6	10	4310*

THE SKY FOR OCTOBER, 1932

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During October the sun's R.A. increases from 12h 28m to 14h 24m, and its Decl. decreases from 3° 1' S. to 14° 18' S. On the 23rd the sun enters Scorpio, the second autumnal sign of the zodiac. The equation of time increases from 10m 9s to 16m 19s (see p. 7). For changes in the length of day see p. 19.

The Moon—For its phases and conjunctions with the planets, see opp. page. Mercury on the 15th is in R.A. 13h 59m, Decl. 12° 32' S., and transits at 12.27. It is an evening star but too close to the sun for favourable observation.

Venus on the 15th is in R.A. 10h 42m, Decl. 8° 48' N., and transits at 9.09. It is a morning star of magnitude -3.7.

Mars on the 15th is in R.A. 9h 8m, Decl. $17^{\circ} 52'$ N., and transits at 7.34. On that date it rises about 12.30 a.m. and may be observed as a first magnitude star. It is in the constellation of Cancer till about the 20th when it enters Leo.

Jupiter on the 15th is in R.A. 11h 1m, Decl. 7° 19' N., and transits at 9.27. It is a morning star in Leo. At sunrise on the 15th the planet is about 35° above the eastern horizon. Its magnitude is increasing and by the end of the month is -1.4. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 20h 2m, Decl. 20° 59' S., and transits at 18.26. It is in quadrature on the 22nd and may be observed during the first half of the night. It is still in Capricornus.

Uranus on the 15th is in R.A. 1h 20m, Decl. 7° 45' N., and transits at 23.43. Neptune on the 15th is in R.A. 10h 45m, Decl. 8° 50' N., and transits at 9.10.

OCTOBER

ASTRONOMICAL PHENOMENA

(75th Meridian Civil Time)

Minima of Algol Configurations of Jupiter's Satellites at

				h	m	
	Sat.	1	···			43012
	Sun.	2	11h b Stationary in R.A			21043
	Mon.	3	·····	3	00	d2O43
	Tues.	4	•••••	•		01234
	Wed.	5		23	50	d1024
Ð	Thur.	6	15h 5.4m Moon F.Q.; 19h \bigcirc in \bigcirc			32014
	Fri.	7	16h 4m $\checkmark b \oplus 3^{\circ} 35'$ N			31204
	Sat.	8	· · · · · · · · · · · · · · · · · · ·	20	40	30124
	Sun.	9				d1034
	Mon.	10				20143
	Tues.	11	21h & in V	17	30	40123
	Wed.	12				41032
	Thur.	13				43201
E	Fri.	14	8h 17.7m F.M.; 12h 8m $\circ \circ @$, $\circ 3^{\circ} 59' S.; 18h \circ \circ \odot$	14	20	43120
-	Sat.	15	$7h \circ \varphi \Psi, \varphi \circ 0^{\circ} 13' S$			43012
	Sun.	16				41023
	Mon.	17		11	00	42013
	Tues.	18	•••••••••••••••••••••••••••••••••••••••			4023*
	Wed.	19	$22h \circ 92, 90° 7' S$			10432
	Thur.	20		7	50	32014
	Fri.	21	$20h \square b \odot \dots$			32104
C	Sat.	22	3h & in Aphelion; 12h 13.7m Moon L.Q			30124
	Sun.	23	•••••••••••••••••••••••••••••••••••••••	4	40	10324
	Mon.	24	1h 23m $\circ' \circ^{\neg} \mathbb{G}$, $\circ^{\neg} 0^{\circ} 55' S$			20134
	Tues.	25	13h 55m of Ψ (, Ψ 0° 13' N			1034^{*}
	Wed.	26	1h 7m \checkmark 24 (, 24 1° 5′ N.; 12h 59m \checkmark 2° 0′ N.	1	30	dO324
	Thur.	27				d32O1
	Fri.	28		22	20	34210
۲	Sat.	29	9h 56.1m N.M			43012
	Sun.	30	18h 28m of $\emptyset \mathbb{G}$, \emptyset 2° 53' N			41302
	Mon.	31		19	10	42013

THE SKY FOR NOVEMBER, 1932

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During November the sun's R.A. increases from 14h 24m to 16h 27m, and its Decl. changes from 14° 18' S. to 21° 45' S. On the 22nd the sun enters Sagittarius, the third autumn zodiacal sign. The equation of time rises from 16m 19s to a maximum value of 16m 21s on the 3rd, and then decreases to 11m 4s at the end of the month (see p. 7). For changes in the length of day see p. 20.

The Moon—For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 16h 53m, Decl. 25° 13' S., and transits at 13.18. On the 14th it reaches its greatest elongation east, and at sunset on that date is about 8° above the southwestern horizon.

Venus on the 15th is in R.A. 13h 0m, Decl. 4° 22' S., and transits at 9.24. At sunrise on the 15th it is about 30° above the southeastern horizon.

Mars on the 15th is in R.A. 10h 13m, Decl. $13^{\circ} 3'$ N., and transits at 6.37. It rises about midnight on the 15th and may be seen in the constellation of Leo all month. On the 29th it is in quadrature with the sun. Its magnitude is increasing and by the end of the month is +0.9.

Jupiter on the 15th is in R.A. 11h 21m, Decl. 5° 20' N., and transits at 7.45. On the 15th it rises almost due east about 1.30 in the morning, and may be observed in the constellation of Leo. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 20h 8m, Decl. $20^{\circ} 43'$ S., and transits at 16.30. At sunset on the 15th it may be seen due south, about 25° above the horizon. Its magnitude is decreasing, the value now being +0.8.

Uranus on the 15th is in R.A. 1h 16m, Decl. 7° 19' N., and transits at 21.37. Neptune on the 15th is in R.A. 10h 47m, Decl. 8° 35' N., and transits at 7.10.

NOVEMBER

ASTRONOMICAL PHENOMENA

urations

er's s at

Minima of Algol

(75th Meridian Civil Time)

				h	m	
	Tues.	1	•••••			4103*
	Wed.	2				40132
	Thur.	3		16	00	4320*
	Fri.	4	Oh 5m $\sigma' \mathfrak{b} \mathbb{G}$, \mathfrak{b} 3° 20′ N			3210^{*}
Ð	Sat.	5	1h 50.4m Moon F.Q			30124
	Sun.	6	••••••	12	50	13024
	Mon.	7				20134
	Tues.	8	•••••••••••••••••••••••••••••••••••••••			12034
	Wed.	9	14h \bigcirc in Perihelion	9	40	01234
	Thur.	10	16h 6m ♂ ③ ℂ , ③ 3° 57′ S			d3O4*
	Fri.	11	11h & Greatest Hel. Lat. S			32104
	Sat.	12	•••••••••••••••••••••••••••••••••••••••	6	30	30124
Ē	Sun.	13	2h 28.0m F.M			314O2
	Mon.	14	15h & Greatest elong. E. 22° 36'			42013
	Tues.	15		3	10	412O3
	Wed.	16	······································			40123
	Thur.	17				d4102
	Fri.	18				d432O
	Sat.	19				43012
	Sun.	20		20	50	43102
C	Mon.	21	2h 57.8m Moon L.Q.; 12h 45m of of C , of 1° 16' N.;			
			23h 43m of Ψ C, Ψ 0° 32' N			24031
	Tues.	22	18h 19m of 24 €, 24 1° 51′ N			21043
	Wed.	23		17	40	01234
	Thur.	24	14h & Stationary in R.A			10324
	Fri.	25	12h 32m of $Q \mathbb{G}$, Q 5° 58′ N			32014
	Sat.	26		14	30	304**
	Sun.	27	19h 43.2m N.M			31024
	Mon.	28	17h 24m $\checkmark \ \ \ \ \ \ \ \ \ \ \ \ \ $			2Q314
	Tues.	29	$10h \square \sigma^{1} \odot \dots$	11	20	21043
	Wed.	30	12h \\$ in \Q			40123

THE SKY FOR DECEMBER, 1932

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During December the sun's R.A. increases from 16h 27m to 18h 44m, and its Decl. changes from $21^{\circ} 45'$ S., to its maximum southern value of $23^{\circ} 27'$ S. on the 22nd. The sun is then at the winter solstice, it enters Capricornus and winter begins. From this date on the sun moves slowly northward. The length of daylight is at its minimum and changes very slightly for several days (see p. 21). The equation of time is 11m 4s at the beginning of the month and drops to zero on the 25th (see p. 7).

The Moon—For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 16h 12m, Decl. $18^{\circ} 14'$ S., and transits at 10.36. On the 4th it is in inferior conjunction with the sun, after which it becomes a morning star. On the 23rd it reaches its greatest elongation west and on that date rises in the south-east about 2 hours before the sun.

Venus on the 15th is in R.A. 15h 21m, Decl. 16° 42' S., and transits at 9.47. It is still a morning star, and on the 15th rises about $2\frac{1}{2}$ hours before the sun.

Mars on the 15th is in R.A. 11h 2m, Decl. 8° 59' N., and transits at 5.28. At midnight on the 15th, it may be seen about 10° above the eastern horizon. Its magnitude is still increasing, at the end of the month it is +0.4. It is still in Leo.

Jupiter on the 15th is in R.A. 11h 33m, Decl. 4° 7' N., and transits at 5.59. On the 14th it is in quadrature with the sun. Its magnitude has increased to -1.7 at the end of the month. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 20h 18m, Decl. 20° 10' S., and transits at 14.42. It is approaching the sun, and on the 15th sets about 3 hours after sunset. Its magnitude is still decreasing. It is in Capricornus.

Uranus on the 15th is in R.A. 1h 13m, Decl. 7° 4' N., and transits at 19.36. Neptune on the 15th is in R.A. 10h 48m, Decl. 8° 31' N., and transits at 5.14.

DECEMBER

ASTRONOMICAL PHENOMENA

(75th Meridian Civil Time)

h m Thur. 1 7h♀ Greatest Hel. Lat. N.; 12h 18m ♂b @. b 2° 410238 10 42301 Fri. Sat. 430** 4 12h ~ 8 ☉ Inferior: 16h 44.9m Moon F.O. d4302 D Sun. 5 2h \emptyset in Perihelion; 3h $\sigma \sigma^{2} \Psi$, σ^{2} 1° 38' N.... 5 00 4201* Mon. 42103 Tues. Wed. 7 20h 51m ♂ Ĝ €, ᢒ 4° 4′ S..... 40213 1 50 1023* Thur. Fri. 23014Sat. 10 22 40 32104 30124 Sun. 11 12 21h Ψ Stationary in R.A.; 21h 21.0m F.M..... dO14* Tues. 13 19 20 21034 Wed. 14 6h \heartsuit Stationary in R.A.; 7h $\square 2 \bigcirc \dots$ 02134 Thur. 15 9h & Greatest Hel. Lat. N. 1023416 16 10 23041 Fri. Sat. 17 34210 43012 Sun. 18 Mon. 19 6h 32m ♂ Ψ€, Ψ 0° 53' N.; 16h 43m ♂ ♂€, ♂ 3° 26' N..... 13 00 43O2* @ Tues. 20 6h 25m of 21@, 21 2° 34' N.; 15h 21.9m Moon L.O... 42103 Wed. 21 20h 15m ⊙ enters ♂, Winter commences..... 40213 Thur. 22 9 50 41023 23 10h & Greatest elong, W, 22° 0'..... 42301 Fri. 24 34210 Sat. 25 7h 54m ♂♀@,♀ 6° 29' N.; 18h 38m ♂♥@.♥ 6° Sun. 6 40 30412 Mon. 26 31024 @ Tues. 27 6h 22.4m N.M. d2O34 Wed. 28 3 30 0134* Thur. 29 0h & Stationary in R.A.; 3h 38m of b @, b 2° 34' N. 10234d2014 Fri. Sat. 0 20 32104

Explanation of symbols and abbreviations on page 4

Minima of Algol onfiguration of Jupiter's Satallites at

PHENOMENA OF JUPITER'S SATELLITES, 1932

E-Eclipse,	O-occultation, T-transit, S-shadow, D-disappearance, R-reappearance					
	I-ingress, e-egress. The Roman numerals denote the satellites.					
	75th Meridian Civil Time.					

	FEBRUARY-Continued
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
21 20 I SI 19 33 III OR	MARCH
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
FEBRUARY	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

APRIL SEPTEMBER d h m Sat. Phen. d h m Sat. Phen. d h m 1 20 12 111 Se15 19 40 111 T1 14 5 15 11 Sl 23 5 14 20 31 11 DD 23 16 111 Te 17 5 2 I Sl 30 4 3 1 32 11 T1 16 0.35 111 SI 18 5 1 OR 30 4 3 3 18 5 1 OR 30 4 3 3 3 3 3 3 18 5 1 OR 3<	a Sat. Phen. 6 IV SI 5 II ED
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 Sat. Phen. 6 IV SI 5 II ED
1 32 II ER 1 25 II OD 1 42 I SI 19 55 IV OR 0 CTOBER	
2 55 I I Ie 17 I 30 I 0 D 000 000 000 000 000 000 000 000 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sat. Phen. I Te III OR III OR I SI I SI I SE I SE III ER III OD
20 35 111 S1 19 38 11 ER 21 59 IV Se 20 45 I Se 22 57 II OD 22 23 30 III TI NOVEMBER	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 I SI 6 I ED 3 I OR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 I Se 7 I Te 8 III OR 9 IV SI
21 4 I TI 18 22 8 I OD 22 19 I SI 19 20 37 I SI 22 25 III FD 21 40 I Te DECEMBER	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
JUNE 3 45 11 1e21 0 5 6 1 III OR 3 4	1 II OR
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
JULY 5 5 III ER 28 23 5 6 19 II Te 29 23 4	7 I Te 9 III SI
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 II Te 6 III Se 4 III TI

METEORS AND SHOOTING STARS

On almost any clear night any one observing the sky for a few minutes will see one or more shooting stars. They are particularly numerous during the autumn months, and on account of the rotation of the earth are better seen during the early morning hours than in the evening.

At certain times there are striking displays, located in particular portions of the sky. These are considered to be due to *meteor swarms*. The principal ones are given in the following table.

Name of Shower	Duration	adiant A.	Point De	cl.		
		1	h	m	.	6
Quadrantids	Dec. 28-Jan. 9	Jan. 3	15	20	+	53
Aurigids	Feb. 7-23	Feb. 10	5	0	+	41
Lyrids	April 16-22	April 21	18	4	+	33
η Aquarids	April 29-May 8	May 4-6	22	32	-	2
Herculids	May 13-29	May 24	16	36	+	30
Scorpiids	May-June July	June 4	16	48	-	21
Sagittids	June-July	July 28	20	12	+	24
Capricornids	July-Aug.	July 22	20	20	_	12
ð Áquarids	July 18-Aug. 12	July 28-31	22	36	-	11
α β Perseids	July-AugSept.	Aug. 16	3	12	+	43
Perseids	July 8-Aug. 25	Aug. 11-12	3	4	+	57
Draconis	Aug. 18-25	Aug. 23	19	24	+	61
e Perseids	AugSept.	Sept. 15	4	8	+	35
Aniatida	(AugSept. Oct.	Sept. 21	2	4	+	19
Anetids	{SeptOct.	Oct. 15	2	4	+	9
Orionids	Oct. 9-29	Oct. 19	6	8	+	15
μ Ursids Maj.	OctNovDec.	Nov. 16-25	10	16	l +	4Ĭ
Taurids	November	Nov. 21	4	12	+	23
Leonids	Nov. 9 20	Nov. 14-15	10	ο	+	23
Andromedes	Nov. 20-30	Nov. 20-23	I	40	+	43
Geminids	Dec. 1-14	Dec. 11	7	12	+	33

Of these the chief ones are the Perseids, the Leonids and the Andromedes.

The Perseids furnish an annual display of considerable strength, and are perhaps the best known of all. The swarm appears to have an orbit identical with that of the great Comet 1862 III., the period of which is 120 years.

The Leonids follow in the orbit of Tempel's Comet of 1866, of period 33 years.

The Andromedes are thought to be remnants of Biela's Comet. They were especially numerous in 1872, 1885, 1898, but in recent years have not been so prominent.

The above table was prepared for the HANDBOOK by Mr. W. F. Denning, F.R.A.S., of Bristol, England; and for further interesting information regarding this subject (and almost any other subject in which the amateur is interested) reference may be made to his *Telescopic Work for Starlight Evenings*.

	Mean from	Distance Sun	Sidereal	Period	Mean D:	Mass	Density	Volume	
Name	⊕ = 1	Millions of Miles	Mean Solar Days	Years	Diame- ter Miles	⊕ =1	Water =1	⊕ =1	Axial Rotation
§ Mercury	0.387	36.0	87.97	0.24	3009	0.0556	4.7(?)	0.055	p88
Q Venus	0.723	67.2	224.70	0.62	7575	0.817	4.94	0.88	30d (?)
⊕ Earth	1.000	92.9	365.26	1.00	7917.8	1.000	5.55	1.000	23h 56m 4s
o ⁷ Mars	1.524	141.5	686.97	1.88	4216	0.108	3.92	0.151	24h 37m 23s
24 Jupiter	5.203	483.3	4332.58	11.86	86728	318.4	1.32	1314	9h 55m ±
b Saturn	9.539	886.1	10759.2	29.46	72430	95.2	0.72	765	10h 14m ±
ô Uranus	19.191	1782.8	30685.9	84.02	30878	14.6	1.22	59	10h 45m ±
Ψ Neptune	30.071	2793.4	60187.6	164.79	32932	16.9	1.11	72	16 N
PL Plato	39.60	3700	:	247.7	:	1 (?)	÷	:	•
• Sun		:	•	:	864392	333400	1.39	1301100	25d 7h 48m±
G Moon.	From \oplus	238,857 mls.	27.32	0.075	2160	0.0123	3.39	0.020	27d 7h 43m 11.5s

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

57

SATELLITES OF THE SOLAR SYSTEM

-												
	Name	STELLAR MAGNITUDE.	Mean Distance in Miles	d.	DER PER	REA 101 m.	.L) 8.	Discoverer	Dat	re		
	•		TI	ΗE	EA	RI	H					
	The Moon	۰.	238,840	27	7	43	11	l				
				_								
				M	IAR	S						
1.	Phobos	14	5,850		7	39	15	Asaph Hall	Aug. 17	, 1877		
2.	Deimos	13	14,650	1	6	17	54	Asaph Hall	Aug. 11	, 1877		
				ΠΡ	итг	R						
F	(New slaws)	10	110 500	,01	11		00	D 1	a , a	1000		
Э. 1	(Nameless).	13	261,000	1	11	07 97	23	Galileo	Sept. 9,	1892		
2.	Europa	61	415,000	3	13	13	42	Galileo	Jan 8	1610		
3.	Ganymede .	6	664,000	7	3	42	33	Galileo	Jan. 7.	1610		
4.	Callisto	7	1,167,000	16	16	32	11	Galileo	Jan. 7,	1610		
6.	(Nameless).	14	7,372,000	1 2	266.(00 d	1.	Perrine	Dec.	1904		
7.	(Nameless).	16	7,567,900	2	276.6	57 c	l.	Perrine	Jan.	1905		
8.	(Nameless).	17	15,600,000	1	789) d.		Melotte	Jan.	1908		
9.	(Nameless).	19	18,900,000		3 ye	ears		Nicholson	July	1914		
	SATURN											
1.	Mimas	15	117,000	1	22	37	6	W. Herschel	July 18.	1789		
2.	Enceladus.	14	157,000	1	8	53	7	W. Herschel	Aug. 29	, 1789		
3.	Tethys	11	186,000	1	21	18	26	J. D. Cassini	Mar. 21	, 1684		
4.	Dione	11	238,000	2	17	41	9	J. D. Cassini	Mar. 21	, 1684		
Э. 6	Titon	10	332,000	15	12	20 41	12	J. D. Cassini	Dec. 23, Mar 95	1655		
7	Hyperion	16	934 000	21	6	30	$\frac{23}{27}$	G P Bond	Mar. 25 Sent 16	1848		
8.	Iapetus	11	2.225.000	79	7	54	17	J. D. Cassini	Oct. 25.	1671		
9.	Phoebe	17	8,000,000		546	.5	d.	W.H.Pickering	189	8		
10.	Themis	17	906,000	20	20	24	0	W.H.Pickering	190	5		
				מזז	A NI Y	TO						
				UR.	ANU	05			-			
1.	Ariel	15	120,000	2	12	29	21	Lassell	Oct. 24,	1851		
2.	Titania	10	273,000	4	0. 16	21 56	07 20	W Herschol	Oct 24,	1801		
4 .	Oberon	14	365,000	13	11	7	6	W. Herschel	Jan. 11.	1787		
		,	,				- 1		· · · · · · · · · · · · · · · · · · ·			
			1	VEP	TU	ИE		.	10			
1.	Iriton	13	221,500	5 2	1 2	24	4	Lassell	Oct. 10	, 1846		

DOUBLE STARS

Close scrutiny of the sky reveals the fact that many of the stars are composed of two or more components, that is, they are *double* or *multiple* stars. Over 15,000 such objects have been discovered.

A star may appear double in two ways. First, one may just happen to be nearly in line with the other as seen from the earth. Second, the two bodies may be physically connected, each revolving about their common centre of gravity The former are called *optical doubles*, the latter *binary stars*. In the course of time the binaries exhibit a change in the distance between the components and also in the direction of the line joining them, that is, in the position angle.

While the close pairs require a large instrument for their detection, there are many within the range of small instruments. Such observations also allow one to determine the quality of the instrument employed. It has been found that a telescope having an objective 1 inch in diameter should be able to distinguish two stars 4''.56 apart, and the resolving power is inversely proportional to the diameter of the objective. Thus a telescope of 3-inch aperture should separate stars 1/3 of 4''.56, or 1''.52 apart; for one of aperture 10 inches, stars 1/10 of 4''.56, or 0''.45 apart should be seen separate; and so on. With the Yerkes refractor, of aperture 40 inches, a double star with distance 0''.11 can be detected.

In choosing a double star for testing a telescope care should be taken not to select a binary, with varying distance between its components.

The stars in the following short lists can be identified from almost any star atlas, and observation of them will prove of great interest to the amateur.

Star	Mags.	Dist.	Star	Mags.	Dist.
Mizar Castor γ Virginis . γ Arietis ζ Aquarii	$\begin{array}{c} 2.4, \ 4.0\\ 2.5, \ 3.0\\ 3.0, \ 3.2\\ 4.2, \ 4.5\\ 3.5, \ 4.4 \end{array}$	$14.5 \\ 5.6 \\ 5.0 \\ 8.9 \\ 3.5$	$\begin{array}{c} \gamma \text{ Leonis} \\ \beta \text{ Scorpii} \\ \theta \text{ Serpentis.} \\ 44i \text{ Boötis} \\ \pi \text{ Boötis} \end{array}$	$\begin{array}{c} 2.5, \ 4.0\\ 2.5, \ 5.5\\ 4.4, \ 6.0\\ 5.0, \ 6.0\\ 4.3, \ 6.0\end{array}$	3.0 13.0 21.0 4.8 6.0

I. THE MOST LUMINOUS PAIRS

	Star	Magnitudes	Distance	Colors
γ	Andromedæ	2.2, 5.5	1 10	Orange, Green.
a	CanumVenat.	3.2, 5.7	20	Golden, Lilac.
ß	Cvgni	3.3, 5.5	34	Golden, Sapphire.
ε	Boötis	2.4, 6.5	2.9	Golden, Sapphire.
95	Herculis	5.5, 5.8	6	Golden, Azure.
a	Herculis	4, 5.5	4.7	Ruby, Emerald.
γ	Delphini	3.4, 5	11	Golden, Bluish Green.
32	Eridani	4.7, 7	6.7	Topaz, Bright Green.
ε	Hydræ	3.5, 7.5	3.5	Yellow, Blue.
ζ	Lyræ	4.5, 5.5	44	Yellow, Green.
2	Cancri	4.5, 5	30	Pale Orange, Blue.
0	Cygni	4.3,7.5,5.5	337.8, 106.8	Yellow, Blue.
24	Coma Beren	5.6, 7	21	Orange, Lilac.
0	Cephei	5.4, 8	2.5	Golden, Azure.
94	Aquarii	5.5, 7.5	11	Rose, Greenish.
39	Ophiuchi	5.7, 7.5	12	Yellow, Blue.
41	Aquarii	5.8, 8.5	4.8	Yellow Topaz, Blue.
2	Canum Venat	6, 9	11	Golden, Azure
52	Cygni	4.6, 9	7	Orange, Blue.
55	Piscium	6, 9	6	Orange, Blue.
κ	Geminorum	3.8, 9	9	Grange, Blue.
ρ	Orionis	5.1, 9	6.8	Orange, Blue.
54	Hydræ	5.2, 8	9	Yellow, Violet.
η	Persei	4.2, 8.5	28	Yellow, Blue.
φ	Draconis	4.8,6	31	Yellow, Lilac.
0	Draconis	4.7, 8.5	32	Golden, Lilac.
η	Cassiopeiæ	4.7,7	5.7	Golden, Purple.
23	Orionis	5.4, 7	32	White, Blue.
δ	Herculis	3.6, 8	18	White, Violet.
0	Capricorni	6.3, 7	22	Bluish.
17	Virginis	6.5, 7	20	Rose.
2	Boötis	4.5, 6.5	4.2	Reddish Yellow.

II, THE FINEST COLORED PAIRS

The colors given above are according to Flammarion. For slight variations and also for a much longer list consult Webb's "Celestial Objects."

VARIABLE STARS

By FRANK S. HOGG

Of the naked eye stars visible to a northern observer, nearly a hundred are known to undergo variations in their light. With field glasses or a small telescope the number of variables is enormously increased. Thus there is no dearth of material with which an inquisitive amateur may satisfy himself as to the reality and nature of the fluctuations of the light of stars. Further this curiosity may be turned to real scientific value, in that the study of variable stars is one of the best organized and most fruitful fields of research for amateur observers. For years the professional astronomer has entrusted the visual observation of many of the most important variable stars entirely to amateurs, as organized into societies in England in 1890, America in 1911, and France in 1921. The American Association of Variable Star Observers has charts of the fields of 350 of these stars, and in general supervises the work of amateur observers. The Recorder is Mr. Leon Campbell, at the Harvard Observatory, Cambridge, Massachusetts. New observers are welcomed, and supplied with charts.

In our galaxy there are already known about 5,000 variables, while in globular clusters and outside systems there are some 3,000 more. Almost all those which have been sufficiently studied may be conveniently classified, according to their light variation into ten groups, by Ludendorff's classification. His classes, with their typical stars, are listed as follows:

- I. New or temporary stars: Nova Aquilae 3, 1918.
- II. Nova-like variables: T Pyxidis.
- III. R Coronae stars: R Coronae Borealis. Usually at constant maximum, with occasional sharp minima.
- IV. U Geminorum stars: U Geminorum. Usually at constant minimum, with occasional sharp maxima.
- V. Mira stars: oCeti. Range of several magnitudes, fairly regular period of from 100 to 600 days.
- VI. µCephei stars: µCephei. Red stars with irregular variations of a few tenths of a magnitude.
- VII. RV Tauri stars: RV Tauri. Usually a secondary minimum occurs between successive primary minima.
- VIII. Long period Cepheids: δCephei. Regular periods of one to forty-five days. Range about 1.5 magnitudes.
 - IX. Short period Cepheids: RR Lyrae. Regular periods less than one day. Range about a magnitude.
 - X. Eclipsing stars: β Persei. Very regular periods. Variations due to covering of one star by companion.

Name Design. Max. Min. Sp. Period Date Type Discoverer Aql 194700 3.74.3|G4|7.17668VIII η N 1784 Pigott Aq1³ 184300 -0.210.9 0 1918 Bower Irr. Ι F5p 3.3 x 045443 9900. ϵ Aur 4.11821 Fritsch δ 222557 3.65.366404.3VIII Ced G0 1784 Goodricke 005381 U Cep 6.8 9.2A0 2.49293Х 1880 W. Ceraski 2.00 Cet1 021403 9.6 M5e 329.5 V 1596 Fabricius 8.4 RR Cet 012700 9.0 IX F0 0.55304 1906 Oppolzer CrB ĪĪĪ 1795 Pigott 154428 5.8R 13.8G0e Irr. 4.2 ${}_{\rm P}^{\chi}$ Cyg 19463213.4M7e 408.3V 1686 Kirch Cyg 201437a 3.56.0 Π B1qk Irr. 1600 Blaeu 2138438.112.0SS Cyg Pec. Irr. IV 1896 Wells XX Cyg 200158 11.4 12.10.13486IX Α 1904 L. Ceraski ζ 065820 3.74.1cG1 Gem 10.15353VIII 1847 Schmidt 060822 3.34.2Gem M2235.15V 1865 Schmidt η Ŕ Gem 070122a 6.5 13.5370.1V Se 1848 Hind U 8.8 Pec. Gem 074922 13.8IV 1855 Hind Irr. Her 171014 3.11795 W. Herschel 3.9VI a M5Irr. 132422 3.5413.6R Hva 10.1M7e V 1670 Montanari 094211 5.0V R Leo 10.5M7e 310.31782 Koch x β Lyr 184633 3.54.1B5e 12.90801 1784 Goodricke RR Lyr 192242 7.10.56684 IX 7.8A51901 Fleming α Ori² 054907 0.21.2M2Irr. VI 1840 J. Herschel U Ori 054920 5.412.2V M7e 376.11885 Gore x β Per³ 2.3030140 3.5B8 2.867311669 Montanari 3.3 ρ Per 025838 4.1M4 Irr. VI 1854 Schmidt R Sge 200916 8.4 10.4cG7 70.84 VII 1859 Baxendell Sct R 184205 4.59.0 K5e 141.5VII 1795 Pigott 3.8λ Tau 0355124.2B33.95294Х 1848 Baxendell RV 8.7 Tau 044126 11.8K078.60VII 1905 L. Ceraski Tau SU 0543199.515.4G0e Irr. III 1908 Cannon a UMi⁴ 012288 2.32.4cF7 3.96815VIII 1911 Hertzsprung

REPRESENTATIVE BRIGHT VARIABLE STARS

¹oCet (Mira); ²aOri (Betelgeuse); ³βPer (Algol); ⁴aUMi (Polaris).

Most of the data in this Table are from Prager's 1931 Katalog und Ephemeriden Veränderlicher Sterne. The stars are arranged alphabetically in order of constellations. The second column, the Harvard designation, gives the 1900 position of the star. The first four figures of the designation give the hour and minute of right ascension, the last two the declination in degrees, italicised for stars south of the equator. Thus the position of the fourth star of the list, δ Cephei, is R.A. 22h 25m, Dec. $+57^{\circ}$, (222557). The remaining columns give the maximum and minimum magnitudes, spectral class, the period in days and decimals of a day, the classification on Ludendorff's system, and the discoverer and date. In the case of eclipsing stars, the spectrum is that of the brighter component.

THE DISTANCES OF THE STARS

The measurement of the distances of the stars is one of the most important problems in astronomy. Without such information it is impossible to form any idea as to the magnitude of our universe or the distribution of the various bodies in it.

The parallax of a star is the apparent change of position in the sky which the star would exhibit as one would pass from the sun to the earth at a time when the line joining earth to sun is at right angles to the line drawn to the star; or, more accurately, it is the angle subtended by the semi-major axis of the earth's orbit when viewed perpendicularly from the star. Knowing the parallax, the distance can be deduced at once.

For many years attempts were made to measure stellar parallaxes, but without success. The angle to be measured is so exceedingly small that it was lost in the unavoidable instrumental and other errors of observation. The first satisfactory results were obtained by Bessel, who in 1838, by means of a heliometer, succeeded in determining the parallax of 61 Cygni, a 6th magnitude star with a proper motion of 5'' a year. On account of this large motion the star was thought to be comparatively near to us, and such proved to be the case. At about the same time Henderson, at the Cape of Good Hope, from meridian-circle obervations, deduced the parallax of Alpha Centauri to be 0".75. For a long time this was considered to be the nearest of all the stars in the sky, but in 1913 Innes, director of the Union Observatory, Johannesburg, South Africa, discovered a small 11th mag. star, 2° 13' from Alpha Centauri, with a large proper motion and to which, from his measurements, he assigned a parallax of 0".78. Its brightness is only 1/20,000 that of Alpha Centauri. In 1916 Barnard discovered an 11th mag. star in Ophiuchus with a proper motion of 10" per year, the greatest on record, and its parallax is about 0".53. It is believed to be next to Alpha Centauri in distance from us.

The distances of the stars are so enormous that a very large unit has to be chosen to express them. The one generally used is the light-year, that is, the distance travelled by light in a year, or $186,000x60x24x365\frac{1}{2}$ miles. A star whose parallax is 1" is distant 3.26 light years; if the parallax is 0".1, the distance is 32.6 l.-y.; if the parallax is 0".27 the distance is $3.26 \div .27 = 12$ l.-y. In other words, the distance is inversely proportional to the parallax. In recent years the word *parsec* has been introduced to express the distances of the stars. A star whose distance is 1 parsec is such that its *par*-allax is 1 *sec*-ond. Thus 1 parsec is equivalent to 3.26 l.-y., 10 parsecs = 32.6 l.-y., etc.

In later times much attention has been given to the determination of parallaxes, chiefly by means of photography, and now several hundred are known with tolerable accuracy.

THE SUN'S NEIGHBOURS-STARS NEARER THAN FIVE PARSECS

This table includes all stars known to be nearer than five Parsecs = 16.3 1-y. The apparent magnitudes m, and type are taken from Luyten's Study of the Nearby Stars, H.A. 85, 73. The parallaxes, π , and proper motions, μ , are taken from Schlesinger's Catalogue of Parallaxes. M is the absolute magnitude and L the luminosity, the Sun being taken as unity. Sirius A, Procyon A and Altair are the only giant stars, the remainder being dwarfs. Wolf 359, the fifth star nearest the Sun, is intrinsically the faintest star known. It is also noteworthy that fifty per cent. of the stars are members of binary systems.

Name	(19	900)a	(1900)δ	m	Туре	π	μ	М	L
	h	m	0	,				"		
Sun					-26.7	Go		1	48	1 00
Prox Cen	14	22.8	-62	15	11^{2}	M(2)	0 765	3 76	15.6	00005
aCen A	14	$32^{\circ}8$	-60	$\hat{25}$	10.3	G2	758	3 68	4 7	1 10
aCen B	14	$32^{\circ}8$	-60	$\overline{25}$	1 7	K3	760	3 68	6 1	0.30
Barnard	17	52.9	+4	$\overline{25}$	9.7	Mb	538	10 30	13 3	0004
Wolf 359	10	51.6	$\pm \hat{7}$	36	13.5	M4e	404	10.00	16.5	00002
L1 21185	10	57.9	+36	38	7.6	Mb	392	4 78	10.6	005
Sirius A	ő	40.7	-16	35	-1.6	AO	371	1 32	1 2	28
Sirius B	Ğ.	40.7	-16	35	8.4	F	.371		11 2	0028
B.D 12.4523	16	24.8	-12	24	9.5	M5	.349		12.2	001
Innes	ĩĩ	12.0	-57	$\overline{02}$	12		.340	2 69	14 7	0001
C.Z 5h243.	$\bar{5}$	7.7	-44	$\overline{59}$	9.2	K2	317	8 75	11 7	002
τ Cet	1	39.4	-16	28	3.6	KO	.315	1.92	6.1	.30
Procvon A	7	34.1	+ 5	29	0.5	F5	.312	1.24	3.0	5.2
Procvon B	7	34.1	+5	29	12.5		.312		15.0	.00008
εEri	3	28.2	<u> </u>	48	3.8	K0	.310	.97	6.3	.25
61 Cvg. A	21	02.4	+38	15	5.6	K7	.300	5.20	8.0	.052
61 Cvg. B	21	02.4	+38	15	6.3	K8	.300	5.20	8.7	.028
Lac 9352	22	59.4	-36	26	7.1	Ma	.292	6.90	9.4	.014
Bu 8798A	18	41.7	+59	29	9.3	Mb	.287	2.31	11.6	.002
Bu 8798B	18	41.7	59	29	10.0	Mb	.287		12.3	.001
Grmb 34A	0	12.7	+43	27	8.1	Ma	.282	2.89	10.3	.006
Grmb 34B	0	12.7	+43	27	10.7	Mb	.282		12.9	.0006
ε Indi	21	55.7	-57	12	4.7	K5	. 281	4.70	6.9	.14
Kruger 60A	22	24.4	+57	12	9.6	Mb	.257	.87	11.6	.002
Kruger 60B	22	24.4	+57	12	11.3				13.3	.0004
van Maanen.	0	43.9	+ 4	55	12.3	Fo	.255	3.01	14.3	.0002
Lac 8760	21	11.4	-39	15	6.6	Ma	.253	3.53	8.6	.030
Anon	2	50.3	+52	05	9.2		.239	0.49	11.1	.003
Gould 32416.	23	59.5	-37	15	8.2	Ma	.220	6.11	9.9	.009
Oe. Arg. 17415	17	37.0	+68	26	9.1	Mb	.213	1.33	10.7	.004
+20.2465	10	14.2	+20	22	9.2	Ma	. 207	.49	10.8	.004
Altair	19	45.9	+ 8	36	0.9	A5	.204	. 66	2.4	9.1
o²Eri A	4	10.7	- 7	49	4.5	G5	.203	4.08	6.0	. 33
o ² Eri B	4	10.7	- 7	49	9.7	Ao	. 203	4.08	11.2	.003
o ² Eri C	4	10.7	- 7	49	10.8	Mb	. 203	4.08	12.3	.001

THE BRIGHTEST STARS

Their Magnitudes, Types, Proper Motions, Distances and Radial Velocities

Prepared by W. E. HARPER

The accompanying table contains the chief known facts regarding 260 stars brighter than apparent magnitude 3.51 as listed in *Harvard Annals*, Volume 50. The position of the star for 1900 is given in the second and third columns. The fourth and fifth columns give the apparent visual magnitude and type taken from the same publication. In a few cases the type is changed to conform with a later determination.

The parallaxes are taken from Schlesinger's Advance Copy of Catalogue of Parallaxes, 1924 Edition, and for such stars the proper motions are copied from the same source. The remaining proper motions were computed using the abbreviated μ_a and μ_b as they appeared in the HANDBOOK for 1915, where this table first appeared, and are not necessarily correct to the third decimal place. Three or four spectroscopic parallaxes have been added to those given in Schlesinger's catalogue. The small letter s following the parallax indicates a spectroscopic determination has also been made. The distance is also given in light years in the eighth column as to the lay mind that seems a fitting unit. The real parallax of a star cannot be a negative quantity, but in some cases the result of the calculation gives a negative quantity. In each such case the distance in light years is computed on the assumption that the parallax is positive and equal to ".001. The sign (:) after it indicates that the value is uncertain. The absolute magnitude or the magnitude the star would appear to have if it were at a distance of 32.6 light years is given in the ninth column. At that distance the sun would appear as a star of magnitude 5.5. The radial velocity, taken from Voûte's list supplemented from our observatory card catalogue, is given in the last column. Those starred indicate that the star is a spectroscopic binary for which the velocity of the system is given. Where only the whole number appears the velocity may be regarded as approximate. There are 74 starred out of 235 radial velocities set down or one in three of the bright stars is a spectroscopic binary. The sign || denotes a visual double and the combined magnitude is given.

The 20 first magnitude stars are printed in black face type.

NOTE.—This table will be revised for the 1933 edition in order to include the latest parallaxes and also the radial velocities in the new Radial Velocity Catalogue now in preparation.—EDITOR.

		1		1			1	-	1		1	
		8	3	8				ope		e in	ag.	-
	Star	6	P L S	16				Pr 0	llay	Ken	X	Š
		<	4	ec		80	ype	of i	ara	sta	bs.	ad.
		P	4) A		E I	16	AA	P G	E.G	A	Ř
		h	m	1 °	'	1	.	1 "		<u>.</u>	1	km./sec
a	Andromedae	0	3	+28	32	2.2	Aod	.207				-13.0*
β	Cassiopeiae		4	+58	36	2.4	F5	.561	.071 s	46	1.7	+12.8
Ŷ	Pegasi		8	+14	38	2.9	B2	.010				+ 7. *
β	Hydri		20	-77	49	2.9	G0	2.243	.141	23	3.6	+22.2
a	Phoenicis		21	-42	51	2.4	K0	.446			1	+75.8*
δ	Andromedae		34	+30	19	3.5	K2	.167	.026 s	125	0.6	- 5. *
a	Cassiopeiae		35	+55	59	2.2-2.8	K0	.062	.016 s	204	-1.8	- 3.0
β	Ceti		39	-18	32	2.2	K0	.230	.042 s	78	0.3	+13.5
$ \gamma$	Cassiopeiae		51	+60	11	2.2	B0p	.031	. 036	91	0.0	- 4.7
	-						1					
β	Phoenicis	1	2	-47	15	3.4	K0	.042				- 0.6
β	Andromedae		4	+35	5	2.4	MO	.219	.045 s	72	0.7	- 2.
δ	Cassiopeiae		19	+59	43	2.8	A5	.306				+ 9.
a	Ursae Minoris		23	+88	46	2.1	F8	.043	.007 s	466	-3.7	-14.8*
γ	Phoenicis		24	-43	50	3.4	K5	.222				+26. *
a	Eridani		34	-57	44	0.6	B5	. 093	.049 s	67	-1.0	
e	Cassiopeiae		47	+63	11	3.4	B3	.043	.001 s	3260	-6.6	- 7.4
β	Arietis		4 9	+20	19	2.7	A5	.150	.064 s	51	1.7	- 0.6*
a	Hydri		56	-62	3	3.0	F0	.256				- 5.
$ \gamma $	Andromedae		58	+41	51	2.3	K0	.073	.007 s	466	-3.5	-10.9
α	Arietis	2	2	+22	59	2.2	K2	.242	.033 s	99	-0.2	-14.3
β	Trianguli		4	+34	31	3.1	A5	.161	.014	262	-1.2	*
0	Ceti		14	- 3	26	1.7-9.6	M6e	. 239	.062	53	0.7	+63.9
θ	Eridani		54	-40	42	3.4	A2	.071				+20.
a	Ceti		57	+ 3	42	2.8	M1	.080	.011 s	296	-2.0	-25.8
γ	Persei		58	+53	7	3.1	Gp	.012	.012 s	272	-1.5	+ 2. *
ρ	Persei		5 9	+38	27	3.4-4.2	M6	.176	.038 s	86	1.3	+28.6
β	Persei	3	2	+40	34	2.1 - 3.2	B8	.011				+ 5. *
α	Persei		17	+49	30	1.9	F5	. 041	.015 s	217	-2.2	- 2.4
δ	Persei		36	+47	28	3.1	B5	. 047	.005 s	652	-3.4	+ 0.7
$ \eta$	Tauri		41	+23	4 8	3.0	B5p	. 053	.007 s	466	-2.8	+15.
ζ	Persei		48	+31	55	2.9	B1	. 023	003 s	3260:	-7.1	+21.2
γ	Hydri		49	-74	33	3.2	Ma	. 128				+16.8
e	Persei		51	+39	43	3.0	B1	.041	012 s	3260 :	-7.0	• • • • • •
γ	Eridani		53	-13	47	3.2	K5	.133	.018 s	181	-0.5	+62.2
λ	Tauri		55	+12	12	3.3-4.2	B3	.015	008	3260:	-6.7	+13.6*
α	Reticuli	4	13	-62	43	3.4	G5	. 069				+35.4

-	and the second					the second se		the second se	and the second s				-
	Star	1000	1 200	1900				Proper on	ax	nce in Years	Mag.	Vel.	
	Star	•	ż	sci.		ag.	'pe	un. otic	ral	sta ght	bs.	Ŀd.	
		<u>م</u>	2	ğ		Ä	Γ.	An	Pa	ĒË	A	Ra	
		h	m	0	1				20 T - 1			km./s	ec.
α	Tauri	4	30	+16	18	1.1	K5	.205	.057 s	57	-0.1	+54.	5
a	Doradus		32	-55	15	3.5	A0p	. 003	• • • • • •			+26.	
π^{3}	Orionis		44	+ 6	47	3.3	F8	.474	.136 s	24	4.0	+24.	7
L	Aurigae		50	+33	0	2.9	K2	. 030	.018 s	181	-0.8	+18.	5
e	Aurigae		55	+43	41	3.4-4.1	F5p	.015	.002 s	1630	-5.0	- 9.	*
n	Auricae	5	0	+41	6	33	B3	082	014 s	233	-10	+ 3	0
" 6	Lenorie	0	1	-22	30	33	K5	074	022	148	0.0	+1	1
R	Eridani		2	- 5	12	20	A 3	117	052 a	63	1 5	- 8	•
р 	Lonoria		9	_16	10	22	40n	.117	.002 5	05	1.0	⊥28	n
μ 	Aurigao		0	-10	10	0.0	CO	.000	075 c			±20.	0 9*
	Aurigae		10	740	10	0.2	D00	.405	.070 5	542	-0.4	+ 90.	# 6*
	Orionia		10	- 0	19	0.0	вор вт	.003	.000	040	-0.0	+ 22.	0 5*
117	Orionis		19	- 2	49	0.4 17	D1 D0	.000	010 ~	170	1 0	+ 30.	0
γ	Trani		20	+ 0	10	1.1		.019	.0195	174	-1.9	+19.	
p	Tauri		20	+ 40	51	1.0		.100	.024 5	130	-1.5	+11.	7
p IIS	Leporis		24	20	00	3.0		.095	.004 s	810	-4.0	-10.	(6*
0 0	Orionis		27	- 0	22	2.4	BU	.000	.009 s	362	-2.8	+17.	0
a	Leporis		28	-17	54	2.7	FU	.006	.014 s	233	-1.0	+24.	0
11	Orionis		31	- 5	59	2.9	Ue5	.000				+21.	3° 0
e	Orionis		31	- 1	16	1.8	BO	.004	.005 s	652	-3.7	+20.	3
5	Tauri		32	+21	5	3.0	ВЗр	.028	001 s	3260 :	-7.2	+16.	4* 0
115	Orionis		36	- 2	0	1.8	B0	.012	— . 019 s	3260 :	-8.2	+17.	9
a	Columbae		36	-34	8	2.8	B5p	.040	•••••		••••		•••
ĸ	Orionis		43	- 9	42	2.2	BO	.009	.029 s	112	2.5	+19.	~
β	Columbae		47	-35	48	3.2	K0	.397	• • • • • •			+89.	2
a	Orionis		50	+7	23	1.0-1.4	M1	.032	.017 s	192	-2.8	+21.	3.
β	Aurigae		52	+44	56	2.1	A0p	. 046	.034 s	96	-0.2	-19.	
$ \theta $	Aurigae		5 3	+37	12	2.7	A0p	.106	.016 s	204	-1.3	+28.	5
η	Geminorum	6	9	+22	32	3.2-4.2	M2	.062	.014 s	233	-1.1	+20.	*
μ	Geminorum		17	+22	34	3.2	M3	.129	.016 s	204	-0.8	+55.	2
ß	Can. Majoris		18	-17	54	2.0	B1	.003	.012 s	272	-2.6	+33.	*
a	Carinae		22	-52	38	-0.9	F0	.022	.005 s	652	-7.4	+20.	2
v	Geminorum		32	+16	29	1.9	A0	.066	.043 s	76	0.1	-12.	3*
'n	Puppis		35	-43	6	3.2	B8	020				+26	0*
•	Geminorum		38	+25	14	3.2	G5	.020	.007 s	466	-2.6	+ 9.	5
ķ	Geminorum		40	+13	-0	3.4	F5	.230	.048 s	68	1.8	+26	7
a	Can. Majoris		41	-16	35	-1.6	AO	1.315	.371 s	9	1.2	- 7	4*
a	Pictoris		47	-61	50	3.3	A5	.271		l			
τ	Puppis		47	-50	30	2.8	K0	.094				+37	
•				- 0									

Star	R.A. 1900	Decl. 1900		Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
€ Can. Majoris 5 Geminorum 0 ² Can. Majoris	h m 6 55 58 59	$\begin{vmatrix} -28 \\ 20 \\ -23 \end{vmatrix}$, 50 43 41	1.6 3.7–4.3 3.1	B1 G 0 p	.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	652	-2.8	+28.2 + 6.8*
δ Can. Majoris L ² Puppis π Puppis	7 4 10 14	-26 -44 -36	14 29 55	2.0 3.4-6.2 2.7	G2p Md K5	.005 .334 .012	.010	326	-2.9	+34. + +52.6 +16.3
σ Puppis σ Puppis $ a_2$ Geminorum a_1 Geminorum a Can. Minoris	22 26 28 28 28 34	+ 32 + 32 + 32 + 5	29 6 6 6 29	$ \begin{array}{r} 3.1 \\ 3.3 \\ 2.0 \\ 2.8 \\ 0.5 \\ \end{array} $	K5 A0 A0 F5	.003 .192 .201 .209 1.242	.020 s .077 s 	163 42 10	-0.4 1.4 3.0	+87.3 + 6.2* - 1.0* - 4.3
β Geminorum ξ Puppis	39 45	$+28 \\ -24$	16 37	$\begin{array}{c} 1.2\\ 3.5\end{array}$	K0 G6p	.623 .007	.101 s .003 s	32 1087	1.2 - 4.2	+ 3.6 + 4.2
ζ Puppis ρ Puppis γ Velorum ε Carinae	8 0 3 6 8 20	$ -39 \\ -24 \\ -47 \\ -59$	43 1 3 11	$2.3 \\ 2.9 \\ 2.2 \\ 1.7$	Od F5 Oap K0	.036 .097 .000 .032	.028 s	 116 	 0.1	+46. +11.7
o Urs. Majoris ε Hydrae δ Velorum	22 22 41 42	+61 + 6 -54	3 47 20	3.5 3.5 2.0	G0 F8 A0	.166 .193 .093	004 s .015 s	3260 : 217	-6.5 -0.6	+11.7 +20.3 +37.2*
ζ Hydrae ι Urs. Majoris λ Velorum	50 52 9 4	+ 6 + 48 - 43	20 26 2	$3.3 \\ 3.1 \\ 2.2$	K0 A5 K5	.101 .500 .022	.014 s .070 s	233 47	-1.0 2.3	+23.0 + 8. +18.8
β Carinae ι Carinae a Lyncis	12 14 15	$-69 \\ -58 \\ +34 \\ -54$	18 51 49	1.8 2.2 3.3	A0 F0 K5	.192 .023 .214	.002 s	 1630	 	-16.0 +13.1 +38.5
k Velorum a Hydrae θ Urs. Majoris N Velorum	19 23 26 28		35 14 8 36	$2.6 \\ 2.2 \\ 3.3 \\ 3.0$	B3 K2 F8p K5	.017 .036 1.096 .041	. 006 s . 056 s	 543 58	-3.9 2.0	+21.9* -4.0 +15.8 -13.9
ε Leoni ^s υ Carinae α Leonis	40 45	$+24 \\ -64 \\ +12$	14 36 27	$\begin{array}{c} 3.1\\ 3.1\\ 1.3 \end{array}$	G0p F0 B8	. 045 . 062 244	001 s	3260 : 	-6.9	+ 5.1 + 13.2
q Carinae γ Leonis μ Urs. Majoris	10 3 14 14 16	-60 +20 +42	50 21 0	$ \begin{array}{r} 1.5 \\ 3.4 \\ 2.3 \\ 3.2 \\ \end{array} $	K5 K0 K5	. 045 . 347 . 082	.008 s .004 s .034 s	 815 96	-4.7 0.9	+ 9.2 -36. -22.

	Star	R A 1000	0001 1111	Decl. 1900			Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
θ	Carinae	h 10	т 39	$^{\circ}$ - 63	, 52	3.	.0	во	" . 063				km./sec. +16.
η	Carinae		41	-59	10	1.0-	-7.4	Pec	.000	• • • • • •	· · <i>·</i> · · ·		<i>.</i>
μ	Velorum		42	-48	54	2	.8	G5	.084		• • • • •		+7.1
V	Hydrae		45	-15	40	3.	. 3	K0	.214	.035 s	93	1.0	- 0.7
β	Urs. Majoris	1	56	+56	55	2	.4	A0	. 089	.047 s	69	0.8	-10.9*
a	Urs. Majoris		58	+62	17	2.	.0	G5	.137	.074 s	44	1.4	- 8.
							_						~ .
ψ	Urs. Majoris	11	4	+45	2	3.	.2	K0	.067	.049 s	67	1.6	- 3.4
ð	Leonis		9	+21	4	2	. 6	A3	.208	.078 s	42	2.1	-18.
θ	Leonis		9	+15	59	3.	.4	A0	.103	.019 s	172	-0.2	+ 6.8
λ	Centauri		31	-62	28	3	.3	B9	.046	• • • • • •		• • • • •	+11.
β	Leonis		44	+15	8	2	.2	A2	.507	.101 s	32	2.2	+ 1.3
γ	Urs. Majoris		49	+54	15	2	.5	A0	.095	.004 s	815	-4.5	-10.0
	a	1.0			-		~	Do					
0	Centauri	12	3	-50	10		.9	B3b	.044				
e	Corvi		5	-22	4	3	. 2	KU	.063	.025 s	130	0.2	+ 5.2
0	Crucis	{	10	-58	12	3	.1	B3	.051			••••	+25.
δ	Urs. Majoris		10	+57	35	3	.4	A2	.113	.045 s	72	1.7	-10.7
γ	Corvi		11	-16	59	2	.8	B8	.159	••••	• • • • •		- 7. *
a	Crucis		21	-62	33	1	.0	B1	.048	.030	109	-1.6	+19.
δ	Corvi		25	-15	58	3	.1	A0	.249	.010 s	326	-1.9	-53.5
γ	Crucis		26	-56	33	1	5	M6	.270				+21.5
β	Corvi		29	-22	51	2	.8	G5	.061	.028	116	0.0	- 7.4
α	Muscae		31	-68	35	2	9	B3	.038				+13.5
γ	Centauri		36	-48	24	2	.4	A0	.200				- 9.
γ	Virginis		36	- 0	54	2	9	F0	. 561	.073 s	45	2.2	-20.0
β	Muscae		4 0	-67	34	3	.3	B3	.041				+35. *
β	Crucis	1	42	-59	9	1	. 5	B1	.054	.008 s	408	-4.0	+13.
e	Urs. Majoris		50	+56	30	1	.7	A0p	.117	.042	78	-0.2	-11.9*
a	Can. Venat.	[51	+38	51	2	.8	A0p	.233	.015 s	217	-1.3	+ 1.0*
e	Virginis		57	+11	30	3	.0	K0	.270	.048 s	68	1.4	-13.6
		ľ											
γ	Hydrae	13	13	-22	39	3	. 3	G5	.085	.017 s	192	-0.5	- 5.1
ι	Centauri		15	-36	11	2	. 9	A2	.111				+ 2.0
1 5	Urs. Majoris		20	+55	27	2	.4	A2p .	.131	.038 s	86	0.3	- 9.6*
a	Virginis		20	-10	38	1	.2	B2	.051	.009 s	362	-4.0	+ 1.6*
ζ	Virginis		30	- 0	5	3	.4	A2	.285	.038	86	1.3	
é	Centauri		34	-52	57	2	.6	B1	.091				+ 6.
η	Urs. Majoris		44	+49	4 9	1	.9	B3	.116	– . 004 s	3260 :	-8.1	- 6.
μ	Centauri	l	44	-41	59	3	.3	B2p	. 030		۱	1	+12.6

	Star		K.A. 1900	Decl 1000	10001	Mag.		Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.	
		h	m	0	'				"	1 "	1	1	km./se	2C.
ζ	Centauri	13	4 9	46	48	3.1	B	32p	.079	1	1			
η	Boötis		50	+18	54	2.8	C	ΞQ	.370	.098 s	33	2.8	- 0.2	2*
β	Centauri		57	-59	53	0.9	В	3Ĩ	. 039	. 036	91	-1.3	+12.0	0*
π	Hydrae	14	1	-26	12	3.5	K	X 0	.165				+27.6	3
θ	Centauri		1	-35	53	2.3	K	X 0	.748				+ 1.8	3
a	Boötis		11	+19	42	0.2	K	X 0	2.287	.080 s	41	-0.3	-5.0)
γ	Boötis		28	+38	45	3.0	F	0	.182	.058 s	56	1.8	-35.	
η	Centauri		29	-41	43	2.6	B	13p	. 052				0.	
a	Centauri		33	-60	25	0.3	G	60	3.682	.758	4	4.7	+22.2	2
α	Circini		34	-64	32	3.4	F	0	.312				+ 7.8	3
α	Luri		35	-46	58	2.9	B	2	. 036				+ 8.	*
e	Boötis		41	+27	30	2.7	K	0	. 045	.016 s	204	-1.3	-16.4	ł
a²	Librae		45	-15	38	2.9	K	2	.129				-17.	*
β	Urs. Minoris		51	+74	34	2.2	K	5	.028	.011 s	296	-2.6	+17.0)
β	Lup i		52	-42	44	2.8	B	2p	.066				0.	*
κ	Centauri		53	-41	42	3.4	B	3	.037				+10.	*
σ	Librae		58	-24	5 3	3.4	M	16	. 094	.029 s	112	0.7	- 4.2	3
ζ	Lupi	15	5	-51	43	3.5	K	0	.132				- 9.2	2
γT	Australis		10	-68	19	3.1	A	0	.064					
β	Librae		12	- 9	1	2.7	B	8	.108				-38.	*
δ	Lupi		15	-40	17	3.4	B	2	. 032					
γ	Urs. Minoris		21	+72	11	3.1	A	.2	.017				- 8.	
L	Draconis		23	+59	19	3.5	K	0	.010	.034 s	96	1.2	-10.2	2
γ	Lupi		28	-40	50	3.0	B	3	.042		l I			
a	Cor. Borealis		30	+27	3	2.3	A	0	.160	.053 s	62	0.9	+ 0.4	*
α	Serpentis		39	+ 6	44	2.8	K	0	.142	.046 s	71	1.1	+ 3.3	\$
βī	Γ Australis		46	-63	7	3.0	F	0	.440					
π	Scorpii		53	-25	50	3.0	B	2p	.042					*
δ	Scorpii		54	-22	20	2.5	В	0	.042					*
β	Scorpii	16	0	-19	32	2.8	В	1	.041				- 9.5	:*
δ	Ophiuchi		9	- 3	26	3.0	K	8	.159	.040 s	82	1.0	-19.0)
ε	Ophiuchi		13	- 4	27	3.3	K	0	.088	.046 s	71	1.6	- 9 2	į
σ	Scorpii		15	-25	21	3.1	B	1	. 033				+2.0	•
$ \eta $	Draconis		23	+61	44	2.9	G	5	.062	.042 s	78	1 0	-13 9	,
a	Scorpii		23	-26	12	1.2	M	[2p	.032	.026 s	126	-1 7	- 3 1	*
β	Herculis		26	+21	42	2.8	K	0	.104	.030 s	109	0.2	-255	•
au	Scorpii		30	-28	1	2.9	В	0	. 042				+1.5	i
_														
Star	R.A. 1900 Decl. 1900		Mag.		Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.				
-----------------------	-------------------------	----------	------------	------------	-----------	-----------------------	------------	----------------------------	---------------	-------------	------	-------------------		
ζ Ophiuchi	h 16	m 32		, 22	2.7		В0	. 024	<i>"</i>			km./se c -15.0		
Ils Herculis		38	+31	47	3.0		G0	.601	.111 s	29	3.2	-70. •		
a T Australis		38	-68	51	1.9		K2	. 034		••••		- 3.7		
€ Scorpii	1	44	-34	7	2.4		K0	.668	••••	• • • • •		- 2.0		
μ ^r Scorph	1.	45	-37	53	3.1	1	B3p	.032	• • • • • •	••••	••••			
G Arae	'	50	-55	50	3.1		Ma	.047		• • • • •		- 6.1		
k Ophiuchi	'	53	+ 9	32	3.4		K0	.296	.208 s	116	0.6	-55.3		
$ \eta$ Ophiuchi	17	5	-15	36	2.6		A0	. 094				- 1.1		
η Scorpii		5	-43	6	3.4		F2	.291				-28.		
ζ Draconis		8	+65	50	3.2		B5	.023	.019 s	172	-0.4	-14.6		
la Herculis		10	+14	30	3.1-3.	9	M7	.030	002 s	3260 :	-6.9	-32.4		
δ Herculis		11	+24	57	3.2		A2	.164	.029 s	112	0.5	-42. *		
π Herculis	1	12	+36	55	3.4		K2	.021	.019 s	172	-0.2	-25.1		
θ Ophiuchi	1	16	-24	54	3.4		B3	.030				- 0.9		
β Arae		17	-55	26	2.8		K2	.035				- 1.0		
v Scorpii		24	-37	13	2.8		B3	.040						
a Arae		24	-49	48	3.0		B3p	.085						
λ Scorpii		27	-37	2	1.7		B2	.040				- 1. *		
β Draconis		28	+52	23	3.0	-	G0	.012	.004 s	815	-4.0	-19.7		
θ Scorpii		30	-42	56	2.0		F0	.010				+ 5.		
a Ophiuchi		30	+12	38	2.1		A5	.264	.049 s	67	0.5			
к Scorpii	:	36	-38	58	2.5		B2	.032						
β Ophiucni	:	39	+ 4	37	2.9		K0 .	.157	.024 s	136	-0.2	-11.5		
¹ Scorpii	1 .	41	-40	5	3.1		F5p	. 000		. .		-27.8		
Ilu Herculis	.	43	+27	47	3.5	ŀ	G5	.817	.111 s	29	3.7	-15.7		
G Scorpii		43	-37	1	3.2		K2	.062				+24.7		
v Ophiuchi	.	54	- 9	4 6	3.5		K0	.118	.026 s	126	0.6	+12.6		
γ Draconis		54	+51	30	2.4		K5	. 026	.017 s	192	-1.4	-27.0		
γ Sagittarii		59	-30	26	3.1		K0	.206				+22. *		
n Sagittarii	18	11	36	18	3.2		мө	222				0.0		
η Sagittarii	10	15	-20	10 52	28		KU KU	.220	• • • • • • •			-20.2		
o Sagittarii	}	16	- 29	55	2.0		K0 K0	808	065 c	50		-20.2		
η Serpentis	1	10	- 24	00	2.4		Δ <u>0</u>	120	.000 5	00	2.0	-110		
e Sagittarii		10 22	-04	20	2.0		KU KU	107	•••••		••••	-43.2		
I Sagittain	1	24	20	29 11	2.9		A 0	- 348	194 -	26	0.6	-13.8		
d Sogittorii		3U 3U	-100 97	41 41	22		RS RS	.040 059	.1445	20	0.0	± 26 *		
UR I vrae		46	-41	15	3 4-4	1	B2n	011	- 014 c	3260 ·	-6.6	*		
a Sagittarii		10 10	-26	25	2.1 - 1	-1	B3	081	.017 5	0200.	0.0	- 1		
o Gagittain	•	101	20	40	<u> ~</u>	_ 1								

Star			R.A. 1900			Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.	
γ ζ	Lyrae Sagittarii	h 18	m 55 56	$+32 \\ -30$	' 33 1	$\begin{array}{c} 3.3\\ 2.7\end{array}$	A0 A2	" .010 .026	<i>"</i>			km./sec -20. * +22.	
τζ πδδ β δ α	Sagittarii Aquilae Sagittarii Draconis Aquilae Cygni Aquilae Cygni Aquilae	19	1 4 13 21 27 42 42 42 46	-27 +13 -21 +67 +2 +27 +10 +44 +8	49 43 11 29 55 45 22 53 36	3.4 3.0 3.0 3.2 3.4 3.2 2.8 3.0 0.9	K0 A0 F2 K0 F0 K0 P K2 A0 A5	.265 .103 .041 .135 .267 .010 .018 .067 .659	.040 s .016 s .038 s .057 s .003 s .018 s .038 s .204 s	82 204 86 57 1087 181 86 16	$ \begin{array}{c} \dots \\ 1.0 \\ -1.0 \\ 1.1 \\ 2.2 \\ -4.4 \\ -0.9 \\ 0.9 \\ 2.4 \\ \end{array} $	+42. * -38.6 -10.3 +25.1 -32. * -23. * -2.1 -37. -33.	
θ β α γ α α ε	Aquilae Capricorni Pavonis Cygni Indi Cygni Cygni	20	6 15 18 19 31 38 42	-1 -15 -57 +39 -47 +44 +33	7 6 3 56 38 55 36	3.4 3.2 2.1 2.3 3.2 1.3 2.6	A0 G0p B3 F8p K0 A2p K0	. 035 . 042 . 090 . 006 . 072 . 004 . 485	.015 s .005 s 002 s .005 .041 s	217 652 3260 : 652 80	-0.7 -3.3 -7.7 -5.2 0.7	$\begin{array}{r} -29 \ 2^* \\ -18.8^* \\ + \ 2.0^* \\ - \ 5.6 \\ - \ 0.8 \\ - \ 4. \\ -10. \end{array}$	
ζαββ εδγ	Cygni Cephei Aquarii Cephei Pegasi Capricorni Gruis	21	9 16 26 27 39 42 48	+29 +62 - 6 +70 + 9 -16 -37	49 10 1 25 35 50	3.4 2.6 3.1 3.3 2.5 3.0 3.2	K0 A5 G0 B1 K0 A5 A0	.061 .163 .020 .013 .028 .395 .108	.024 s .083 s 003 s .007 s .002 s .114 s	$136 \\ 39 \\ 3260 : \\ 466 \\ 1630 \\ 29 \\ \dots$	$\begin{array}{c} 0.3 \\ 2.2 \\ -6.9 \\ -2.5 \\ -5.9 \\ 3.3 \\ \cdots \end{array}$	+17. * -30.7 + 6.4 -14.1* + 5.3 - 3.	
α α β η α β α γ	Aquarii Gruis Tucanae Gruis Pegasi P. Australis Pegasi Pegasi Cephei	22	1 2 12 37 38 52 59 59 35	$ \begin{array}{r} - & 0 \\ -47 \\ -60 \\ -47 \\ +29 \\ -30 \\ +27 \\ +14 \\ +77 \end{array} $	48 27 45 24 42 9 32 40 4	3.2 2.2 2.9 2.2 3.1 1.3 2.6 2.6 2.6 3.4	G0 B5 K2 M6 G0 A3 M3 A0 K1	.009 .200 .085 .122 .039 .367 .235 .077	.009 s 	362 3260 : 24 204 86 47	$ \begin{array}{c} -2.0 \\ \\ -6.9 \\ 2.0 \\ -1.4 \\ 0.5 \\ 2.6 \\ \end{array} $	+ 7.1 +41. + 1.2 + 4.3* + 6.7 + 8.6 + 4. *	

OCCULTATIONS OF STARS BY THE MOON, 1932

By V. Krotkov

The following predictions have been prepared for Toronto but may be used within a radius of three hundred miles by application of the formula

E.S.T. (for place of observation)

=E.S.T. (as given for Toronto) $+a\Delta\lambda+b\Delta\phi$,

where $\Delta\lambda$ and $\Delta\phi$ are the differences between the longitude and latitude of the place of observation and Toronto in degrees. The values of a and b are given in minutes. The longitude of Toronto is 79°,4 and its latitude 43°.7. If you desire to find the time any star will be occulted for a station near Toronto subtract 79°.4 from the longitude and 43°.7 from its latitude. This will give $\Delta\lambda$ and $\Delta\phi$. From the predictions for Toronto for the star in question look for aand b and form the products $a \times \Delta\lambda$ and $b \times \Delta\phi$. Add these to the predicted times for Toronto and you will obtain the times of immersion and emersion for the place approximately. The predictions are given for both immersion and emersion, but it is particularly desirable to obtain the time of immersion. The angle P which gives the point of disappearance or reappearance is measured on the limb of the moon eastward from the north point.

When the occultation takes place near a tangent to the moon and is nearly a grazing contact, the predictions are a little uncertain and differ considerably for small changes in the observer's position on the earth's surface. In these cases the a and b are not computed. The international abbreviations for the constellation names have been used throughout.

					Immersion						Emersion					
Date 1932		S	Star		E. S h	5. Т. m	a m	b m	P °	E. S h	5. T. m	a m	b m	P °		
Jan.	12	337	B Aqr	6.4	19	30	-1.2	-0.8	76	20	35	-0.3	+0.6	212		
"	12	[342]	B Aqr	6.5	20	59	-0.4	-0.4	58	22	02	0.0	-0.4	239		
,,	15	$[\tau]$	Psc	5.6	18	58	-2.3	-0.3	86	20	09	-1.0	+2.0	203		
"	19	38	B Aur	6.5	23	01	-1.9	-0.7	59	00	12	-1.1	-2.4	295*		
"	28	f	Vir	6.0	01	01	0.0	-2.0	174	01	45	-1.8	+1.8	259		
"	29	550]	B Vir	6.0	04	21	-1.5	-0.1	114	05	33	-1.1	-1.1	321		
Feb.	13	47 /	Ari	5.8	22	52	-0.2	-2.2	108	23	46	-0.4	0.0	223		
""	14	16 1	Tau	5.4	20	55	-1.6	-0.6	78	22	14	-1.0	-0.9	257		
" "	14	17 '	Tau	3.8	21	04	-1.4	-3.2	123	22	00	-1.5	+1.3	212		
" "	14	q	Tau	4.3	21	23	-1.6	+1.0	42	22	25	-0.6	-2.6	293		
" "	14	20 '	Tau	4.1	21	34	-1.3	-0.6	73	22	49	-0.7	-1.3	265		
"	14	21 '	Tau	5.8	21	59			24	22	40			316		
"	14	22 1	Tau	6.5	21	57	-1.5	-1.2	35	22	49	-0.3	-3.0	304		
" "	17	49	Aur	5.1	21	14	-1.9	-1.0	111	22	35	-2.0	-0.6	267		
"	20	Y (Cnc	4.7	02	36	0.0	-2.5	152	03	26	-0.7	-1.2	263		
"	23	80 1	Leo	6.4	00	28	-1.5	-0.5	112	01	36	-0.9	-1.6	327		
"	24	50 \	Vir	6.2	23	52	+0.1	-1.7	173	00	36	-1.8	+1.6	260*		
"	26	214	G Vir	6.5	00	05			49	00	20			19		
"	26	43]	H Vir	5.5	06	08	-1.4	-1.2	116	07	20	-1.1	-1.6	2981		
Mar.	14	47	B Aur	6.0	18	12	-2.1	+0.9	68	19	36	-1.8	-1.3	281^{+}		
44	15	354]	B Tau	6.4	00	14	-0.1	-1.0	74	01	07	+0.6	-1.5	294		
"	16	47 (Gem	5.6	22	17			162	23	00			234		
"	17	134 1	B Gem	6.5	00	45	-0.3	-1.5	99	01	42	+0.2	-1.7	298		
"	25	17 (G Lib	64	03	12	-1.5	-0.7	123	04	26	-1.5	-1.0	292		
"	25	18 0	GLib	6 1	03	51	-1.5	-1 0	127	05	13	-1.1	-1.1	284		
"	26	10	Sco	4 7	05	13	-2 0	± 0.2	50	05	56	-1 5	-21	362†		
"	30		Sor	4.8	03	45	-1.0	+1 0	50	04	54	-1 3	+0 9	283		
"	30		Sar	10	03	10 28	-1.2	-1.9 11 4	09	06	50	-1.0	10.5	200		
	90	I A S	-si	1 .0	00	40	1.4	71.4	$\cdot \cdot \cdot$	00	00	-2.0	-0.0	8		

OCCULTATIONS VISIBLE AT TORONTO

*Emersion on the following day. †Immersion before sunset. §Emersion after sunrise. ‡Almost grazing.

OCCULTATIONS VISIBLE AT TORONTO-continued

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					I	mmers	ion					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Da	ate	Star	Mag.	E. S. T.	a	b	Р	E. S. T.	a	b	P
Apr.13cGem5.51856 -2.0 -0.4 941913 -1.1 -1.6 308†"1883Leo6.3001619000047245"18 τ Leo5.20047 -0.1 -2.2 1730131 -1.3 -1.2 259"1950Vir6.22050 -0.4 -0.8 1532150 -1.5 $+1.0$ 282"21231GVir6.40249 -1.0 -1.8 1570341 -1.2 -1.0 256"21236GVir5.70333 -1.1 -1.8 1570341 -1.2 -1.4 289"21236GVir5.70333 -1.1 -1.8 1570341 -1.2 -1.4 289"1917GLib6.40103 -1.4 -1.1 170214 -1.2 -1.4 289"1918GLib6.10140 -1.3 -1.4 1250247 -1.0 -1.3 276"22WSgr4.30200 -1.8 -0.4 1270301 -1.6 $+0.3$ 229"2527Cap6.1042	19	32			hm	m	m	0	hm	m	m	o
" 18 83 Leo 6.3 00 16 190 00 47 245 " 18 τ Leo 5.2 00 47 -0.1 -2.2 173 01 31 -1.3 -1.2 259 " 19 50 Vir 6.2 20 50 -0.4 -0.8 153 21 50 -1.5 +1.0 282 " 21 231 G Vir 6.4 02 49 -1.0 -1.8 157 03 41 -1.2 236 May 16 31 B Vir 6.4 01 23 -0.3 -1.9 133 emersion be low hor. " 19 18 G Lib 6.1 01 40 -1.3 -1.4 127 03 01 -1.6 +0.4 229 47 -1.0 -1.3 276 " 28 337 B Aqr 6.4 03 39 -1.0 +1.7 69 04 52 -1.0 </td <td>Apr.</td> <td>13</td> <td>c Gem</td> <td>5.5</td> <td>18 56</td> <td>-2.0</td> <td>-0.4</td> <td>94</td> <td>19 13</td> <td>-1.1</td> <td>-1.6</td> <td>308†</td>	Apr.	13	c Gem	5.5	18 56	-2.0	-0.4	94	19 13	-1.1	-1.6	308†
" 18 τ Leo 5.2 00 47 -0.1 -2.2 173 01 31 -1.3 -1.2 259 " 19 50 Vir 6.2 20 50 -0.4 -0.8 153 21 50 -1.5 +1.0 282 " 21 231 G Vir 6.4 02 49 -1.0 -1.8 157 03 41 -1.2 -1.0 256 " 21 236 G Vir 5.7 03 33 -1.1 -1.8 157 03 41 -1.2 -1.0 256 May 16 31 B Vir 6.4 01 23 -0.3 -1.9 133 emersion below hor. " 19 18 G Lib 6.1 01 0 -1.3 -1.4 127 03 01 -1.6 +0.3 229 "22 W Sgr 4.3 02 0 +1.8 70 04 35 -0.2 +1.3 221 \$21 \$2	"	18	83 Leo	6.3	00 16			190	00 47			245
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		18	au Leo	5.2	00 47	-0.1	-2.2	173	01 31	-1.3	-1.2	259
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		19	50 Vir	6.2	20 50	-0.4	-0.8	153	21 50	-1.5	+1.0	282
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	" "	21	43 H Vir	5.5	$01 \ 34$	-1.4	-1.0	124	$02 \ 45$	-1.3	-1.2	294
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	" "	21	231 G Vir	6.4	$02 \ 49$	-1.0	-1.8	157	03 41	-1.2	-1.0	256
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		21	236 G Vir	5.7	03 33	-1.1	-1.8	145	04 30	-0.8	-1.2	236
" 19 17 G Lib 6.4 01 03 -1.4 -1.1 117 02 14 -1.2 -1.4 289 " 19 18 G Lib 6.1 01 40 -1.3 -1.4 125 02 47 -1.0 -1.3 276 " 22 W Sgr 4.3 02 00 -1.8 -0.4 127 03 01 -1.6 +0.3 229 " 25 27 Cap 6.1 04 20 -1.3 +1.0 36 05 34 -2.1 +0.1 265\$ " 28 337 B Aqr 6.4 03 39 -1.0 +1.7 69 04 52 -1.0 +2.1 221\$ " 31 π Psc 5.6 03 34 0.0 +1.8 70 04 35 -0.2 +1.3 228 June 7 35 B Cnc 6.4 20 56 +0.2 -1.8 126 21 50 +0.2 -1.3 279 " 14 236 G Vir 5.7 23 16 -1.4 +1.3 113 23 35 -1.1 -1.5 291* </td <td>May</td> <td>16</td> <td>31 B Vir</td> <td>6.4</td> <td>01 23</td> <td>-0.3</td> <td>-1.9</td> <td>133</td> <td>emersio</td> <td>n be</td> <td>low</td> <td>hor.</td>	May	16	31 B Vir	6.4	01 23	-0.3	-1.9	133	emersio	n be	low	hor.
" 19 18 G Lib 6.1 01 40 -1.3 -1.4 125 02 47 -1.0 -1.3 276 " 22 W Sgr 4.3 02 00 -1.8 -0.4 127 03 01 -1.6 +0.3 229 " 25 27 Cap 6.1 04 20 -1.3 +1.0 36 05 34 -2.1 +0.1 265\$ " 28 337 B Aqr 6.4 03 39 -1.0 +1.7 69 04 52 -1.0 +2.1 221\$ " 31 π Psc 5.6 03 34 0.0 +1.8 70 04 35 -0.2 +1.3 228 June 7 35 B Cnc 6.4 20 56 +0.2 -1.8 126 21 50 +0.2 -1.3 279 " 14 43 H Vir 5.5 21 13 -1.8 -0.4 104 22 24 -1.3 -1.4 318 " 14 236 G Vir 5.7 23 16 -1.4 +1.1 131 23 35 -1.1 -1.5 291* </td <td>"</td> <td>19</td> <td>17 G Lib</td> <td>6.4</td> <td>01 03</td> <td>-1.4</td> <td>-1.1</td> <td>117</td> <td>02 14</td> <td>-1.2</td> <td>-1.4</td> <td>289</td>	"	19	17 G Lib	6.4	01 03	-1.4	-1.1	117	02 14	-1.2	-1.4	289
" 22 W Sgr 4.3 02 00 -1.8 -0.4 127 03 01 -1.6 +0.3 229 " 25 27 Cap 6.1 04 20 -1.3 +1.0 36 05 34 -2.1 +0.1 265\$ " 28 337 B Aqr 6.4 03 39 -1.0 +1.7 69 04 52 -1.0 +2.1 221\$ " 31 π Psc 5.6 03 34 0.0 +1.8 70 04 35 -0.2 +1.3 228 June 7 35 B Cnc 6.4 20 56 +0.2 -1.8 126 21 50 +0.2 -1.3 279 " 14 43 H Vir 5.5 21 13 -1.8 -0.4 104 22 24 -1.3 -1.4 318 " 14 236 G Vir 5.7 23 16 -1.4 +1.3 118 00 25 -1.1 -1.5 291* " 30 17 Tau 3.8 04 09 +0.4 +2.3 32 <t< td=""><td>"</td><td>19</td><td>18 G Lib</td><td>6.1</td><td>01 40</td><td>-1.3</td><td>-1.4</td><td>125</td><td>02 47</td><td>-1.0</td><td>-1.3</td><td>276</td></t<>	"	19	18 G Lib	6.1	01 40	-1.3	-1.4	125	02 47	-1.0	-1.3	276
" 25 27 Cap 6.1 04 20 -1.3 +1.0 36 05 34 -2.1 +0.1 265§ " 28 337 B Aqr 6.4 03 39 -1.0 +1.7 69 04 52 -1.0 +2.1 221§ " 31 π Psc 5.6 03 34 0.0 +1.8 70 04 35 -0.2 +1.3 228 June 7 35 B Cnc 6.4. 20 56 +0.2 -1.8 126 21 50 +0.2 -1.3 279 " 14 43 H Vir 5.5 21 13 -1.8 -0.4 104 22 24 -1.3 -1.4 318 " 14 236 G Vir 6.4 22 24 -1.4 -1.1 131 23 35 -1.3 -1.3 284 " 14 236 G Vir 5.7 23 16 -1.4 +1.3 110 025 -1.1 -1.5 291* " 30 17 Tau 3.8 04 09 +0.4 +2.3 32 .	" "	22	W Sgr	4.3	02 00	-1.8	-0.4	127	03 01	-1.6	+0.3	229
" 28 337 B Åqr 6.4 03 39 -1.0 +1.7 69 04 52 -1.0 +2.1 221 \$ " 31 π Psc 5.6 03 34 0.0 +1.8 70 04 35 -0.2 +1.3 228 June 7 35 B Cnc 6.4. 20 56 +0.2 -1.8 126 21 50 +0.2 -1.3 279 " 14 43 H Vir 5.5 21 13 -1.8 -0.4 104 22 24 -1.3 -1.4 318 " 14 236 G Vir 6.4 22 24 -1.4 -1.1 131 23 35 -1.3 -1.3 284 " 14 236 G Vir 5.7 23 16 -1.4 +1.3 110 25 -1.1 -1.5 291* " 30 17 Tau 3.8 04 09 +0.4 +2.3 32 -1.4	**	25	27 Cap	6.1	04 20	-1.3	+1.0	36	$05 \ 34$	-2.1	+0.1	265§
"31 π Psc 5.6 03 34 0.0 +1.8 70 04 35 -0.2 +1.3 228 June 7 35 B Cnc 6.4. 20 56 +0.2 -1.8 126 21 50 +0.2 -1.3 279 " 14 43 H Vir 5.5 21 13 -1.8 -0.4 104 22 24 -1.3 -1.4 318 " 14 231 G Vir 6.4 22 24 -1.4 -1.1 131 23 35 -1.3 -1.4 318 " 14 236 G Vir 5.7 23 16 -1.4 -1.3 118 00 25 -1.1 -1.5 291* " 24 ϕ Aqr 4.6 04 03 -1.4 +1.3 10 25 -1.4 +1.1 229\$ 291*	" "	28	337 B Agr	6.4	03 39	-1.0	+1.7	69	04 52	-1.0	+2.1	221§
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" "	31	π Psc	5.6	03 34	0.0	+1.8	70	$04 \ 35$	-0.2	+1.3	228
" 14 43 H Vir 5.5 21 13 -1.8 -0.4 104 22 24 -1.3 -1.4 318 " 14 231 G Vir 6.4 22 24 -1.1 131 23 35 -1.3 -1.4 318 " 14 236 G Vir 5.7 23 16 -1.4 -1.1 131 23 35 -1.3 -1.3 284 " 14 236 G Vir 5.7 23 16 -1.4 -1.3 113 00 25 -1.1 -1.5 291* " 24 ϕ Aqr 4.6 04 03 -1.4 $+1.1$ 51 05 24 -1.4 $+1.1$ 229\$ " 30 17 Tau 3.8 04 09 $+0.4$ $+2.3$ 32 -1.4 $+1.1$ 229\$ " 30 17 Tau 3.8 04 09 $+0.4$ $+2.3$ 32 -1.4 $+1.1$ 229\$ $=1.4$ $+1.2$	June	7	35 B Cnc	6.4.	20 56	+0.2	-1.8	126	21 50	+0.2	-1.3	279
" 14 231 G Vir 6.4 22 24 -1.4 -1.1 131 23 35 -1.3 -1.3 284 " 14 236 G Vir 5.7 23 16 -1.4 -1.1 131 23 35 -1.3 -1.3 284 " 14 236 G Vir 5.7 23 16 -1.4 -1.3 118 00 25 -1.1 -1.5 291* " 24 φ Aqr 4.6 04 03 -1.4 +1.1 51 05 24 -1.4 +1.1 229\$ " 30 17 Tau 3.8 04 09 +0.4 +2.3 32 <	••	14	43 H Vir	5.5	21 13	-1.8	-0.4	104	$22 \ 24$	-1.3	-1.4	318
" 14 236 G Vir 5.7 23 16 -1.4 -1.3 118 00 25 -1.1 -1.5 291* " 24 ϕ Aqr 4.6 04 03 -1.4 $+1.1$ 51 05 24 -1.4 $+1.1$ 229\$ " 30 17 Tau 3.8 04 09 $+0.4$ $+2.3$ 32 <td>"</td> <td>14</td> <td>231 G Vir</td> <td>6.4</td> <td>22 24</td> <td>-1.4</td> <td>-1.1</td> <td>131</td> <td>$23 \ 35$</td> <td>-1.3</td> <td>-1.3</td> <td>284</td>	"	14	231 G Vir	6.4	22 24	-1.4	-1.1	131	$23 \ 35$	-1.3	-1.3	284
" 24 φ Aqr 4.6 04 03 -1.4 +1.1 51 05 24 -1.4 +1.1 229 § " 30 17 Tau 3.8 04 09 +0.4 +2.3 32	"	14	236 G Vir	5.7	$23 \ 16$	-1.4	-1.3	118	00 25	-1.1	-1.5	291*
" 30 17 Tau 3.8 04 09 +0.4 +2.3 32 </td <td>" "</td> <td>24</td> <td>φ Agr</td> <td>4.6</td> <td>04 03</td> <td>-1.4</td> <td>+1.1</td> <td>51</td> <td>05 24</td> <td>-1.4</td> <td>+1.1</td> <td>2298</td>	" "	24	φ Agr	4.6	04 03	-1.4	+1.1	51	05 24	-1.4	+1.1	2298
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" "	30	17 Tau	3.8	04 09	+0.4	+2.3	32				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	July	10	49 Vir	5.2	22 47			62	emersi	on be	low	hor.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•••	13	4 Sco	5.7	21 07	-1.7	-0.4	103	$22 \ 25$	-1.6	-1.0	290
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" "	15	W Sgr	4.3	21 09	-0.9	-0.7	151	21 50	-2.2	+0.7	216
Aug. 10 τ Sco 2.8 18 18 $-1.4 + 0.2$ 114 19 36 $-1.9 -0.1$ 276 \dagger "10 135 B Sco 6.0 23 09 $-1.2 -1.6$ 111 emersion below hor. "16 δ Cap 2.9 02 20 $-0.4 + 1.0$ 21 03 19 $-1.3 - 1.2$ 267 "17 ϕ Aqr 4.6 20 32 $-0.3 + 1.7$ 80 21 34 $-0.5 + 1.6$ 222 "18 96 Aqr 5.7 00 07 $-1.5 + 0.8$ 61 01 25 $-1.2 + 1.4$ 219 "20 60 Psc 6 2 00 10 $-1 + 1 + 1 + 8$ 67 01 23 $-0.2 + 2 + 1.4$ 219	"	18	27 Cap	6.1	$22 \ 17$	-1.2	+1.2	96	23 23	-1.4	+1.7	219
" 10 135 B Sco 6.0 23 09 -1.2 -1.6 111 emersion be low hor. " 16 δ Cap 2.9 02 20 -0.4 +1.0 21 03 19 -1.3 -1.2 267 " 17 ϕ Aqr 4.6 20 32 -0.3 +1.7 80 21 34 -0.5 +1.6 222 " 18 96 Aqr 5.7 00 07 -1.5 +0.8 61 01 25 -1.2 +1.4 219 " 20 60 Psc 6.2 00 10 -1 1 +1 8 67 01 23 0 0 -2 1 215	Aug.	10	τ Sco	2.8	18 18	-1.4	+0.2	114	19 36	-1.9	-0.1	276†
" 16 δ Cap 2.9 02 20 -0.4 +1.0 21 03 19 -1.3 -1.2 267 " 17 ϕ Aqr 4.6 20 32 -0.3 +1.7 80 21 34 -0.5 +1.6 222 " 18 96 Aqr 5.7 00 07 -1.5 +0.8 61 01 25 -1.2 +1.4 219 " 20 60 Psc 62 00 10 -1 1 +1 8 67 01 23 0.0 +2 1 315	"	10	135 B Sco	6.0	23 09	-1.2	-1.6	111	emersi	on he	low	hor
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	" "	16	δ Сар	2.9	02 20	-0.4	+1.0	21	03 19	-13	-12	267
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	17	φ Aar	4.6	20 32	-0.3	+1.7	80	21 34	-0.5	+1.6	222
"20 60 Psc 6.2 00 10 -1 1 \pm 1.8 67 01 23 0.0 \pm 2.1 215	"	18	96 Aar	5.7	00 07	-1.5	+0.8	61	01 25	-1.2	+1.4	219
=	" "	20	60 Psc	6.2	00 10	-1.1	+1.8	67	01 23	-0.9	+2.1	215

*Emersion on the following day.

†Immersion before sunset.

§Emersion after sunrise.

‡Almost grazing.

OCCULTATIONS VISIBLE AT TORONTO----continued

					Immersion							Emersion						
Da	ıte	Star		Mag.	E. 5	Б. Т.	a	Ь	Р	E. 5	Б. Т.	a	ь	P				
193	32				h	m	m	m	0	h	m	m	m	0				
Aug.	20	62	Psc	6.1	02	07	-1.4	+1.2	47	03	28	-1.6	+0.3	236				
"	22	47	Ari	5.8	i	mm.	below	hor.		22	05	+0.6	+1.7	215				
Sept.	12	42	Aqr	5.5	23	53	-0.8	+1.1	28	01	03	-1.5	+0.3	255*				
,,	21	354	B Tau	6.4	23	37	+0.4	+1.9	55	00	34	-0.5	+1.2	278*				
" "	24	134	B Gem	6.5	01	58	+0.2	+2.5	54	02	49	-1.1	0.0	310				
Oct.	10	ι	Aqr	4.4	01	17	-0.4	-0.3	61	en	ners.	below	hor.					
" "	18	38	B Aur	6.5	23	29	-0.3	+2.3	52	00	38	-1.5	+1.0	275*				
"	19	47	B Aur	6.0	02	42	-1.5	+3.1	39	03	51	-2.2	-2.1	302				
" "	28	γ	Cnc	4.7	00	44			31	01	03			357				
" "	24	8	Leo	5.9	im	m. b	elow	hor.		02	26	-0.6	-0.2	319				
" "	31	τ	Sco	2.8	16	19	-1.6	-1.2	11,5	17	24	-0.9	-0.9	254†				
Nov.	5	δ	Сар	2.9	20	43	-1.4	-0.2	66	21	54	-0.6	+0.2	223				
**	6	58	Agr	6.4	18	4 9	-0.8	+1.9	19	19	57	-2.2	0.0	265				
" "	9	62	Psc	6.1	22	32	-1.7	+0.8	60	23	53	-1.2	+0.8	224				
" "	9	δ	Psc	4.5	23	19	-0.8	+2.0	21	00	27	-1.6	-1.1	266*				
" "	13	17	Tau	3.8	imn	n. at	suns	et		17	37	+0.2	+1.0	284				
"	13	23	Tau	4.3	1					18	06	+0.6	+1.9	118				
" "	13	n	Tau	2.9	18	41			118	19	19	1		197				
" "	15	107	B Aur	6.5	19	16	+0.3	+1.3	85	20	12	+0.2	+1.6	254				
" "	16	406	B Tau	5.6	03	40	-1.7	-1.8	115	05	00	-1.6	-0.6	257				
"	22	c	Leo	5.1	02	44	-0.6	+0.4	119	03	51	-0.9	+0.5	303				
"	23	9	B Vir	6.2	02	24	-0.2	-0.5	117	03	23	-0.4	+0.2	315				
Dec.	4	81	Aar	6.4			1			18	10	-1.2	+1.4	216				
"	4	82	Aar	6.4	18	20	-0.7	+1.8	20	19	29	-2.0	-0.2	260				
" "	9	20	H ¹ Ari	6.4	02	16			18	02	55	1		305				
44	10	e	Ari	4.6	03	22	-0.5	-1.5	89	04	24	-0.2	-0.7	247				
" "	11	q	Tau	4.3	01	10	-1.6	-1.7	101	02	24	-1.3	-0.1	237				
"	11	20	Tau	4.1	01	48			140	02	26			200				
"	11	21	Tau	5.8	01	36	-1.4	-1.2	88	02	52	-0.9	-0.8	252				
"	11	22	Tau	6.5	01	42	-1.3	-1.6	94	02	55	-1.0	-0.3	245				
"	15	35	B Cnc	6.4	23	49	-1.3	+1.5	84	01	05	-1.7	-0.9	308*				

*Emersion on the following day. †Immersion before sunset. \$Emersion after sunrise. ‡Almost grazing.

ASTRONOMICAL CONSTANTS

Solar Parallax, 8".80 Mass of the sun, 1.983×10^{33} grams = 332000 times the mass of the earth Temperature of the sun's surface, 5740° C. Solar Constant, 1.925 calories per sq. cm. per min. Obliquity of the ecliptic, $23^{\circ} 27' 8'' \cdot 26 - 0.4684 (t - 1900)$ Mean Distance Earth to Sun, 149,504,201 km. = 92,897,416 statute miles Mean Distance Earth to Moon, 384,403 km. = 238,857 statute miles Equatorial Horizontal Parallax of Moon, 57' 2".70 Gaussian constant of gravitation, $\kappa = .017202099$ Newtonian constant of gravitation, $\kappa = 6.658 \times 10^{-8}$ c.g.s. Acceleration in one second due to gravity, g = 9.8060 meters $-.0260 \cos 2\phi - \frac{2k}{rg}$ Reduction from geographic latitude ϕ to geocentric latitude ϕ' . $\phi' - \phi = -11' \ 35''.66 \ \sin 2\phi + 1''.17 \ \sin 4\phi.$ Dimensions of the earth: Equatorial radius, a = 6378.388 km, = 3963.34 statute miles Polar radius. b = 6356.909 km. = 3949.99 statute miles Mass of the earth, 5.974×10^{27} grams Density of the earth, 5.515 grams per cubic cm. Velocity of light, 299,796 km. or 186,285 miles per sec. Length of the year: Sidereal......365 .25636042 + 000000011 (t - 1900)(t - 1900)Length of the day: Length of the month: Synodical..... $29^{d}.530588 = 29^{d}12^{h}44^{m}2^{s}.8$

PAG	E
Abbreviations and Symbols	4
Algol, minima of	61
Andromedes (meteors) 5	ί6
Anniversaries for 1932	3
Astronomical Constants	$^{\prime}7$
Calendar for 1932	2
Distance of Stars	3
Double Stars 5	9
Eclipses in 1932 2	8
Ephemeris of the Sun	6
Festivals and Anniversaries for 1932	3
Greek Alphabet	4
Jupiter's Satellites, configurations of	1
Jupiter's Satellites, Phenomena of 5	4
Leonids (meteors)	6
Meteors and Shooting Stars	6
Moon, Phases of the	1
Moon, Occultations of Stars by	3
Moon, Eclipses of 2	8
Occultation of Stars by the Moon	3
Perseids (meteors)	6
Phenomena (conjunctions, etc.)	1
Planets for the Year 2	2
Preface	3
Satellites of Jupiter, Configurations of	1
Satellites of Jupiter, Phenomena of 5	4
Satellites of the Solar System	8
Sky for the Month	0
Solar System, Elements of	7
Solar System, Satellites of	8
Stars, information regarding the brightest	5
Stars, the Distance of the	3
Stars. Double	9
Stars. Variable	1
Sun. Ephemeris of the	6
Sun. Eclipses of	8
Sunrise and Sunset. Explanation of Tables	8
Sunrise and Sunset, Tables of	9
Time, Explanation of Solar and Sidereal	5
Variable Stars	1

INDEX

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

The objects of the Society, incorporated in 1890, are:

- (a) "To study Astronomy, Astrophysics and such cognate subjects as shall be approved of by the Society and as shall, in its opinion, tend to the better consideration and elucidation of Astronomical and Astrophysical problems; and to diffuse theoretical and practical knowledge with respect to such subjects.
- (b) To publish from time to time the results of the work of the Society; and,
- (c) To acquire and maintain a Library, and such apparatus and real and personal property as may be necessary and convenient for the carrying into effect of the objects of the Society."

For many years the Toronto organization existed alone, but now the Society is national in extent, having active Centres in Montreal, P.Q.; Ottawa, Ont.; Toronto, London, Hamilton, Ont.; Winnipeg, Man.; Vancouver and Victoria, B.C. Among its 800 members are a number of the leading astronomers and scientists of the world, many amateurs, and in addition, many laymen who are interested in the culture of the science.

Membership in the Society is open to anyone interested in Astronomy. The annual dues are \$2.00; life membership \$25.00 (no further dues).

The annual fee includes subscription to the publications.

The Society publishes a monthly JOURNAL containing about 500 pages of interesting articles, and this yearly HANDBOOK of 80 pages containing valuable information for the amateur observer. Single copies of the JOURNAL or HANDBOOK are 25 cents.

The Library and the Offices of the Society are at 198 College St., Toronto, Ont. Applications for membership, or for further information should be addressed to:

General Secretary-Mr. R. A. Gray, B.A., 198 College St., Toronto, Ont.

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

The objects of the Society, incorporated in 1890, are:

- (a) "To study Astronomy, Astrophysics and such cognate subjects as shall be approved of by the Society and as shall, in its opinion, tend to the better consideration and elucidation of Astronomical and Astrophysical problems; and to diffuse theoretical and practical knowledge with respect to such subjects.
- (b) To publish from time to time the results of the work of the Society; and,
- (c) To acquire and maintain a Library, and such apparatus and real and personal property as may be necessary and convenient for the carrying into effect of the objects of the Society."

For many years the Toronto organization existed alone, but now the Society is national in extent, having active Centres in Montreal, P.Q.; Ottawa, Ont.; Toronto, London, Hamilton, Ont.; Winnipeg, Man.; Vancouver and Victoria, B.C. Among its 800 members are a number of the leading astronomers and scientists of the world, many amateurs, and in addition, many laymen who are interested in the culture of the science.

Membership in the Society is open to anyone interested in Astronomy. The annual dues are \$2.00; life membership \$25.00 (no further dues).

The annual fee includes subscription to the publications.

The Society publishes a monthly JOURNAL containing about 500 pages of interesting articles, and this yearly HANDBOOK of 80 pages containing valuable information for the amateur observer. Single copies of the JOURNAL or HANDBOOK are 25 cents.

The Library and the Offices of the Society are at 198 College St., Toronto, Ont. Applications for membership, or for further information should be addressed to:

General Secretary-Mr. R. A. Gray, B.A., 198 College St., Toronto, Ont.