THE Observer's Handbook For 1938

PUBLISHED BY

The Royal Astronomical Society of Canada

EDITED BY C. A. CHANT

THIRTIETH YEAR OF PUBLICATION

TORONTO 198 College Street Printed for the Society 1938

1938	CALE	NDAR	1938
JANUARY	FEBRUARY Sun. 6 13 20 27 Mon. 7 14 21 28 Tues. 1 8 15 22 Wed. 2 9 16 23 Thur. 3 10 17 24 Fri. 4 11 18 25 Sat. 5 12 19 26	MARCH	APRIL
Sun. 2 9 16 23 30		Sun. 6 13 20 27	Sun. 3 10 17 24
Men. 3 10 17 24 31		Mon. 7 14 21 28	Mon. 4 11 18 25
Tues. 4 11 18 25 .		Tues. 1 8 15 22 29	Tues. 5 12 19 26
Wed. 5 12 19 26 .		Wed. 2 9 16 23 30	Wed. 6 13 20 27
Thur. 6 13 20 27		Thur. 3 10 17 24 31	Thur. 7 14 21 28
Fri. 7 14 21 28		Fri. 4 11 18 25	Fri. 1 8 15 22 29
Sat 1 8 15 22 29		Sat. 5 12 19 26	Sat. 2 9 16 23 30
MAY	JUNE	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AUGUST
Sun. 1 8 15 22 29	Sun 5 12 19 26		Sun. 7 14 21 28
Mon. 2 9 16 23 30	Mon 6 13 20 27		Mon. 1 8 15 22 29
Tues. 3 10 17 24 31	Tues 7 14 21 28		Tues. 2 9 16 23 30
Wed. 4 11 18 25	Wed. 1 8 15 22 29		Wed. 3 10 17 24 31
Thur. 5 12 19 26	Thur. 2 9 16 23 30		Thur. 4 11 18 25
Fri. 6 13 20 27	Fri. 3 10 17 24		Fri 5 12 19 26
Sat. 7 14 21 28	Sat. 4 11 18 25		Sat. 6 13 20 27
SEPTEMBER Sun. 4 11 18 25 Mon. 5 12 19 26 Tues. 6 13 20 27 Wed. 7 14 21 28 Thur. 1 8 15 22 29 Fri 2 9 16 23 30 Sat. 3 10 17 24	OCTOBER Sun. 2 9 16 23 30 Mon. 3 10 17 24 31 Tues. 4 11 18 25 Wed. 5 12 19 26 Thur. 6 13 20 27 Fri. 7 14 21 28 Sat. 1 8 15 22 29	NOVEMBER Sun. 6 13 20 27 Mon. 7 14 21 28 Tues. 1 8 15 22 29 Wed. 2 9 16 23 30 Thur. 3 10 17 24 Fri 4 11 18 25 Sat. 5 12 19 26	DECEMBER Sun. 4 11 18 25 Mon. 5 12 19 26 Tues. 6 13 20 27 Wed. 7 14 21 28 Thur. 1 8 15 22 29 Fri. 2 9 16 23 30 Sat. 3 10 17 24 31

JULIAN DAY CALENDAR, 1938

J. D. 2,420,000 plus the following

Jan.	1	May	19020	Sep.	19143
Feb.	1	June	19051	Oct.	19173
Mar.	18959	July	19081	Nov.	19204
Apr.	1	Aug.	19112	Dec.	19234

The Julian Day commences at noon. Thus J. D. 2,428,900.0=Jan. 1.5 G.C.T.

THE Observer's Handbook for 1938

PUBLISHED BY

The Royal Astronomical Society of Canada

EDITED BY C. A. CHANT

THIRTIETH YEAR OF PUBLICATION

TORONTO 198 College Street Printed for the Society 1938

CONTENTS

.

							PAGE
Preface	-	-	-	-	-	•	- 3
Anniversaries	and Fes	tivals	-	-	-	-	- 3
Symbols and	Abbrevia	ations	-	-	-	-,	- 4
Abbreviation	s for the	Conste	llations	-	- '	-	- 5
Solar and Sid	ereal Tin	ne	-	-	-	- '	- 6
Ephemeris of	the Sun	-	-	-	-	-	- 7
Map of Stand	lard Tim	e Zones	5	-	- '	-	- 8
Times of Sun	rise and	Sunset	-	-	-	-	- 9
Planets for th	ne Year	-	-	-	-	-	- 22
Eclipses in 19)38	-	-	-	-	-	- 29
The Sky and	Astrono	mical P	henome	na for e	ach Mo	nth	- 30
Phenomena o	f Jupiter	's Satel	lites	-	-	-	- 54
Elements of t	the Solar	System	ı	-	-	-	- 56
Satellites of t	he Solar	System	ι -	-	-	-	- 57
Meteors and	Shooting	Stars	-	-	-	-	- 58
Stars occulte	d by the	Moon		-	-	-	- 59
Double Stars	, with a s	short lis	st	-		-	- 60
Variable Star	s, with a	short l	ist	-	- '	-	- 62
Distances of	the Stars	5	-	-	-	-	- 64
The Brightes	t Stars, t	heir ma	ignitude	es, types	, proper	motion	s,
distances a	nd radia	l veloci	ties	-	-	-	- 66
Messier's Lis	t of Star	Cluste	rs and I	Nebulae		-	- 74
Four Circular	r Star M	aps	-	-	<u>-</u>	-	- 77
Tables of Me	eteorologi	ical Da	ta		-	- cover	r, iii

PREFACE

The chief new features of the HANDBOOK for 1938 are a map illustrating the standard time belts in the United States and Canada and two tables of meteorological data which are printed this year on the third page of the cover.

The four small star maps which first appeared in 1937 necessarily contain comparatively few objects. Four circular maps 9 inches in diameter, roughly for the seasons, are obtainable from the Director of University Extension, University of Toronto, for one cent each. Observers desiring fuller information are recommended to obtain Norton's Star Atlas and Reference Handbook (Gall and Inglis, price 12s 6d; supplied also by Eastern Science Supply Co., Boston). It is now in its sixth edition and is widely used.

In the preparation of this volume the Editor has received cordial and generous assistance. He wishes to thank those whose names are mentioned in the text, also Messrs. Gordon Shaw and Robert Peters of the Victoria Centre; but he is under special obligation to Dr. F. S. Hogg and Miss Ruth J. Northcott, M.A., of the David Dunlap Observatory.

C.A.C.

Richmond Hill, Ont., December 1937.

ANNIVERSARIES AND FESTIVALS 1938

New Year's DaySat.	Jan.	1
EpiphanyThu.	Ĭan.	6
Septuagesima Sunday	Feb.	13
Ouinquagesima (Shrove		
Sunday)	Feb.	27
St. David. Tue	Mar	-1
Ash Wednesday	Mar	$\tilde{2}$
Quadragesima (First Sunday		~
in Lent) :	Mar	6
St Patrick Thu	Mar.	17
Appundiction (Lody	mar.	11
Deer) Ent	M	05
Day	Mar.	20
Palm Sunday	Apr.	10
Good Friday	Apr.	15
Easter Sunday	Apr.	17
St. GeorgeSat.	Apr.	23
Rogation Sunday	May	22
Empire Day (Victoria		
Day)Tue.	Mav	24
Birthday of the Oueen Mother	. ,	
Mary (1867)	Mav	26
Pentecost (Whit Sunday)	Iune	5
Trinity Sunday	Tune	12
animely wanday	June	***

Corpus Christi	.Thu.	June	16
Day)	.Fri.	June	24
Dominion Day	.Fri.	July	1
(1900)	.Thu.	Aug.	4
Labour Day	. Mon.	Sept.	5
Hebrew New Year (Ro	osh	<u> </u>	•
Hashana)	. Mon.	Sept.	26
Dav)	.Thu.	Sept.	29
All Saints' Day	. Tue.	Nov.	1
Remembrance Day	.Fri.	Nov.	11
First Sunday in Adver	wed	Nov.	27
Accession King George	e VI	100.	00
(1936)	.Sun.	Dec.	11
Birthday of King Geor	ge VI	Dee	14
Christmas Day	Sun.	Dec.	14 25
		200.	-0
Thanksgiving Dav	, date s	et by	

Proclamation

SYMBOLS AND ABBREVIATIONS

SIGNS OF THE ZODIAC

Υ	Aries	Ω Leo	オ Sagittarius240 ^e
÷	Taurus	\mathbb{TP} Virgo 150°	で Capricornus 270°
ň	Gemini	≏ Libra180°	Aquarius 300°
0	Cancer	M Scorpio 210°) (Pisces

SUN. MOON AND PLANETS

\odot	The Sun.	C	The Moon generally.	24	Jupiter.
•	New Moon.	ĝ	Mercury.	Þ	Saturn.
٢	Full Moon.	Ŷ	Venus.	ô	or 붜 Uranus.
•	First Quarter	Ð	Earth.	Ψ	Neptune.
C	Last Quarter.	q	Mars.	P	Pluto

ASPECTS AND ABBREVIATIONS

σ' Conjunction, or having the same Longitude or Right Ascension β Opposition, or differing 180° in Longitude or Right Ascension. □ Quadrature, or differing 90° in Longitude or Right Ascension. Ω Ascending Node; 𝔅 Descending Node. *a* or A. R., Right Ascension; δ Declination. h m s Hours Minutes Seconds of Time

h, m, s, Hours, Minutes, Seconds of Time. "", Degrees, Minutes, Seconds of Arc.

THE GREEK ALPHABET

A. a.	Alpha.	Ι,ι,	Iota.	Ρ,ρ,	Rhø.
Β ΄ β΄.	Beta.	Κ, κ,	Kappa.	Σ, σ, ς,	Sigma.
Γ, γ	Gamma.	Λ, λ,	Lambda.	Τ, τ,	Tau.
Δ, δ	Delta.	Μ, μ,	Mu.	Υ, ν,	Upsilon.
Ε.ε.	Epsilon.	Ν, ν,	Nu.	Φ, φ,	Phi.
$\mathbf{Z}'\mathbf{C}$	Zeta.	Ξ.ξ.	Xi.	Χ, χ,	Chi.
н <i>п</i>	Eta.	0.0.	Omicron.	Ψ,ψ,	Psi.
θ.θ.θ.	Theta.	Π,π,	Pi.	Ω,ω,	Om ega

THE CONFIGURATIONS OF JUPITER'S SATELLITES

In the Configurations of Jupiter's Satellites (pages 29, 31, etc.), O represents the disc of the planet, d signifies that the satellite is on the disc, * signifies that the satellite is behind the disc or in the shadow. Configurations are for an inverting telescope.

ABBREVIATIONS FOR THE CONSTELLATIONS

AndromedaAnd	Andr	LibraLib	Libr
AntliaAnt	Antl	LupusLup	Lupi
ApusAps	Apus	LvnxLvn	Lync
AquariusAqr	Agar	LvraLvr	Lyra
Aquila Aql	Agil	Mensa Men	Mens
Ara Ara	Arae	Microscopium Mic	Micr
AriesAri	Arie	Monoceros Mon	Mono
Auriga Aur	Auri	Musca	Muse
Bootes	Boot	Norma	Norm
Caelum	Cael	Octans	Octn
Camelopardalis	Caml	Ophiuchus Oph	Onhi
CancerCnc	Canc	Orion	Orio
Canes Venatici	CVen	Pavo	Pavo
Canis Major CMa	ČMai	Perasus	Pore
Canis Minor CMi	CMin	Perseus	Pore
Capricornus. Cap	Canr	Phoenix	Phoe
Carina	Cari	Pictor	Diet
Cassioneia	Cass	Pisces	Dico
Centaurus Cen	Cent	Piecis Australia PaA	Dag
Cepheus	Cenh	Puppie Pup	Duce
Cetus Cet	Ceti	Puvio Provi	r upp D
Chamaeleon Cha	Cham	Potioulum Dot	Dati
Circinus	Circ	Sagitta	Sute
Columba	Colm	Sagittariua	Sgle
Coma Berenices Com	Coma	Sagittarius	Sgtr
Corona Australia	CorA	Scolpius	Scor
Corona Borealis CrB	CorB	Soutum Set	Scul
Corvus Crv	Corv	Serpens Ser	Scut
Crater Crt	Crat	Sertena Ser	Serp
Crux	Cruc	Tourus Tou	Taur
Cygnus Cyg	Curr	Talagaonium Tal	Taur
Delphinus	Dlph	Triangulum Tri	Tele
Dorado	Dora	Triangulum Australa TrA	Tria Tria
Draco	Drag	Tugana Tugana	Turn
Famileus	Faul		1 UCH
Eridanus Eri	Equi	Ursa Minor UMa	UMaj
Fornay	Forn	Vola Villor	V Min
Gemini	Cemi	Vela	Ver
Grue	Genn	VilgoVir Volona Val	Virg
Hercules	Uoro	Vulaevie Vul	Voin
Horologium	Horo	vuipeculavui	vulp
Hydra	Undo		
Hydruc U	LI.	The distant shit waited	•
Indue Ind	Indi	I ne 4-letter appreviations	are in-
I acerta	Loor	tended to be used in cases w	wnere a
	Lacr	maximum saving of space is no	t neces-
Leo Minor I M:	L Min	Saly.	T A TT
		From Iransactions of the	1.A.U.,
Lehus	Leps	voi. 1v., 1932, page 221.	

SOLAR AND SIDEREAL TIME

In practical astronomy three different kinds of time are used, while in ordinary life we use a fourth.

I. Apparent Time—By apparent noon is meant the moment when the sun is on the meridian, and apparent time is measured by the distance in degrees that the sun is east or west of the meridian. Apparent time is given by the sun-dial.

2. Mean Time—The interval between apparent noon on two successive days is not constant, and a clock cannot be constructed to keep apparent time. For this reason mean time is used. The length of a mean day is the average of all the apparent days throughout the year. The real sun moves about the ecliptic in one year; an imaginary mean sun is considered as moving uniformly around the celestial equator in one year. The difference between the times that the real sun and the mean sun cross the meridian (*i. e.* between apparent noon and mean noon) is the equation of time. (See next page).

3. Sidereal Time—This is time as determined from the stars. It is sidereal noon when the Vernal Equinox or First of Aries is on the meridian. In accurate time-keeping the moment when a star is on the meridian is observed and the corresponding mean time is then computed with the assistance of the Nautical Almanac. When a telescope is mounted equatorially the position of a body in the sky is located by means of the sidereal time.

4. Standard Time--In everyday life we use still another kind of time. A moment's thought will show that in general two places will not have the same mean time; indeed, difference in longitude between two places is determined from their difference in time. But in travelling it is very inconvenient to have the time varying from station to station. For the purpose of facilitating transportation the system of *Standard Time* was introduced in 1883. Within a certain belt approximately 15° wide, all the clocks show the same time, and in passing from one belt to the next the hands of the clock are moved forward or backward one hour.

In Canada we have six standard time belts, as follows; —60th meridian or Atlantic Time, 4h. slower than Greenwich; 75th meridian or Eastern Time, 5h.; 90th meridian or Central Time, 6h.; 105th meridian or Mountain Time, 7h.; 120th meridian or Pacific Time, 8h.; and 135th meridian or Yukon Time, 9h. slower than Greenwich.

The boundaries of the time belts are shown on the map on page 8.

1938 EPHEMERIS OF THE SUN AT 0h. GREENWICH CIVIL TIME

Date	Apparent R.A.	Equation of Time	Apparent Dec.	Date	Apparent R.A.	Equation of Time	Apparent Dec.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} \circ & , & , & , \\ -23 & 04.5 \\ -222 & 48.7 \\ -222 & 48.7 \\ -222 & 05.1 \\ -21 & 37.4 \\ -21 & 37.4 \\ -21 & 05.0 \\ -20 & 30.2 \\ -19 & 10.4 \\ -18 & 25.3 \\ -119 & 10.4 \\ -18 & 25.3 \\ -119 & 10.4 \\ -18 & 25.3 \\ -112 & 58.8 \\ -128 & 58.8 \\ -128 & 58.8 \\ -1$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\begin{array}{c} \bullet & \bullet & \bullet \\ + 23 & 02.0 \\ + 222 & 47.0 \\ + 222 & 06.0 \\ + 222 & 06.0 \\ + 221 & 111.3 \\ + 222 & 06.0 \\ + 221 & 111.3 \\ + 220 & 03.7 \\ + 221 & 111.3 \\ + 20 & 03.7 \\ + 119 & 25.3 \\ + 119 & 25.3 \\ + 119 & 25.3 \\ + 119 & 25.3 \\ + 110 & 43.8 \\ + 117 & 133.4 \\ + 115 & 32.5 \\ + 113 & 422.8 \\ + 110 & 43.8 \\ + 111 & 445.2 \\ + 113 & 445.2 \\ + 110 & 43.8 \\ + 003 & 36.6 \\ - 007 & 24.4 \\ + 004 & 39.9 \\ + 000 & 30.0 \\ + 405 & 16.8 \\ + 001 & 39.9 \\ + 000 & 30.0 \\ + 405 & 16.8 \\ + 001 & 39.9 \\ - 001 & 30.0 \\ + 405 & 16.8 \\ + 001 & 39.9 \\ - 001 & 30.0 \\ + 405 & 16.8 \\ + 001 & 39.9 \\ - 001 & 30.0 \\ + 405 & 16.8 \\ + 001 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 001 & 30.0 \\ + 400 & 39.9 \\ - 002 & 50.5 \\ - 111 & 449.5 \\ - 1$

To obtain the R.A. of Mean Sun, subtract the Equation of Time from the Right Ascension; adding 12h to this gives the Sidereal Time at 0h G.C.T.

In the Equation of Time the Sign + means the watch is FASTER than the Sun, - that it is SLOWER. To obtain the Local Mean Time, in the former case add the Equation of Time to and in the latter case; ubtract it from, apparent or Sun-dial Time.

TIMES OF SUNRISE AND SUNSET

In the tables on pages 10 to 21 are given the times of sunrise and sunset for places in latitudes 44° , 46° , 48° , 50° and 52° , which cover pretty well the populated parts of Canada. The times are given in Mean Solar Time, and in the table below are given corrections to change these times to the Standard times of the cities and towns named.

How the Tables are Constructed

The time of sunrise and sunset at a given place, in mean solar time, varies from day to day, and depends principally upon the declination of the sun. Variations in the equation of time, the apparent diameter of the sun and atmospheric refraction at the points of sunrise and sunset also affect the final result. These quantities, as well as the solar declination, do not have preceisely the same values of corresponding days from year to year, and so the table gives only approximately average values. The times are for the rising and setting of the upper limb of the sun, and are corrected for refraction. It must also be remembered that these times are computed for the sea horizon, which is only approximately realised on land surfaces, and is generally widely departed from in hilly and mountainous localities. The greater or less elevation of the point of view above the ground must also be considered, to get exact results.

The Times for Any Station

In order to find the time of sunrise and sunset for any place on any day, first from the list below find the approximate latitude of the place and the correction, in minutes, which follows the name. Then find in the monthly table the time of sunrise and sunset for the proper latitude, on the desired day, and apply the correction.

					1		
34 °	min.	44°	min.	46°	min.	50°	min.
Los Angeles	- 7	Brantford	+21	Glace Bay	0	Brandon	+40
		Guelph	+21	Moncton	+19	Kenora	+18
38°		Halifax	+14	Montreal	- 6	Medicine Hat	+22
St. Louis	+ 1	Hamilton	+20	New Glasgow	+11	Moose Jaw	+ 2
San Francisco	+10	Kingston	+ 6	North Bay	+18	Port. la Prairie	+33
Washington	+ 8	Kitchener	+ 22	Ottawa	+ 3	Regina	- 2
0		Milwaukee	- 8	Parry Sound	+20	Trail	- <u>9</u>
40°		Minneapolis	+13	Quebec	- 15	Vancouver	+12
Baltimore	+ 6	Orillia	+18	St. John, N.B.	+ 24	Winnipeg	+28
New York	- 4	Oshawa	+15	Sault S. Marie	+37	·······	
Philadelphia	+ 1	Owen Sound	+24	Sherbrooke	-12	52°	
Pittsburgh	$+ 2\overline{0}$	Peterborough	$+\overline{13}$	Sudbury	$+ \bar{2}\bar{4}$	Calgary	+36
	1	St. Catharines	+ 17	Sydney	+ 1	Saskatoon	+ 6
42°		Stratford	+ 24	Three Rivers	- 10	Submutoon	1 0
Boston	- 16	Toronto	$+ \bar{18}$			54°	
Buffalo	+15	Woodstock, On	$t_1 + 23$	48°		Edmonton	+34
Chicago	- 10	Varmouth	+ 24	Port Arthur	+ 57	Prince Albert	+1
Cleveland	+ 26			St. John's, Nfd.	0	Prince Rupert	÷41
Detroit	- 28	46°		Seattle	+ 9	i inice itupero	
London, Ont.	+ 25	Charlottetown	+ 13	Timmins	+ 26	60°	
Windsor	+32	Fredericton	+ 26	Victoria	± 13	Dawson	+18
	, 0-	1.0000000	0		,		1 10

Example.—Find the time of sunrise at Owen Sound, also at Regina, on February 11.

In the above list Owen Sound is under "44°", and the correction is + 24 min. On page 11 the time of sunrise on February 11 for latitude 44° is 7.05; add 24 min. and we get 7.29 (Eastern Standard Time). Regina is under "50°", and the correction is -2 min. From the table the time is 7.18 and subtracting 2 min. we get the time of sunrise 7.16 (Mountain Standard Time).

	Latitu	de 44°	Latitu	de 46 °	Latitu	de 48 °	Latitu	de 50°	Latitud	le 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
1 2 3 4 5	h. m. 7 35 7 35 7 35 7 35 7 35 7 35	h. m. 4 33 4 34 4 35 4 35 4 36 4 37	h. m. 7 42 7 42 7 42 7 42 7 42 7 42 7 42	h. m. 4 26 4 26 4 27 4 28 4 29	h. m. 7 50 7 50 7 50 7 50 7 50 7 50	h. m. 4 18 4 19 4 20 4 21 4 22	h. m. 7 59 7 59 7 59 7 59 7 58 7 58	h. m. 4 9 4 10 4 11 4 12 4 13	h. m. 8 9 8 8 8 8 8 8 8 7 8 7	h. m. 3 59 4 0 4 2 4 3 4 4
6 7 8 9	7 35 7 35 7 34 7 34 7 34 7 34	4 38 4 39 4 40 4 41 4 42	7 42 7 42 7 41 7 41 7 41 7 41	4 30 4 32 4 33 4 34 4 35	7 49 7 49 7 49 7 49 7 49 7 48	4 23 4 24 4 25 4 26 4 27	7 58 7 58 7 57 7 57 7 57 7 56	4 14 4 16 4 17 4 18 4 19	8 6 8 6 8 5 8 5 8 4	4 6 4 7 4 8 4 9 4 11
11 12 13 14 15	7 34 7 33 7 33 7 32 7 32 7 32	4 43 4 44 4 45 4 46 4 48	7 40 7 40 7 39 7 39 7 38	.4 36 4 38 4 39 4 40 4 41	7 48 7 47 7 47 7 46 7 45	4 29 4 30 4 31 4 33 4 34	7 56 7 55 7 55 7 54 7 53	4 21 4 22 4 23 4 25 4 26	8 4 8 3 8 2 8 1 8 0	4 12 4 14 4 15 4 17 4 19
16 17 18 19 20	7 31 7 30 7 30 7 29 7 28	4 49 4 50 4 52 4 53 4 54	7 38 7 37 7 36 7 35 7 34	4 42 4 44 4 45 4 47 4 48	7 45 7 44 7 43 7 42 7 41	4 36 4 37 4 38 4 40 4 41	7 52 7 52 7 51 7 50 7 49	4 28 4 29 4 31 4 32 4 34	8 0 7 59 7 58 7 57 7 56	4 21 4 22 4 24 4 26 4 27
21 22 23 24 25	7 28 7 27 7 26 7 25 7 25 7 25	4 55 4 57 4 58 4 59 5 I	7 34 7 33 7 32 7 31 7 30	4 49 4 51 4 52 4 54 4 55	7 40 7 40 7 39 7 38 7 36	4 43 4 44 4 46 4 47 4 49	7 48 7 46 7 45 7 44 7 43	4 36 4 37 4 39 4 41 4 42	7 55 7 54 7 5 ² 7 5 ¹ 7 5 ⁰	4 29 4 31 4 32 4 34 4 36
26 27 28 29 30	7 24 7 23 7 22 7 21 7 20	5 2 5 3 5 5 5 6 5 8	7 29 7 28 7 27 7 26 7 25	4 56 4 58 4 59 5 1 5 3	7 35 7 34 7 33 7 3 ² 7 3 ⁰	4 50 4 52 4 54 4 55 4 55 4 57	7 42 7 40 7 39 7 38 7 36	4 44 4 46 4 47 4 49 4 51	7 49 7 47 7 46 7 45 7 43	4 38 4 39 4 41 4 43 4 44
31	7 18	5 9	7 23	5 4	7 29	4 58	7 35	4 52	7 42	4 46

JANUARY

	Latitud	de 44 °	Latitud	le 46 °	Latitu	de 48 °	Latitu	de 50°	Latitud	e 52°
Month /	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
2	7 16	5 10	7 22	5 5	7 28	50	7 33	4 54	7 40	4 48
- 3	7 15	5 13	7 20	5 /	7 25	5 1	7 32	4 50	7 30	4 50
4	7 14	5 14	7 10	5 10	7 24	5 5	7 20	4 50	7 30	4 54
5	7 13	5 15	7 18	5 11	7 22	5 6	7 27	5 1	7 33	4 56
6 7	7 12 7 10	5 17 5 18	7 17	5 I2 5 I4	7 2I 7 IQ	58 59	7 26	5 3	7 31	4 57
8	79	5 20	7 13	5 15	7 18	5 11	7 23	5 6	7 27	5 I
9 10	78 76	5 21 5 23	7 12 7 11	5 17 5 18	7 16 7 15	5 13 5 14	7 21 7 19	5 8 5 10	7 25 7 23	53 55
11	7 5	5 24	7 10	5 19	7 13	5 16	7 18	5 11	7 21	57
12	7 2	5 25	7 6	5 21	7 12	5 17	7 10	5 13	7 19	59
- J I4	7 1	5 28	7 4	5 23	7 8	5 19	7 14	5 15	7 10	5 10
15	6 59	5 29	7 3	5 26	76	5 22	7 10	5 17	7 14	5 14
16	6 58 6 56	5 31	7 1	5 27	75	5 24	79	5 20	7 12	5 16
17	6 55	5 34	6 58	5 29	7 3	5 20		5 22	7 10	5 18
10	6 53	5 35	6 56	5 30	6 50	5 2/	7 5	5 23	7 9	5 19
20	6 52	5 36	6 54	5 33	6 58	5 30	7 J 7 I	5 27	7 5	5 23
21	6 50	5 38	6 53	5 35	6 56	5 32	6 59	5 29	73	5 25
22	6 47	5 39	0 51	5 30	0 54	5 33	6 57	5 30	7 0	5 27
23 24	6 45	5 40	6 49	5 30	6 50	5 35	0 55	5 32	6 58	5 29
25	6 44	5 43	6 46	5 39 5 41	6 49	5 30 5 38	6 51	5 34 5 35	6 54	5 31 5 33
26	6 42	5 44	6 44	5 42	6 47	5 39	6 49	5 37	6 51	5 34
27	0 40	5 45	0 42	5 43	0 45	5 41	6 48	5 38	0 49	5 36
40	030	1 5 47	1041	5 45	0 43	5 42	J 0 45	5 40	047	5 38

FEBRUARY

MARCH

	Latitu	de 44°	Latitud	le 46°	Latitud	le 48° -	Latitude 50 °	Latitude 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunt se	Sunset	Sunrise Sunset	Sunrise Sunset
1 2 3 4 5	h m 6 37 6 35 6 34 6 32 6 30	h m 5 48 5 49 5 50 5 52 5 53	h m 6 39 6 37 6 35 6 33 6 31	h m 5 46 5 47 5 49 5 50 5 5 ²	h m 6 41 6 39 6 37 6 35 6 33	h m 5 44 5 45 5 47 5 48 5 5 ⁰	h m h m 6 43 5 42 6 41 5 44 6 39 5 45 6 37 5 47 6 35 5 48	$ \begin{array}{c cccc} h & m & h & m \\ \hline 6 & 43 & 5 & 41 \\ \hline 6 & 42 & 5 & 42 \\ \hline 6 & 40 & 5 & 44 \\ \hline 6 & 38 & 5 & 45 \\ \hline 6 & 36 & 5 & 47 \\ \end{array} $
6 7 8 9 10	6 28 6 26 6 25 6 23 6 21	$\begin{array}{cccc} 5 & 55 \\ 5 & 56 \\ 5 & 57 \\ 5 & 58 \\ 6 & 0 \end{array}$	6 30 6 28 6 26 6 24 6 22	5 53 5 54 5 56 5 57 5 59	6 31 6 29 6 27 6 25 6 23	$\begin{array}{cccc} 5 & 5^{1} \\ 5 & 53 \\ 5 & 54 \\ 5 & 56 \\ 5 & 57 \end{array}$	$\begin{array}{ccccccc} 6 & 33 & 5 & 50 \\ 6 & 31 & 5 & 52 \\ 6 & 28 & 5 & 53 \\ 6 & 26 & 5 & 55 \\ 6 & 24 & 5 & 56 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 13 14 15	6 19 6 18 6 16 6 14 6 12	6 I 6 2 6 4 6 5 6 6	6 20 6 18 6 16 6 15 6 13	6 0 6 1 6 3 6 4 6 5	6 21 6 19 6 17 6 15 6 13	5 59 6 0 6 2 6 3 6 5	6 22 5 58 6 20 6 0 6 18 6 2 6 15 6 3 6 13 6 5	6 23 5 57 6 21 5 59 6 19 6 1 6 16 6 3 6 14 6 4
16 17 18 19 20	6 10 6 8 6 7 6 5 6 3	6 7 6 8 6 10 <u>6 11</u> 6 12	6 11 6 9 6 7 6 5 6 3	6 7 6 8 6 9 6 11 6 12	6 11 6 9 6 7 6 5 6 3	6 6 6 8 6 9 6 11 6 12	6 11 6 6 6 9 6 8 6 7 6 9 6 5 6 11 6 3 6 13	6 11 6 6 6 9 0 8 6 7 6 10 6 4 6 12 6 2 6 13
21 22 23 24 25	6 I 5 59 5 58 5 56 5 54	6 13 6 14 6 16 6 17 6 18	6 1 5 59 5 57 5 55 5 53	6 14 6 15 6 16 6 17 6 19	6 I 5 59 5 56 5 54 5 52	6 14 6 15 6 17 6 18 6 20	$\begin{array}{cccccc} 6 & 0 & 6 & 14 \\ 5 & 58 & 6 & 16 \\ 5 & 56 & 6 & 17 \\ 5 & 54 & 6 & 19 \\ 5 & 52 & 6 & 20 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 27 28 29 30	5 52 5 50 5 48 5 47 5 45	6 19 6 21 6 22 6 23 6 24	$5 5^{1} \\ 5 49 \\ 5 47 \\ 5 46 \\ 5 44 \\ $	6 20 6 22 6 23 6 24 6 25	5 50 5 48 5 46 5 44 5 42	6 21 6 23 6 24 6 26 6 27	5 50 6 22 5 47 6 24 5 45 6 25 5 43 6 27 5 41 6 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
31	5 43	6 25	5 42	6 27	5 40	6 28	5 38 6 30	5 36 6 32

APRIL

	(Latitu	de 44°	Latituc	le 46 °	Latitu	ide 48°	Latitu	de 50 °	Latitu	ide 52°
Mont:	Gunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
I 2 3 4	h. m. 5 41 5 39 5 38 5 36 5 36	h. m. 6 27 6 28 6 29 6 30	h. m. 5 40 5 38 5 36 5 34	h. m. 6 28 6 30 6 31 6 32	h. m. 5 38 5 36 5 34 5 32	h. m. 6 30 6 31 6 33 6 34	h. m. 5 36 5 34 5 32 5 30	h. m. 6 31 6 33 6 35 6 36	h. m. 5 34 5 32 5 30 5 27	h. m. 6 34 6 36 6 37 6 39
5 6 7 8 9	5 34 5 32 5 30 5 29 5 27 5 25	6 33 6 34 6 35 6 36 6 37	5 3 ² 5 30 5 28 5 26 5 24 5 23	6 33 6 34 6 36 6 37 6 39 6 40	5 30 5 28 5 26 5 24 5 22 5 20	6 37 6 38 6 40 6 41 6 43	5 28 5 26 5 24 5 21 5 19 5 17	6 39 6 41 6 42 6 44 6 46	5 25 5 23 5 21 5 19 5 16 5 14	6 43 6 44 6 46 6 48 6 49
11 12 13 14 15	5 24 5 22 5 20 5 18 5 17	6 38 6 40 6 41 6 42 6 43	5 21 5 19 5 17 5 15 5 14	6 41 6 43 6 44 6 45 6 46	5 18 5 16 5 14 5 12 5 10	6 44 6 45 6 47 6 48 6 50	5 15 5 13 5 11 5 9 5 7	6 47 6 49 6 50 6 52 6 53	5 11 5 9 5 7 5 5 5 3	6 51 6 53 6 54 6 56 6 58
16 17 18 19 20	5 15 5 13 5 11 5 10 5 8	6 45 6 46 6 47 6 48 6 49	5 12 5 10 5 8 5 6 5 5	6 48 6 49 6 50 6 52 6 53	5 8 5 6 5 5 5 3 5 1	6 51 6 53 6 54 6 55 6 57	5 5 5 2 5 1 4 59 4 57	6 55 6 56 6 58 6 59 7 1	5 I 4 58 4 56 4 54 4 54 4 52	7 0 7 1 7 3 7 5 7 6
21 22 23 24 25	5 7 5 5 5 3 5 2 5 0	6 50 6 52 6 53 6 54 6 56	5 3 5 1 4 59 4 58 4 56	6 54 6 56 6 57 6 58 7 0	4 59 4 57 4 55 4 54 4 52	6 58 7 0 7 1 7 3 7 4	4 55 4 53 4 5 ⁰ 4 49 4 47	7 2 7 4 7 6 7 7 7 9	4 50 4 48 4 46 4 44 4 42	7 8 7 10 7 11 7 13 7 14
26 27 28 29 30	4 59 4 57 4 56 4 54 4 53	6 57 6 58 6 59 7 0 7 1	4 54 4 53 4 51 4 50 4 48	7 I 7 2 7 3 7 5 7 6	4 50 4 48 4 47 4 45 4 43	7 5 7 7 7 8 7 10 7 12	4 45 4 43 4 41 4 39 4 3 ⁸	7 10 7 12 7 13 7 15 7 16	4 40 4 38 4 36 4 34 4 32	7 16 7 18 7 19 7 21 7 22

MAY

	Latitu	de 44°	Latitu	de 46°	Latitu	de 48°	Latitude 50	• Latitude 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise Sunse	et Sunrise Sunset
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m. h. m.	n. h. m. h. m.
1	4 51	7 3	4 47	7 0	4 42	7 14	4 30 7 1	0 4 30 7 24
2	4 50	7 5	4 45	7 10	4 40	7 15	4 34 7 2	1 4 26 7 27
3	4 40	7 6	4 43	7 11	4 37	7 17	4 31 7 2	3 4 24 7 20
5	4 46	7 8	4 41	7 13	4 35	7 18	4 29 7 2	4 4 22 7 31
6		~ ~	4 20	7 14	4 24	7 10	A 27 7 2	6 4 21 7 22
0	4 44	7 9	4 39	7 14	4 34	7 21	4 2/ / 2	7 4 10 7 24
7	4 4 3	7 11	4 30	7 16	4 32	7 22	4 20 7 2	0 4 19 7 34
0	4 40	7 12	4 35	7 17	4 20	7 23	4 22 7 3	0 4 15 7 28
9 10	4 39	7 13	4 34	7 19	4 28	7 25	4 21 7 3	2 4 13 7 39
11	4 38	7 14	4 32	7 20	4 26	7 26	4 20 7 3	3 4 11 7 41
12	4 37	7 16	4 31	7 21	4 25	7 28	4 18 7 3	4 4 10 7 42
13	4 36	7 17	4 30	7 23	4 24	7 29	4 16 7 3	6 4 8 7 44
14	4 35	7 18	4 49	7 24	4 22	7 30	4 15 7 3	7 4 7 7 45
15	4 34	7 19	4 28	7 25	4 21	7 31	4 14 7 3	9 4 5 7 47
16	4 32	7 20	4 26	7 26	4 20	7 33	4 12 7 4	0 4 4 7 48
17	4 31	7 21	4 25	7 27	4 18	7 34	4 11 7 4	2 4 3 7 50
18	4 30	7 22	4 24	7 28	4 17	7 35	4 10 7 4	3 4 1 7 51
19	4 30	7 23	4 23	7 30	4 16	7 36	4 8 7 4	4 4 0 7 52
20	4 29	7 24	4 22	7 31	4 15	7 38	4 7 7 4	^{.6} 3 5 ⁸ 7 54
21	4 28	7 25	4 21	7 32	4 14	7 39	4 6 7 4	7 3 57 7 55
22	4 27	7 26	4 20	7 33	4 13	7 40	4 5 7 4	8 3 56 7 56
23	4 26	7 27	4 19	7 34	4 12	7 41	4 4 7 4	9 3 55 7 58
24	4 25	7 28	4 18	7 35	4 11	7 43	4 3 7 5	1 3 53 7 59
25	4 24	7 29	4 17	7 36	4 10	7 44	4 2 7 5	2 3 52 8 1
26	4 24	7 30	4 16	7 37	4 9	7 45	4 0 7 5	3 3 51 8 2
27	4 23	7 31	4 16	7 38	4 8	7 46	3 59 7 5	4 3 50 8 3
28	4 22	7 32	4 15	7 39	4 7	7 47	3 58 7 5	6 3 49 8 5
29	4 22	7 33	4 14	7 40	4 6	7 48	3 58 7 5	7 3 47 8 6
30	4 21	7 34	4 14	7 41	4 5	7 49	3 57 7 5	8 3 46 8 8
31	4 21	7 34	4 13	7 42	4 5	7 50	3 56 7 5	59 3 45 8 9

Day of	Latitu	de 44°	Latituc	le 46 °	Latitu	de 48 °	Latitu	de 50°	Latitu	de 52°
Jonth	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
I	4 20	7 35	4 12	7 43	4 4	7 51	3 56	8 o	3 4 5	8 10
2	4 19	7 36	4 1 2	7 44	4 4	7 52	3 55	8 I	3 44	8 11
3	4 19	7 37	4 I I	7 44	4 3	7 52	3 54	8 2	3 44	8 11
4	4 18	7 38	4 1 1	7 45	4 3	7 53	3 54	8 3	3 43	8 12
5	4 18	7 39	4 10	7 46	42	7 54	3 53	84	3 43	8 13
6	4 17	7 39	4 10	7 47	4 2	7 55	3 52	8 4	3 43	8 14
7	4 17	7 40	4 10	7 48	4 1	7 56	3 52	8 5	3 42	8 15
8	4 17	7 41	4 9	7 48	4 I	7 57	3 52	8 6	3 12	8 15
9	4 17	7 41	4 9	7 49	4 I	7 57	3 51	8 7	2 41	8 16
10	4 16	7 42	49	7 49	4 0	7 58	3 51	8 8	3 41	8 17
11	4 16	7 42	49	7 50	4 0	7 50	3 50	88	2 4 1	8 18
12	4 16	7 43	4 9	7 51	4 0	7 50	3 50	8 0	2 41	8 18
13	4 16	7 43	4 8	7 51	4 0	8 0	3 50	8 10	2 40	8 10
14	4 16	7 44	4 8	7 52	4 0	8 0	3 50	8 10	2 40	8 10
15	4 16	7 44	48	7 52	4.0	8 I	3 50	8 11	3 40	8 20
16	4 16	7 45	4 8	7 53	4 0	8 т	3 50	8 11	2 40	8 21
17	4 17	7 45	4 8	7 53	4 0	8 2	3 50	8 12	2 40	8 21
18	4 17	7 45	4 8	7 54	4 0	8 2	3 50	8 12	2 20	8 22
19	4 17	7 46	4 8	7 54	4 0	8 2	3 50	8 12	3 39	8 22
20	4 17	7 46	4 8	7 54	4 0	8 3	3 50	8 13	3 39	8 23
21	4 17	7 46	4 8	7 54	4 0	8 3	3 50	8 12	2 20	8 22
22	4 18	7 46	4 9	7 55	4 0	8 2	3 50	8 12	2 20	8 22
23	4 18	7 46	4 0	7 55	4 1	8 3	2 51	8 12	3 39	8 22
24	4 18	7 47	4 10	7 55	4 1	8 2	3 5	8 12	2 40	8 22
25	4 18	7 47	4 10	7 55	4 I	8 3	3 51	8 13	3 40	8 23
26	4 10	7 47	4 10		4 2	8 2	2 5 2	8		0
27	4 10	7 47	4 10	1 22	4 4	0 3	3 52	0 13	3 41	0 23
28	4 10	1 41	4 11	1 35	4 4	0 3	3 52	0 13	3 41	0 23
20	4 20	1 41	4 11	1 55	4 3	0 3	3 53	0 13	3 42	ð 23
20	4 20	7 47	4 12	1 55	4 3	03	3 53	0 13	3 42	ð 23
30	4 20	/ 4/	4:2	/ 54]	4 4	03	3 54	0 13	3 43	ð 23

JUNE

JULY

	Latitu	de 44°	Latitu	le 46 °	Latitue	le 48°	Latitu	de 50°	Latitu	ide 52 °
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
1	4 21	7 47	4 13	7 54	4 4	8 3	3 55	8 12	3 44	8 23
2	4 21	7 40	4 14	7 54	4 5	8 2	3 50	8 12	3 45	8 22
3	4 22	7 40	4 14	7 54	4 0	8 2	3 50	8 11	3 40	8 21
4	4 22	7 40	4 15	7 54	4 0	8 2	3 57	8 11	3 47	8 21
5	4 23	7 40	4 15	7 53	4 /	0 2	3 50	0 11	3 40	
6	4 24	7 45	4 16	7 53	4 8	8 1	3 59	8 10	3 48	8 20
7	4 24	7 45	4 17	7 53	4 9	8 1	4 0	8 10	3 49	8 20
8	4 25	7 45	4 18	7 52	4 10	8 o	4 0	8 9	3 50	8 19
9	4 26	7 44	4 18	7 52	4 IO	8 0	4 I	8 9	3 51	8 19
ío	4 27	7 43	4 19	7 5I	4 1 1	7 59	4 2	88	3 52	8 18
	1 28	7 42	1 20	7 50	1 12	7 50	4 3	8 7	3 53	8 17
11	4 20	7 43	4 20	7 50	4 13	7 58	4 4	8 7	3 54	8 16
12	4 29	7 42	4 22	7 49	4 14	7 57	4 5	8 6	3 56	8 15
14	4 30	7 41	4 23	7 48	4 15	7 56	4 6	8 5	3 57	8 14
15	4 31	7 40	4 24	7 48	4 16	7 56	4 7	8 4	3 58	8 13
16	1 22	7 40	1.25	7 47	4 17	7 55	1 8	8 3	3 50	8 12
10	4 34	7 20	4 26	7 46	4 18	7 54	4 10	8 2	4 0	8 11
18	4 33	7 28	4 27	7 45	à 10	7 53	4 11	8 1	4 2	8 10
10	4 34	7 38	4 28	7 44	4 20	7 52	4 12	8 0	4 3	8 9
20	4 36	7 37	4 29	7 43	4 21	7 51	4 13	7 59	4 4	8 8
	4 27	7 26	1 20	7 42	1 22	7 50	A 15	7 58	4 5	8 7
21	4 3/	7 30	4 30	7 41	4 24	7 40	4 16	7 57	4 7	8 5
22	4 30	7 24	4 32	7 40	4 25	7 48	4 17	7 56	4 8	8 4
~ 3 24	4 40	7 34	4 32	7 30	4 26	7 47	4 18	7 54	4 10	8 2
25	4 40	7 32	4 34	7 38	4 27	7 46	4 20	7 53	4 11	8 1
5										
26	4 41	7 31	4 35	7 37	4 28	7 44	4 21	7 52	4 12	00
27	4 42	7 30	4 36	7 36	4 30	7 43	4 22	7 50	4 14	7 50
28	4 44	7 29	4 38	7 35	4 31	7 42	4 24	7 49	4 15	7 57
29	4 45	7 28	4 39	7 34	4 32	7 40	4 25	1 47	4 17	7 53
30	4 40	7 27	4 40	7 33	4 33	17 39	4 20	1740	4 10	1 54
31	4 47	7 26	4 41	7 32	4 35	7 38	4 28	7 44	4 20	7 52

	Latitu	de 44°	Latitu	de 46°	Latitu	de 48°	Latitu	ide 50°	Latitu	ıde 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
	h m	h m	h m	h m	h m	h m	h m	h m	h m	n m
1	4 40	7 24	4 42	7 30	4 30	7 30	4 29	7 43	4 21	7 50
2	4 49	7 22	4 44	7 29	4 37	7 35	4 31	7 41	4 2 3	7 49
3	4 51	7 21	4 46	7 26	4 40	7 32	4 32	7 38	4 26	7 45
5	4 52	7 19	4 47	7 24	4 41	7 30	4 35	7 37	4 28	7 43
6	4 53	7 18	4 48	7 23	4 43	7 29	4 36	7 35	4 29	7 41
7	4 54	7 17	4 49	7 22	4 4 4	7 27	4 38	7 33	4 31	7 40
8	4 56	7 15	4 5 ¹	7 20	4 45	726	4 39	7 32	4 32	7 38
9	4 57	7 14	4 52	7 19	4 46	7 24	4 40	7 30	4 34	7 36
10	4 58	7 12	4 53	7 17	4 48	7 22	4 42	7 28	4 36	7 34
11	4 59	7 11	4 54	7 16	4 49	7 21	4 44	7 26	4 37	7 32
12	5 0	7 9	4 50	7 14	4 51	7 19	4 45	7 25	4 39	7 30
13	5 2	7 6	4 57	7 12	4 52	7 16	4 47	7 23	4 40	7 20
14	5 3	7 5	4 50	7 0	4 53	7 14	4 40	7 10	4 42	7 24
• 5	5 4	1 3	4 39	19	7 55	/ 14	4 30	/ .9	7 47	/ -4
16	5 5	7 3	5 I	78	4 56	7 12	4 51	7 17	4 45	7 22
17	56	7 2	52	76	4 57	7 10	4 53	7 15	4 47	7 20
18	5 7	7 0	5 3	74	4 59	79	4 54	7 13	4 48	7 18
19	5 0	6 59	5 4	7 3	50	7 7	4 55	7 12	4 50	7 10
20	5 10	0 57	50	7 1	5 2	75	4 57	79	4 52	7 14
2 I	5 11	6 55	5 7	6 59	5 3	7 3	4 59	77	4 53	7 12
22	5 12	0 54	58	0 57	5 4	7 1	5 0	7 5	4 55	7 10
23	5 13	0 52	5 9	6 54	5 0	6 59	5 2	1 3	4 50	7 8
24 25	5 14	6 49	5 12	6 <u>54</u> 6 <u>52</u>	5 8	6 56	5 3	7 0	4 5° 5 0	74
26	F 16	6 47	F 12	6 50	F 10	6 54	- 6	6 = 7		7 0
20	5 18	6 15	5 14	6 48	5 11	6 52	5 8	6 55	5 1	7 0
-7 28	5 10	6 44	5 16	6 46	5 12	6 50	5 0	6 53	5 3 5 4	6 58
29	5 20	6 42	5 17	6 45	5 14	6 48	5 10	6 51	5 6	6 56
30	5 21	6 40	5 18	6 43	5 15	6 46	5 12	6 49	5 8	6 54
31	5 22	6 38	5 19	6 41	5 17	6 44	5 14	6.47	5 10	6 51

AUGUST

-	Latitu	de 44°	Latitud	le 46°	Latitu	de 48 °	Latitu	de 50°	Latitu	de 52°
Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
I	h. m.	h.m.	h. m.	h. m.						
	5 23	636	5 20	6 39	5 18	642	5 15	645	5 I I	6 49
2	5 24	6 35	5 22	6 37	5 19	6 40	5 16	6 43	5 13	6 46
3	5 25	6 33	5 23	6 35	5 21	6 38	5 18	6 40	5 15	6 44
4	5 27	6 31	5 24	6 33	5 22	6 36	5 20	6 38	5 17	6 42
5	5 28	6 29	5 26	6 31	5 23	6 34	5 21	6 36	5 19	6 39
ն	5 29	6 28	5 27	6 29	5 25	6 32	5 23	6 34	5 20	6 37
7	5 30	6 26	5 28	6 27	5 26	6 30	5 24	6 32	5 22	6 34
8	5 31	6 24	5 3 ⁰	6 26	5 27	6 28	5 25	6 30	5 24	6 32
9	5 32	6 22	5 31	6 24	5 29	6 26	5 27	6 28	5 26	6 30
10	5 33	6 20	5 32	6 22	5 30	6 24	5 28	6 25	5 27	6 27
11	5 34	6 19	5 33	6 20	5 3 ¹	6 22	5 30	6 23	5 29	6 25
12	5 36	6 17	5 34	6 18	5 33	6 20	5 31	6 21	5 30	6 23
13	5 37	6 15	5 36	6 16	5 34	6 17	5 33	6 19	5 32	6 21
14	5 38	6 13	5 37	6 14	5 36	6 15	5 34	6 17	5 33	6 18
15	5 39	6 11	5 38	6 12	5 37	6 13	5 36	6 14	5 35	6 16
16	5 40	6 9	5 39	6 10	5 38	6 II	5 38	6 12	5 36	6 14
17	5 41	6 8	5 41	6 8	5 40	6 9	5 39	6 10	5 38	6 11
18	5 42	6 6	5 42	6 6	5 41	6 7	5 41	6 8	5 39	6 9
19	5 44	6 4	5 44	6 4	5 42	6 5	5 42	6 5	5 41	6 7
2 0	5 45	6 2	5 45	6 2	5 44	6 3	5 43	6 3	5 42	6 4
21	5 46	6 0	5 46	6 0	5 45	6 I	5 45	6 I	5 44	6 2
22	5 47	5 58	5 47	5 58	5 47	5 59	5 46	5 59	5 46	6 0
23	5 48	5 56	5 48	5 56	5 48	5 56	5 48	5 56	5 48	5 58
24	5 49	5 55	5 5 ⁰	5 54	5 50	5 54	5 50	5 54	5 49	5 55
25	5 50	5 53	5 5 ¹	5 52	5 51	5 52	5 51	5 52	5 5 ¹	5 53
26 27 28 29 30	5 52 5 53 5 54 5 55 5 55 5 56 $5 56$	5 51 5 49 5 47 5 45 5 45 5 43	5 52 5 54 5 55 5 56 5 57	5 50 5 48 5 46 5 44 5 43	5 52 5 54 5 55 5 57 5 58	5 50 5 48 5 46 5 44 5 42	5 52 5 54 5 55 5 57 5 58	5 50 5 48 5 46 5 44 5 41	5 53 5 54 5 56 5 58 5 58 5 59	5 51 5 48 5 46 5 44 5 41

SEPTEMBER

	Latitu	1de 44°	Latitu	de 46°	Latitu	de 48°	Latitu	ide 50°	Latitu	de 52°
Dag sf Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	S unrise	S unset	S unrise	Sunset
1 2 3 4 5	h m 5 58 5 59 6 0 6 1 6 2	h m 5 41 5 40 5 38 5 36 5 34	h m 5 58 6 0 6 1 6 2 6 4	h m 5 41 5 39 5 37 5 35 5 33	h m 5 59 6 1 6 2 6 4 6 5	h m 5 40 5 38 5 36 5 34 5 32	h m 6 0 6 2 6 3 6 5 6 6	h m 5 39 5 37 5 35 5 33 5 31	h m 6 1 6 3 6 5 6 6 6 8	h m 5 39 5 37 5 35 5 32 5 30
6 7 8 9 10	6 4 6 5 6 6 6 8 6 9	5 32 5 31 5 29 5 27 5 25	65 66 869 610	5 31 5 30 5 28 5 26 5 24	6 7 6 8 6 9 6 11 6 12	5 30 5 28 5 26 5 24 5 22	6 8 6 10 6 11 6 12 6 14	5 28 5 26 5 24 5 22 5 20	6 10 6 11 6 13 6 15 6 16	5 28 5 25 5 23 5 21 5 19
11 12 13 14 15	6 10 6 11 6 12 6 13 6 15	5 24 5 22 5 20 5 19 5 17	6 12 6 13 6 14 6 16 6 17	5 22 5 20 5 18 5 16 5 14	6 14 6 15 6 17 6 18 6 20	5 20 5 18 5 16 5 14 5 12	o 16 6 17 6 19 6 21 6 22	5 18 5 16 5 14 5 12 5 10	6 18 6 19 6 21 6 23 6 24	5 17 5 15 5 13 5 10 5 8
16 17 18 19 20	6 16 6 17 6 19 6 20 6 21	5 15 5 13 5 12 5 10 5 9	6 18 6 20 6 21 6 22 6 24	5 13 5 11 5 9 5 8 5 6	6 21 6 22 6 24 6 25 6 27	5 10 5 8 5 6 5 5 5 3	6 24 6 26 6 27 6 28 6 30	5 7 5 5 5 3 5 2 5 0	6 26 6 27 6 29 6 31 6 33	5 6 5 4 5 1 4 59 4 57
21 22 23 24 25	6 22 6 24 6 25 6 26 6 28	5 7 5 6 5 4 5 2 5 I	6 25 6 27 6 28 6 30 6 31	5 4 5 2 5 I 4 59 4 57	6 28 6 30 6 31 6 33 6 34	5 1 4 59 4 58 4 56 4 54	6 32 6 34 6 35 6 37 6 38	4 57 4 56 4 54 4 52 4 5 ² 4 5 ⁰	6 35 6 37 6 39 6 40 6 42	4 55 4 53 4 51 4 48 4 46
26 27 28 29 30 31	6 29 6 30 6 32 6 33 6 34 6 35	4 59 4 57 4 56 4 55 4 54 4 52	6 32 6 34 6 35 6 37 6 38 6 40	4 56 4 54 4 52 4 51 4 49 4 49	6 36 6 38 6 39 6 41 6 42	4 5 ² 4 5 ⁰ 4 48 4 47 4 45	6 40 6 42 6 43 6 45 6 47 6 48	4 48 4 46 4 44 4 42 4 41 4 30	6 44 6 46 6 48 6 50 6 52 6 52	4 44 4 42 4 40 4 38 4 36

OCTOBER

	Latitu	de 44°	Latitud	le 46 °	Latitu	1de 48°	Latitu	de 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
	h. m.	h . m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
1	0 37	4 51	6 41	4 40	0 45	4 42	0 50	4 37	0 55	4 33
2	0 30	4 49	6 42	4 45	0 47	4 41	0 52	4 30	0 5/	4 31
3	6 40	4 48	0 44	4 44	6 50	4 39	0 53	4 34	0 59	4 29
4	0 41	4 47	0 45	4 42	0 50	4 30	0.55	4 32	17 1	4 21
5	0 42	4 45	0 47	4 4 1	0.51	4 30	0 57	4 31	1 4	4 20
6	6 43	4 44	6 48	4 39	6 53	4 35	6 58	4 29	7 4	4 24
7	6 44	4 43	6 49	4 38	6 54	4 33	7 0	4 28	7 6	4 22
8	6 46	4 42	6 51	4 37	6 56	4 32	7 2	4 26	7 8	4 21
9	6 47	4 41	6 52	4 36	6 58	4 30	7 3	4 25	7 9	4 19
10	6 49	4 40	6 54	4 35	6 59	4 29	7 5	4 23	7 11	4 18
. 11	6 50	4 38	6 55	4 33	7 1	4 28	7 7	4 22	7 13	4 16
12	6 51	4 37	6 56	4 32	7 2	4 26	7 8	4 20	7 15	4 15
13	6 53	4 36	6 58	4 31	7 4	4 25	7 10	4 19	7 16	4 13
14	6 54	4 35	6 59	4 30	7 5	4 24	7 11	4 18	7.18	4 12
15	6 55	4 34	7 1	4 29	7 7	4 23	7 13	4 16	7 20	4 10
16	6 57	4 33	7 2	4 28	7 8	4 21	7 15	4 15	7 21	4 9
17	6 58	4 32	7 4	4 27	7 10	4 20	7 16	4 14	7 23	4 7
18	6 59	4 32	7 5	4 26	7 12	4 19	7 18	4 13	7 25	4 6
19	7 0	4 31	7 6	4 25	7 13	4 18	7 20	4 11	7 26	4 5
20	7 2	4 30	7 8	4 24	7 14	4 17	7 21	4 10	7 28	4 4
21	7 3	4 20	7 9	4 23	7 15	4 17	7 23	4 9	7 30	4 3
22	7 4	4 28	7 10	4 22	7 17	4 16	7 24	4 8	7 32	4 2
23	7 6	4 28	7 12	4 22	7 19	4 15	7 26	4 7	7 33	4 0
24	7 7	4 27	7 13	1 21	7 20	4 14	7 28	4 6	7 35	3 59
25	7 8	4 26	7 14	4 20	7 21	4 13	7 29	4 5	7 37	3 58
•	1.	1		1.	1.					
26	7 9	4 26	7 16	4 19	7 23	4 12	7 31	4 4	7 38	3 57
27	7 10	4 25	7 17	4 19	7 24	4 12	7 32	4 4	7 40	3 50
28	7 12	4 25	7 18	4 18	7 25	4 11	7 33	4 3	7 4 I	3 55
29	7 13	4 24	7 19	4 18	7 27	4 10	7 35	4 2	7 43	3 55
30	7 14	4 24	7 21	4 17	7 28	4 10	7 30	4 2	7 44	3 54

NOVEMBER

	Latitu	ide 44°	Latitu	de 46°	Latitu	de 48°	Latitu	1de 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
1	h m	h m	h m 7 22	h m 4 16	h m	h m	h m	h m	h m 7 16	h m 3 54
2	7 16	4 23	7 23	4 16	7 31	4 9	7 39	4 1	7 47	3 53
3	7 17	4 23	7 24	4 16	7 32	4 8	7 40	4 0	7 48	3 52
4	7 18	4 23	7 25	4 16	7 33	4 8	7 4 I	4 0	7 50	3 52
5	7 19	4 22	726	4 15	7 34	4 8	7 42	3 59	7 51	3 51
6	7 20	4 22	7 27	4 15	7 35	48	7 43	3 59	7 53	3 51
7	7 21	4 22	7 29	4 1 5	7 36	4 7	7 45	3 59	7 54	3 50
8	7 22	4 22	7 30	4 15	7 37	4 7	7 46	3 59	7 55	3 50
9	7 23	4 22	7 30	4 15	7 37	4 7	7 47	3 58	7 50	3 50
10	7 24	4 22	7 31	4 15	7 30	4 /	7 40	3 50	7-57	3 50
II	7 25	4 22	7 32	4 15	7 40	4 7	7 49	3 58	7 58	3 50
I 2	7 26	4 2 2	7 33	4 ¹ 5	74I	4 7	7 50	3 58	7 59	3 50
13	7 26	4 22	7 34	4 ¹ 5	742	4 7	7 5 ¹	3 58	7 59	3 49
14	7 27	4 22	7 35	4 ¹ 5	7 43	47	7 52	3 58	8 0	3 49
15	7 28	4 23	7 30	4 15	7 44	47	7 53	3 50	8 1	3 49
16	7 29	4 23	7 36	4 15	7 44	4 7	7 53	3 58	8 2	3 49
.17	7 30	4 23	7 37	4 16	7 45	4 8	7 54	3 59	8 3	3 49
18	7 30	4 24	7 30	4 10	7 40	4 8	7 55	3 59	0 4	3 50
19	7 31	4 24	7 20	4 10	7 40	4 0	7 55	3 59	8 5	3 50
20	/ 31	4 - 4	1 39	4 . /	/ 4/	4 9	1 50	4 0	0 3	3.31
2I	7 32	4 25	7 39	4 17	7 47	4 9	7 56	4 0	8 5	3 51
22	7 32	4 ² 5	7 40	4 18	7 48	4 10	7 57	4 I	8 6	3 52
23	7 33	4 26	7 40	4 18	7 48	4 10	7 57	4 I	8 0	3 52
24	7 33	4 27	7 41	4 19	7 49	4 11	7 58	4 2	0 7	3 53
25	7 34	4 27	7 41	4 20	7 49	4 12	7 50	4 3	• 7	3 53
26	7 34	4 28	7 42	4 20	7 50	4 12	7 58	4 3	8 8	3 54
27	7 34	4 28	7 42	4 21	7 50	4 13	7 59	4 4	0 0	3 54
20	7 34	4 29	7 42	4 22	7 50	4 14	7 59	4 5	8 8	3 55
29	7 25	4 30	7 44	4 22	7 50	4 15	1 59	4 7	8 8	3 50
35	1 33	ч <u>э</u> •	/	т ~ э	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T ***	1 39			3 31
31	7 35	4 32	7 42	4 24	7 50	+ 17	7 59	4 8	88	3 58

DECEMBER

THE SUN AND PLANETS FOR 1938

By DONALD A. MACRAE

THE SUN

It is a well-known fact that the variations in the number and positions of sun-spots observed on the sun are roughly periodic. The average interval between maxima is 11.2 years, but the observed periods range from eight to fourteen years. It is therefore not possible to predict the exact time of maximum activity. An extrapolation of the graph showing the decreasing latitude of spots to the latitude reached at the times of the maxima of 1918 and 1928 shows that the next sun-spot maximum should occur about the beginning of 1938. During 1938 we should therefore expect an increase in the phenomena associated with sun-spot activity, such as magnetic storms, radio fade-outs, and auroral displays.

MERCURY

Mercury, the planet closest to the sun, is also the smallest and least massive. With the exception of Pluto, its orbit is the most eccentric and has the greatest inclination to the ecliptic. Mercury appears to move swiftly from one side of the sun to the other several times each year and at times of greatest elongation its angular distance from the sun is always small, varying from 18° to 28°. It is visible to the naked eye for about two weeks at these times.

When Mercury is near greatest elongation east of the sun it appears in the evening, setting very soon after the sun. When near greatest western elongation it can be seen in the morning just before sunrise. In northern and southern latitudes at sunset the ecliptic is most nearly vertical in the spring; at sunrise it is most nearly vertical in the autumn. Therefore eastern elongations in the spring and western elongations in the autumn are most favourable for observing Mercury.

Mercury reaches eastern elongation three times during 1938. The dates, angular distances from the sun, and magnitudes are: April 2 (most favourable), 19° , +0.0; July 31, 27°, +0.6; November 25, 22°, -0.2.

Mercury reaches western elongation three times as follows, January 20, 24°, +0.1; May 19, 26°, +0.8; September 13 (most favourable), 18°, +0.0.

At its closest approach to the earth this year (inferior conjunction, April 21) its distance will be 53 million miles. At greatest elongations its semidiameter is between three and four seconds of arc.

VENUS

Venus is the next planet in order from the sun. In size and mass and perhaps in other respects it resembles the earth. To us it appears as the most brilliant "star" in the sky. Venus performs in the same way as Mercury but moves much more slowly and is farther removed from the sun. The time for one complete oscillation is 1.6 years and greatest elongation is about 45°. When east of the sun, as it is for the greater part of 1938, Venus appears as the evening star and in this position it was known to the ancients as Hesperus. When west of the sun it is the morning star, Phosphorus.

At the beginning of the year Venus is close to the sun on the far side and passes superior conjunction on February 3. During the spring and summer it is moving slowly to the east of the sun. In August it will set about one and one-half hours after sunset. On September 10 it reaches its maximum elongation east of the sun (46° and magnitude -4.0) and then rather quickly moves in towards the sun again.

Owing to the unfavourable positions of both the ecliptic and the planet's orbit, Venus actually becomes more poorly situated for observation as maximum elongation is approached. For a few weeks in September and October it can be easily seen during the day. On October 16 it will be at its greatest brilliancy in the western sky, magnitude -4.3. Its closest approach to the earth will be at inferior conjunction on November 20 when it will be twenty-five million miles away. This is about one hundred times the distance of the moon and is closer than any other major planet approaches the earth. Rising early Christmas morning, Venus will be "a star in the east" at its brightest for the year, magnitude -4.4, thirteen times as bright as Sirius. Its apparent semidiameter changes from about 5" at superior conjunction to almost 32" at inferior conjunction.

MARS

Mars is the fourth planet from the sun and the first superior planet. Its path in the sky is similar to all planets beyond the earth, a slow motion in the region of the zodiac from west to east with occasional periods in which it is regreding. During 1938 however, Mars will not be in a good position for observation as it is close to the sun most of the year.

On January 1 it is of magnitude +1.1, four hours east of the sun in the constellation Aquarius, 150 million miles from the earth. It is moving closer to the sun and from June to the middle of September the planet is less than one hour of right ascension away from the sun. On July 24 it is in conjunction, and on August 4 it is at its greatest distance from the earth, 250 million miles. On October 8 it passes aphelion. At the end of the year it is of magnitude +1.7, 180 million miles from the earth, and four hours west of the sun in the constellation Libra. The accompanying chart gives its path among the stars during the year.

Mars is best observed at favourable oppositions which occur every 15 or 17 years, the last one being in August, 1924.

THE ASTEROIDS

Between the orbits of Mars and Jupiter there are a large number of small bodies revolving about the sun. The first of these minor planets to be discovered was Ceres, found by Piazzi in 1801. Within the next few years three others were found, Pallas, Juno, and Vesta. The number has now reached about 1400. The majority of these planetoids are less than 50 miles in diameter. They all revolve from west to east, and some approach very close to the earth. Eros will come within twenty million miles of us in January.

In most telescopes these asteroids show no discs but their motions among the stars can be easily observed. It is planned to publish, from time to time in the JOURNAL, maps of the paths of the brighter asteroids.

JUPITER

Jupiter is the largest and most massive planet of the solar system. Because of its distance from the sun and the earth, its motion among the stars is quite slow. During 1938 it will be in the constellations Capricornus and Aquarius. Since it is in conjunction with the sun on January 29, it is not easily seen until the end of February. At this time it is a morning star of magnitude -1.5. It is in western quadrature on May 22, and opposition on August 20 at which time it is at its maximum brightness for the year, magnitude -2.4, and is visible all night. After eastern quadrature on November 16 it will be an evening star and will be approaching the sun again. Its magnitude at the end of the year is -1.8. For its path among the stars, see the accompanying chart; it is retrograding from June 22 to October 20.

Jupiter has four moons that can be seen with a good pair of binoculars. Their configurations are given among the phenomena. The five smaller moons are too faint to be seen in any but the largest telescopes. The moons, the surface detail, its large disk and its position in the sky make Jupiter a very interesting object for observation during the latter part of the year.

Its period of rotation is the shortest of all planets, about ten hours; as a result there is a marked flattening at the poles. In August its apparent semidiameter is 23" and its distance from the earth is 373 million miles.

SATURN

Saturn is the next planet in order from the sun. It is also next to Jupiter in size and mass. Its motion in the heavens is very slow. During 1938 it will be a yellowish first magnitude object in the constellations Pisces and Cetus. It will be visible in January and February east of the sun and at magnitude +1.2. During March and April it will be so close to the sun that it cannot

be conveniently observed; conjunction is on March 29. Until quadrature on July 10 it will be a morning star west of the sun. Maximum brightness for the year, magnitude +0.4, is at the time of opposition, October 8, and near the end of the year it will be an evening star again, of magnitude +0.9. The path of Saturn among the stars is given in the chart; from August 1 to December 16 it is retrograding.

Saturn's unique ring system makes it one of the most interesting objects in our skies. These rings, the outer ring, the bright ring, and the crape ring, are composed of a large number of very small satellites which revolve about Saturn in one plane. Since this plane is inclined at an angle of 27° to the planet's orbit, they are presented sometimes well opened out and sometimes edge on. In the latter case they are invisible. The rings disappeared in 1936 so that during 1938 they will be opening out again. They will be at their maximum in 1943, when the planet will be in an excellent position for observation in the northern hemisphere. In October 1938 its distance from the earth is 780 million miles and its semidiameter is almost 9".

URANUS

The ancient astronomers were well familiar with the first six planets. The seventh, Uranus, was not discovered until telescopic observation was firmly established. To Sir William Herschel goes the credit for finding this body, which he at first thought was a comet. Later observations proved it to be the next planet beyond Saturn. Herschel suggested calling it *Georgium*

Sidus after George III. During 1938 it will appear as a blue-green sixth magnitude star in the constellation Aries. Its semidiameter is 1".8.

Eastern quadrature is on January 30 so that for the first three months it can be observed in the evening. In April and May it is near the sun and so unfavourably situated for observation. Conjunction occurs on May 4. Western quadrature is on August 10, and opposition on November 8, when it is above the horizon all night. The path of Uranus among the stars is given in the chart. Its motion is direct from January 18 to August 24.

NEPTUNE

Although Uranus was discovered by accident, the next planet was found by means of the so-called "astronomy of the invisible." The story of its almost simultaneous discovery in 1846 by Leverrier and Adams is one of the most interesting in Astronomy. The observed deviations of Uranus from its calculated orbit led them both to predict correctly the position in the sky of the perturbing planet Neptune.

In 1938 Neptune appears as a blue-green eighth magnitude star in the constellations Leo and Virgo. It is conveniently situated for observation in the first half of the year, reaching opposition on March 10 at magnitude 7.7 and eastern quadrature on June 9. From August to October it is rather close to the sun, passing conjunction on September 14. It is in western quadrature on December 15 and can be seen in the morning. The accompanying chart will identify Neptune among the stars; until June 1 the planet is retrograding.

Neptune's rotation period is quite short. It has been determined spectrographically as 1534 hours. At opposition it is about 2,700 million miles from the earth and has an apparent semidiameter of 1''.25.

PLUTO

The success of the theory of perturbations in this field led Lowell to investigate the existence of a trans-Neptunian planet. The observatory which he founded announced the discovery of Pluto reasonably near its predicted position on March 13, 1930, the anniversary of Lowell's birth and of Herschel's discovery of Uranus.

During 1938 Pluto is a yellowish star in the constellation Cancer, just south of λ Cancri. It is about magnitude 15 and so is invisible in all but the largest telescopes. The position, which changes only slightly during the year, on August 2 is $\alpha : 8^{h} 11^{m}.3 \qquad \delta : +23^{\circ} 10'$

It takes light about $5\frac{1}{2}$ hours to come from Pluto to the earth.

ECLIPSES, 1938

In the year 1938 there will be four eclipses, two of the sun and two of the moon.

I. A Total Eclipse of the Moon, 1938 May 14, visible in Canada; the beginning visible generally in the Atlantic Ocean, except the eastern part, North America, except the extreme northern part, South America, Antarctica, the eastern extremity of Australia, the Pacific Ocean, except the north-western part; the ending visible generally in the central and western part of North America, the western part of South America, Antarctica, the Pacific Ocean, Australia, and the north-eastern extremity of Asia.

	Circumstances	of the	e Eclipse	(75th)	Meridian	Civil Tir	ne)		
				V			ď	h	m
Moon enters	penumbra					May	14	0	44
Moon enters	umbra						14	1	57
Total eclipse	begins						14	3	18
Middle of ecl	ipse						14	3	44
Total eclipse	ends.						14	- Ă	09
Moon leaves	umbra						14	5	- 31
Moon leaves	penumbra						14	ĕ	43
Manul	A		00 /34	, ,.	. 10				

Magnitude of the eclipse =1.102 (Moon's diameter =1.0).

II. A Total Eclipse of the Sun. 1938 May 29, invisible in Canada. The path of totality is short and lies completely in the extreme southern part of the Atlantic Ocean. The duration of the total phase is about 4 minutes. The eclipse is visible in its partial phase in the southern part of South America, the South Atlantic Ocean, and the southern tip of Africa.

III. A Total Eclipse of the Moon, 1938 November 7, visible in Canada; the beginning visible generally in Eurasia, the western part of Australia, the Indian Ocean, Africa, the Atlantic Ocean, the Arctic Ocean, the extreme north-eastern part of North America, and the extreme eastern part of South America; the ending visible generally in central and western Asia, the western part of the Indian Ocean, Europe, Africa, the Atlantic Ocean, the Arctic Ocean, North America, except the extreme western and north-western part, and South America.

Circumstances of the Eclipse (75th Meridian Civil Time)

	d	h h	m
Moon enters penumbra	7	14	39
Moon enters umbra	7	15	41
Total eclipse begins	7	16	45
Middle of eclipse "	7	17	26
Total eclipse ends	7	18	08
Moon leaves umbra	7	19	12
Moon leaves penumbra	7	20	14

Magnitude of the eclipse =1.359 (Moon's diameter =1.0).

IV. A Partial Eclipse of the Sun, 1938 November 21. For most stations on the west coast of North America the beginning of the partial eclipse will be visible just before sunset, but the greatest eclipse for the place will occur after the sun has set. The eclipse is visible generally in the northern part of the Pacific Ocean, Japan, the east coast of Asia, Alaska, and the west coast of North America.

Circumstances of the Eclipse (75th Meridian Civil Time)

		d	h	m		•	'		•	'
Eclipse begins	November	21	16	45	Long.	-143	58	Lat.	+48	00
Greatest eclipse		21	18	52		+162	03		+68	57
Eclipse ends		21	20	59	"	+138	25		+35	41

Magnitude of greatest eclipse =0.778 (Sun's diameter =1.0).

THE SKY MONTH BY MONTH By P. M. MILLMAN

THE SKY FOR JANUARY, 1938

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun-During January the sun's R.A. increases from 18h 43m to 20h 56m, and its Decl. changes from 23° 4' S. to 17° 21' S. The equation of time (see p. 7) increases from +3m 14s to +13m 35s. Owing to this rapid rise in value the time of mean noon appears, for the first ten days of the month, to remain at the same distance from sunrise, that is, the forenoons as indicated by our clocks are of the same length. On the 20th of the month the sun enters the sign Aquarius, the second winter zodiacal sign. It must be remembered that the signs of the zodiac are quite independent of the constellations of the zodiac. Though bearing constellation names the signs are all exactly 30° of longitude in length, and commence at the first point of Aries, which point moves steadily westward, owing to precession. The sun is actually in the constellations Sagittarius and Capricornus during January. The earth is nearest the sun, that is in perihelion, on January 3.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 18h 4m, Decl. 21° 10' S. and transits at 10.28. It is at greatest elongation west of the sun on the 20th near which date it may be glimpsed in the south-east shortly before sunrise. Though Mercury rises about an hour and a half before the sun this is not a particularly favourable elongation for its observation since the planet is only 11 degrees above the horizon at sunrise.

Venus on the 15th is in R.A. 19h 24m, Decl. 22° 42' S. and transits at 11.50. It is fast approaching the sun in the morning sky and is too close to that body to be favourably observed this month.

Mars on the 15th is in R.A. 23h 18m, Decl. 5° 14' S. and transits at 15.42. It is still visible as a red star of the 1st magnitude in the western evening sky in the constellation Aquarius.

Jupiter on the 15th is in R.A. 20h 34m, Decl. 19° 19' S. and transits at 12.56. It is in conjunction with the sun on the 29th at which time it enters the morning sky. It is too near the sun for convenient observation during the month. For the configurations of its satellites see next page and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 0h 4m, Decl. 2° 5' S. and transits at 16.25. It is a yellow star in the evening sky of magnitude +1.2 and is on the meridian at sunset. For the elongations, etc., of its satellites see p. 55.

Uranus on the 15th is in R.A. 2h 30m, Decl. 14° 21' N. and transits at 18.51. Neptune on the 15th is in R.A. 11h 29m, Decl. 4° 36' N. and transits at 3.52. Pluto—For information regarding this planet, see p. 28.

ASTRONOMICAL PHENOMENA MONTH BY MONTH

By RUTH J. NORTHCOTT

75th Meridian Civil Time Min. Algol Juniter Stat. I 2 31 of \mathcal{G} (\mathcal{G} 0° 24' N. ad h m h m Sat. 1 2 31 of \mathcal{G} (\mathcal{G} 0° 24' N. 3401 13 58 (New Moon. 3401 Sun. 2 6 \mathcal{G} (\mathcal{G} 2 3° 16' N. 4302 Mon. 3 \oplus in Perihelion. Dist. from \mathcal{O} , 91,345,000 mi08 30 4213 13 20 of \mathcal{Q} (\mathcal{Q} 2 \mathcal{G} ° 05' S. 4102 Tue. 4 4201 Wed. 5 18 \mathcal{G} Greatest Hel. Lat. N. 4102 Thu. 6 19 09 of of (\mathcal{O}^{2} (\mathcal{O}^{2} 6° 23' S. 05 20 Sat. 8 4 12 of b (b 7° 31' S. 3401 Sun. 9 13 \mathcal{O} f \mathcal{O}^{2} (\mathcal{O}^{2} 300 210 3102 If: 14 21 Moon in Perigee. Dist. from \oplus , 223,200 mi					JANUARY			Config.
d h m h m h m h m h m Sat. 1 2 31 $\sigma' \notin \mathbb{Q}$ ψ 0° 24′ N					75th Meridian Civil Time	M o Al	in. f gol	Jupiter's Sat. 17h 30m
Sat. 1 2 31 $\sigma' \notin \emptyset$ ψ ψ $0^{\circ} 24'$ N		d	h	m		h	m	
13 58 ● New Moon. Sun. 2 6 $\sigma' \notin Q$ \notin 3° 16' N	Sat.	1	2	31	σ ^β ^𝔅 ^𝔅 ^𝔅 ^𝔅 ^𝔅 ^𝔅 ^𝔅 ^𝔅			34012
Sun. 2 6 $\sigma' \notin \varphi$ ψ 3° 16' N			13	58	Wew Moon.			
Mon. 3 3 ⊕ in Perihelion. Dist. from ⊙, 91,345,000 mi08 30 42134 13 20 \checkmark Q 5° 05' S. 4201 Wed. 5 18 Ø Greatest Hel. Lat. N. 4102 Thu. 6 19 09 \bigcirc 7° \bigcirc 7° 6° 23' S. 05 20 d401 Fri. 7 42134 4102 42134 4102 42134 Sat. 8 4 12 \bigcirc b 7° 31' S. 05 20 d401 Sun. 9 9 13 D First Quarter 02 10 3102 10 23 19 \bigcirc 6 2° 42' S. d230 2013 Tue. 11	Sun.	2	6		σ ^β ^Q ^β 3° 16′ N	•		4302*
13 20 $o' 2 \downarrow \bigcirc$ 21 $5^{\circ} 05' \text{ S.}$ 4201 Wed. 5 18 \bigcirc Greatest Hel. Lat. N	Mon.	3	3		⊕ in Perihelion. Dist. from ⊙, 91,345,000 mi	.08	30	42130
Tue. 4 4201 Wed. 5 18 $\begin{smallmatrix}{cccccccccccccccccccccccccccccccccccc$			13	20	σ′2ℓ € 24 5° 05′ S.			
Wed. 5 18	Tue.	4						42013
Thu. 6 19 09 σ δ 6° 23' S	Wed.	5	18		g Greatest Hel. Lat. N			41023
Fri. 7 42130 Sat. 8 4 12 ϕ ϕ 7° 31' S	Thu.	6	19	09	ປັດ ⁷ € ດ ⁷ 6° 23′ S	. 05	20	d4O13
Sat. 8 4 12 σ b 7° 31' S	Fri.	7						42130
Sun. 9 9 13	Sat.	8	4	12	σ þ @ þ 7° 31′ S			34012
15 § Stationary in R.A. Mon. 10 23 19 \circ \circ \circ \circ \circ \circ \circ 2° $42'$ S. d230 Tue. 11	Sun.	9	9	13	b First Ouarter	.02	10	3102*
Mon. 10 23 19 σ & € \circ 2° 42′ S			15		§ Stationary in R.A.			
Tue. 11	Mon.	10	23	19	ở ੈ € 2° 42′ S			d23O4
Fri. 14 21 Moon in Perigee. Dist. from \bigoplus , 223,200 mi19 50 Sun. 16 0 53 \bigoplus Full Moon. 16 40 Mon. 17	Tue.	11				.23	00	20134
Sun. 16 0 53 (Full Moon. Mon. 17	Fri.	14	21		Moon in Perigee. Dist. from \oplus . 223.200 mi	. 19	50	
Mon. 17	Sun.	16	0	53	⁽²⁾ Full Moon.			
Tue. 18 4	Mon.	17			-	. 16	40	
Thu. 20 1 48 $\sigma' \Psi \oplus \Psi \oplus \Phi' \oplus \Phi' \oplus \Phi' \oplus \Phi' \oplus \Phi' \oplus \Phi' \oplus $	Tue.	18	4		Stationary in R.A			
18 \S Greatest elongation W., 24° 17'	Thu.	20	1	48	σΨ Φ Φ 6° 29' N	.13	30	
Sun. 23 3 09 \bigcirc Last Quarter			18		Greatest elongation W., 24° 17'			
Wed. 26	Sun.	23	3	09	Last Quarter	. 10	20	
Thu. 27 1 Moon in Apogee. Dist. from \bigoplus , 252,000 mi Sat. 29 4 \oiint in \heartsuit	Wed.	26			~ ~	.07	00	
Sat. 29 4 \emptyset in \emptyset	Thu.	27	1		Moon in Apogee. Dist. from \oplus , 252,000 mi			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sat.	29	4		ਊ in ੴ	.03	50	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			8	09	σ'⊈ Œ Ἐ 3° 28' S.			
Sun. 30 3 \bigcirc \bigcirc \bigcirc \bigcirc 20 \checkmark \bigcirc 21 \bigcirc \bigcirc 0° 37' S. Mon. 31 8 35 \bigcirc New Moon. 9 900 \bigcirc 24 \bigcirc 24 5° 24' S. 10 16 \bigcirc \bigcirc \bigcirc \bigcirc 6° 04' S.			18		ơ 2 ⊙			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sun.	30	3					
Mon. 31 8 35 (New Moon. 9 00 σ' 24 (24 5° 24' S. 10 16 σ' 2 (26 6° 04' S.			20		σ′ ♀ 2↓ ♀ 0° 37′ S.			
9 00 ơ 24 C 24 5° 24' S. 10 16 ơ 9 C 9 6° 04' S.	Mon.	31	8	35	New Moon.			
10 16 ♂♀ € ♀ 6° 04′ S.			9	00	σ′21 € 24 5° 24′ S.			
			10	16	୪ହୁ⊈ ହୁ 6° 04′ S.			

Explanation of symbols and abbreviations on p. 4, of time on p. 6. Jupiter being near the Sun, phenomena of the Satellites are not given from January 12 to March 27.

THE SKY FOR FEBRUARY, 1938

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During February the sun's R.A. increases from 20h 56m to 22h 45m and its Decl. changes from 17° 21' S. to 7° 55' S. The equation of time reaches a maximum value of +14m 22s on the 11th (see p. 7). For changes in the length of the day see p. 11. On the 19th the sun enters the sign Pisces, the third winter sign of the zodiac.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 21h 51m, Decl. 19° 30' S. and transits at 11.15. During the month it is too near the sun for observation.

Venus on the 15th is in R.A. 22h 4m, Decl. 13° 23' S. and transits at 12.27. It is in superior conjunction with the sun on the 4th at which time it enters the evening sky. Venus is too close to the sun for observation in February.

Mars on the 15th is in R.A. 0h 43m, Decl. 4° 22' N. and transits at 15.04. It is 40 degrees above the south-west horizon at sunset and sets 4 hours after the sun.

Jupiter on the 15th is in R.A. 21h 3m, Decl. 17° 24' S. and transits at 11.24. It is very near the sun in the morning sky and not well placed for observation.

Saturn on the 15th is in R.A. 0h 14m, Decl. 0° 52' S. and transits at 14.34. It sets about three hours after the sun in the evening sky.

Uranus on the 15th is in R.A. 2h 31m, Decl. 14° 28' N. and transits at 16.50.

Neptune on the 15th is in R.A. 11h 27m, Decl. 4° 51' N. and transits at 1.48.

Pluto-For information regarding this planet, see p. 28.

				FEBRUARY	in.	Config.
				75th Meridian Civil Time A	of lgol	Jupiter's Sat.
	d	h	m	h	m	
Tue.	1	10		Q in Aphelion	40	
Wed.	2	15		ර්ර්් ් ් 2° 01′ N.		
Thu.	3	22		$\sigma \circ \circ \odot$ Superior	30	
Fri.	4	13	27	♂ þ ℂ þ 7° 06′ S.		
		15	48	୪ଟିଏ ଟୋ 4° 59′ S.		
Sat.	5			•••••••••••••••••••••••••••••••••••••••		
Sun.	6				20	e antre
Mon.	7	5	43	ở ὃ ⊈ 👌 2° 25′ S.		
		19	32	First Quarter.		
Tue.	8	11		§ in Aphelion.		
Wed.	9				10	
Thu.	10			•••••••••••••••••••••••••••••••••••••••		
Fri.	11					
Sat.	12	1		Moon in Perigee. Dist. from \oplus , 226,200 mi12	00	
Sun.	13					
Mon.	14	12	14	1 Full Moon.		
Tue.	15				50	
Wed.	16	10	57			
Thu.	17	0		ơ ⊉ 2↓		
Fri.	18				40	
Sat.	19					
Sun.	20					
Mon.	21	23	24	€ Last Quarter02	30	
Tue.	22			•••••••••••••••••		
Wed.	23	19		♀ Greatest Hel. Lat. S	10	
		20		Moon in Apogee. Dist. from \oplus , 251,400 mi.		
Thu.	24					
Fri.	25					
Sat.	26				00	
Sun.	27			• • • • • • • • • • • • • • • • • • • •		
Mon.	28	5	38	σ 24 € 24 5° 45′ S.		
		18		§ Greatest Hel. Lat. S.		. •

Explanation of symbols and abbreviations on p. 4, of time on p. 6. Jupiiter being near the Sun, phenomena of the Satellites are not given from January 12 to March 27.

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During March the sun's R.A. increases from 22h 45m to 0h 39m and its Decl. changes from 7° 55' S. to 4° 12' N. The equation of time decreases from +12m 39s to +4m 14s (see p. 7). For changes in the length of the day see p. 12. The sun crosses the equator on its journey north on the 21st of the month at 6h 43m G.C.T. It is at the vernal equinox at this time and spring commences, day and night being approximately equal all over the world.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 0h 1m, Decl. 0° 48' S. and transits at 12.36. The most favourable elongation east of the sun occurs at the beginning of April and for the last week in March Mercury is well placed for observation in the western sky after sunset, appearing almost due west.

Venus on the 15th is in R.A. 0h 14m, Decl. 0° 8' N. and transits at 12.47. It is slowly separating from the sun in the western evening sky but still sets too soon after sunset to be well observed.

Mars on the 15th is in R.A. 1h 59m, Decl. 12° 18' N. and transits at 14.30. It is slowly approaching the sun in the western evening sky and growing fainter as it nears conjunction with the sun. It is a red star of magnitude +1.4 setting a little over three hours after the sun.

Jupiter on the 15th is in R.A. 21h 29m, Decl. 15° 33' S. and transits at 9.59. It is still poorly placed for observation in the morning sky, rising about an hour before the sun. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 0h 26m, Decl. 0° 28' N. and transits at 12.56. It is in conjunction with the sun on the 29th and too near that body for observation during the month.

Uranus on the 15th is in R.A. 2h 35m, Decl. 14° 46' N. and transits at 15.04.

Neptune on the 15th is in R.A. 11h 24m, Decl. 5° 9' N. and transits at 23.51.

Pluto-For information regarding this planet, see p. 28.
				MARCH		Config.
				75th Meridian Civil Time	Min. of Algol	Jupiter's Sat. 6h 15m
	d	h	m		h m	
Tue.	1	17	50	σ^{7} in Ω	16 50	
Wed	ົງ	10	- <u>0</u> 9 - <u>40</u>			
weu.	4	10	40	$\sim 0 \pi$ 0 6° 20/ S		
Thu	2	10	41	$0 \neq \psi \neq 0.39$ S.		
Fri	0 4	0	17	$\sim h \pi$ h 6° 42′ S	12 40	
Sat	5	a	51	ୁ କାର୍ଯ୍ୟ ହୋଇ ପ୍ରାର୍ଥ୍ୟ କାର୍ଯ୍ୟ କାର୍ଯ୍ୟ କାର୍ଯ୍ୟ କାର୍ଯ୍ୟ ହୋଇ କାର୍ଯ୍ୟ କାର୍ଯ୍	10 10	
Sun	6	12	14	c δ (C δ 2° 05′ S		
Mon.	7				10 30	
Tue.	8	7		$\sigma \otimes \Theta$ Superior	10 00	
Wed.	9	3	35	D First Quarter.		
Thu.	10	19		$\sigma^{\circ} \Psi \odot$ Dist. from \oplus . 2.714.000.000 mi	07 20	
Fri.	11	3		Moon in Perigee. Dist. from \oplus . 229.500 mi.		
Sat.	12			······································		
Sun.	13				04 10	
Mon.	14			••••••		
Tue.	15	19	16			
Wed.	16	0	15	Full Moon	01 00	
Thu.	17	19		$\sigma \diamondsuit \flat 2 1^{\circ} 04' N.$		
Fri.	18	14		σ ['] [†] ^b [†] ^{2°} 07' N	21 50	
Sat.	19	19		ਊ in ß.		
Sun.	20	0		ở₿♀ ₿ 1° 17′ N.		
Mon.	21	1	43	\odot enters Υ , Spring commences. Long. of \odot , 0° .	18 30	
Tue.	22			•••••••••••••••••••••••••••••••••••••••		
Wed.	23	16		Moon in Apogee. Dist. from \oplus , 251,100 mi.		
		20	06	C Last Quarter.		
Thu.	24	10		§ in Perihelion	15 20	
Fri.	25			•••••••••••••••••••••		
Sat.	26			•••••••••••••••••••••••••••••••••••••••		
Sun.	27				2 10	
Mon.	28	2	13	of 24 € 24 6° 06′ S		43102
		17		ϭ´ϭ¯\ ᢒ		
Tue.	29	3		♂ ♭ ⊙		43O21
Wed.	30				9 00	43210
Thu.	31	13	52	New Moon		4031*
		14	35	$o' b \mathbb{G}$ $b 6^{\circ} 27' S.$		

Explanation of symbols and abbreviations on p. 4, of time on p. 6. Jupiter being near the Sun, phenomena of the Satellites are not given from January 12 to March 27.

The Sun—During April the sun's R.A. increases from 0h 39m to 2h 30m and its Decl. changes from 4° 12' N. to 14° 48' N. The equation of time changes from +4m 14s to -2m 50s (see p. 7). For changes in the length of the day see p. 13. On the 20th the sun enters the sign Taurus, the second spring sign of the zodiac.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 2h 7m, Decl. 15° 53' N. and transits at 12.33. Greatest elongation east of the sun takes place on the 2nd and this is the most favourable time of the year for observing Mercury. It is 19 degrees above the western horizon, at sunset and sets almost two hours after the sun, appearing as a reddish star of magnitude 0.

Venus on the 15th is in R.A. 2h 37m, Decl. 15° 4′ N. and transits at 13.08. It sets about an hour and a half after the sun, being 15 degrees above the western horizon at sunset. Its magnitude is faint for Venus, -3.3.

Mars on the 15th is in R.A. 3h 26m, Decl. 19° 14^t N. and transits at 13.55. It is visible for a few hours after sunset as a red star, low in the west. It is in fairly close conjunction with the moon on the 3rd.

Jupiter on the 15th is in R.A. 21h 53m, Decl. 13° 37' S. and transits at 8.21. It is in the morning sky rising about two hours before the sun and appears as a star of magnitude -1.7. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 0h 40m, Decl. 1° 58' N. and transits at 11.08. It has just entered the morning sky but is too near the sun for observation this month.

Uranus on the 15th is in R.A. 2h 41m, Decl. 15° 15' N. and transits at 13.08.

Neptune on the 15th is in R.A. 11h 21m, Decl. 5° 27' N. and transits at 21.46.

				APRIL		Config.
			Min. of Algol	Jupiter's S at. 5h 30m		
	d	h	m		h m	
Fri.	1	18	22	σ′♀ € ♀ 3° 39′ S		41023
Sat.	2	0	51	σ Ϩ C ξ 0° 11′ Ν	.05 50	d42O3
		16		β Greatest elongation E., 19° 05'		
		20	56	σδ€ δ 1° 49′ S.		
Sun.	3	2	46	ර්්් C ් 0° 42′ S		42 0 13
		17				
Mon.	4	23		Moon in Perigee. Dist. from \oplus , 229,000 mi	• ·	3102*
Tue.	5				02 40	30124
Wed.	6			· · · · · · · · · · · · · · · · · · ·		32104
Thu.	7	10	10	First Quarter	23 30	2014*
Fri.	8	11		σ₿♀ ₿ 3° 52′ N		10234
Sat.	9			•••••••••••••••••••••••••••••••••••••••	•	dO134
Sun.	10				20 20	20134
Mon.	11	12		§ Stationary in R.A		31024
Tue.	12	1	42	σΨ Φ Φ 6° 23' Ν		30412
Wed.	13				. 17 10	34210
Thu.	14	13	21	Full Moon	•	4201*
Fri.	15	15		σ ♀ δ ♀ 0° 09′ N		41023
Sat.	16				. 13 50	40213
Sun.	17			······································		4203*
Mon.	18			•••••••••••••••••••••••••••••••••••••••		43102
Tue.	19			•••••••••••••••••••••••••••••••••••••••	10 40	43012
Wed.	20	12		Moon in Apogee. Dist. from \oplus , 251,400 mi	•	34210
Thu.	21	2		φ in Q		23041
		17		σ⊈⊙ Inferior		
Fri.	22	15	14	Last Quarter	.07 30	10324
Sat.	23			······································		O2134
Sun.	24	21	07	σ 24 € 24 6° 23′ S		21034
Mon.	25			· · · · · · · · · · · · · · · · · · ·	.0¥ 20	dd04*
Tue.	26			•••••••••••••••••••••••••••••••••••••••		30124
Wed.	27	3		ਊ in የያ		31204
Thu.	28	5	5 4	σ ϸ (b 6° 17′ S	.01 10	23014
Fri.	29	5	14	σ' ξ		10432
Sat.	30	0	28	New Moon	.22 00	40213
		8	18	♂ô€ ô 1° 38′ S.		

The Sun—During May the sun's R.A. increases from 2h 30m to 4h 33m and its Decl. changes from 14° 48' N. to 21° 56' N. The equation of time decreases from -2m 50s to a minimum of -3m 46s on the 15th and then increases to -2m 29s at the end of the month (see p. 7). For changes in the time of sunrise and sunset see p. 14. On May 21 the sun enters the sign Gemini. This is the third spring sign of the zodiac. On May 29 there is a total eclipse of the sun, invisible in this hemisphere. For details see p. 29.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. There is a total eclipse of the moon on May 14, visible over most of the North American continent. For details see p. 29.

Mercury on the 15th is in R.A. 1h 51m, Decl. 7° 58' N. and transits at 10.22. It is at its greatest clongation west of the sun on the 19th and at that time will be in the morning sky. This is not a favourable elongation for observing Mercury as it rises barely 50 minutes before the sun and is only 8 degrees above the horizon at sunrise.

Venus on the 15th is in R.A. 5h 9m, Decl. 23° 56' N. and transits at 13.41. It is 20 degrees above the horizon at sunset and sets a little over two hours after the sun. Venus is in fairly close conjunction with the moon on the 1st and with Mars on the 8th. The two planets will be within 2 minutes of arc of each other at this time, that is about half the distance between the components of ϵ Lyrae. Though Mars is becoming quite faint for observation in the sunset sky, being of the second magnitude, the pair should be a very interesting sight in binoculars or small telescopes. The distance between the planets will be small for some days before and after the above date.

Mars on the 15th is in R.A. 4h 52m, Decl. 23° 17' N. and transits at 13.23. It now sets about two and a half hours after the sun and is of the second magnitude so that it is not very conspicuous. It is in close conjunction with Venus on the 8th, see above.

Jupiter on the 15th is in R.A. 22h 10m, Decl. 12° 13' S. and transits at 6.40. It now rises three hours before the sun in the eastern sky and is about 25 degrees above the south-east horizon at sunrise. Quadrature with the sun is on the 22nd. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 0h 53m, Decl. 3° 16' N. and transits at 9.23. It is in the morning sky but not very well placed for observation, rising about one and a half hours before the sun.

Uranus on the 15th is in R.A. 2h 48m, Decl. 15° 47' N. and transits at 11.17. Neptune on the 15th is in R.A. 11h 19m, Decl. 5° 37' N. and transits at 19.47. Pluto—For information regarding this planet, see p. 28.

				МАУ	Config. of
·				75th Meridian Civil Time of Algol	Sat. 4h 15m
	d	h	m	h m	•
Sun.	1	14	04	σ′♀ € ♀ 0° 57′ N	42103
		19	38	$\sigma' \sigma^{7} \mathbb{G}$ $\sigma^{7} 1^{\circ} 27' \text{ N}.$	
Mon.	2	8		Moon in Perigee. Dist. from \oplus , 225,900 mi	4031*
Tue.	3				4302*
Wed.	4	$\frac{1}{15}$		\forall Stationary in R.A $\forall \diamond \odot$.	43120
Thu.	5				43201
Fri.	6	16	24	First Quarter	41032
Sat.	7	10			0123*
		19		$o' \ \bigcirc o'' \qquad \bigcirc 0^{\circ} \ 02' \ N.$	
Sun.	8				21043
Mon.	9	6	45	$\sigma' \Psi \mathbb{C} \qquad \Psi \qquad 6^{\circ} \ 29' \ \mathrm{N} \dots \dots \dots 12 \ 30$	20134
Tue.	10				3024*
Wed.	11				dd3O4
Thu.	12				32014
Fri.	13	•			1024*
Sat.	14	3	39	Full Moon. Total Eclipse of Q, see p. 29	01234
Sun.	10				21043
Tuo	10			•••••••••••••••••	42013
Wod	18	Λ		Moon in Approach Dist from \oplus 251 000 mi 02 50	43012
Thu	10	ā		8 Greatest elongation W $25^{\circ} 37'$	432012
Fri	20	, U		23 40	41302
Sat.	21				40123
Sun.	22	7	36	C Last Quarter	41203
		10		$\Box 20$	
		12	18	σ′ 2↓ € 2↓ 6° 32′ S.	
Mon.	23				42013
Tue.	24	19		♀ in Perihelion	13402
Wed.	25	20	53	♂ þ (b 6° 09′ S	30124
Thu.	26				3204*
Fri.	27	18		§ Greatest Hel. Lat. S	104**
		18	07	σ′ ξ C ξ 4° 24′ S.	
_		21	07	o´ ô ℂ ô 1° 29′ S.	
Sat.	28	_			01324
Sun.	29	5	00	σφδ φ 2°35′S.	10004
		9	00	We New Moon. 1 otal Eclipse of \bigcirc , see p. 29.14 10	12034
mon.	30	12	E 4	Nioon in Perigee. Dist. from \bigoplus , 223,300 mi	20134
		12	94	0 0 U 0 3 20 N.	e de la composición d
Tuo	21	10	52	χ Stationary III N.A. $\sim O R$ O 5° 06' N	13094
i ue.	01	10	04		10024

The Sun—During June the sun's R.A. increases from 4h 33m to 6h 37m and its Decl. changes from 21° 56' N. to its maximum value of 23° 27' N. on the 22nd and then drops to 23° 10' N. at the end of the month. At 2h 4m G.C.T. on the 22nd of the month the sun is at the summer solstice and enters the sign Cancer, the first summer zodiacal sign. Summer commences at this time. The duration of daylight is now greatest and does not change appreciably for some days, see p. 15. For changes in the equation of time see p. 7. The increase in this quantity at the end of the month taken with the shortening of daylight causes the local mean time of sunset to appear almost constant at the end of June and the beginning of July.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R. A. 4h 49m, Decl. 22° 16' N. and transits at 11.22. It is too near the sun for observation during June.

Venus on the 15th is in R.A. 7h 52m, Decl. 22° 50' N. and transits at 14.22. Its apparent distance from the sun will continue to increase until the middle of September but, owing to the unfavourable lie of the ecliptic combined with the inclination of the planet's orbit, Venus will gradually become more poorly placed for observation in the evening sky as the year advances. It now sets about two hours after the sun a little north of the west point.

Mars on the 15th is in R.A. 6h 23m, Decl. 24° 16' N. and transits at 12.52. It is rapidly approaching the sun in the evening sky and not well placed for observation.

Jupiter on the 15th is in R.A. 22h 18m, Decl. 11° 35' S. and transits at 4.46. It is growing brighter in the morning sky and is well in view for the second half of the night in the constellation Aquarius. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54. Jupiter reaches a stationary point in its orbit and commences to retrograde on the 22nd.

Saturn on the 15th is in R.A. 1h 4m, Decl. 4° 15' N. and transits at 7.31. It is a yellow star of the first magnitude rising several hours before the sun in the morning sky. For the elongations, etc., of its satellites see p. 55.

Uranus on the 15th is in R.A. 2h 54m, Decl. 16° 16' N. and transits at 9.22.

Neptune on the 15th is in R.A. 11h 19m, Decl. 5° 37' N. and transits at 17.45.

Pluto-For information regarding this planet, see p. 28.

1.2.5.14

				JUNE	Config. of
•	-			Min. of Algol	Jupiter's Sat. 3h 00m
	d	h	m	h m	<u></u>
Wed.	1				30124
Thu.	2				32140
Fri.	3				d432O
Sat.	4	23	32	b First Quarter	40132
Sun.	5	12	06	σΨ € Ψ 6° 27′ Ν	d41O3
Mon.	6			•••••••••••••••••••••••••••••••••••••••	42013
Tue.	7				41032
Wed.	8			· · · · · · · · · · · · · · · · · · ·	43012
Thu.	9	17		ΠΨΟ	34210
Fri.	10			01 20	32401
Sat.	11				0342*
Sun.	12	18	47	(b) Full Moon 22 10	10234
Mon	13	10			20134
Tue	14	13		Moon in Apogee Dist from \oplus 252 400 mi	10234
Wed	15	14		\circ Greatest Hel Lat N 19.00	30124
weu.	10	10		4 Greatest Hei. Lat. Π	00124
Thu	16	10		¥ 111.00.	39104
Fri	17			•••••••••••••••••••••••••••••••••••••••	32014
Sat	10	9 9	05	$\sim 01 \text{ G}$ 01 6° 34′ S 15 50	02014
Sat.	10	22	00	040 4 0 0 5 5 10 50	44092
Mon	19	0		8 in Darihalian	49019
wion.	20	9 90	59		42013
T	01	40 01	04	\bigcirc Last Quarter.	4109*
Tue.	41	41	04	Of enters 69, Summer commences. Long. of (), 90 12 40	4103*
wea.	24	0	00	24 Stationary in K.A	43012
		10	30		
T 1	00	10		o o o Superior	40100
Thu.	23	•	<u></u>		43120
Fri.	24	9	29	0°0 0°1°18°50930	43201
Sat.	25			•••••••••••••••••••••••••••••••••••••••	4102*
Sun.	26			·····	d4O23
Mon.	27	16	10	W New Moon	20143
_		20		Moon in Perigee. Dist. from \oplus , 222,000 mi.	
Tue.	28	4	08	σ ⊈ Q	1034*
		6	30	$\sigma' \sigma' \mathbf{U} = \sigma' + 4^\circ 53' \mathrm{N}.$	
Wed.	29	3		σ 및 σ¹ 및 0° 45′ N	3 012 4
Thu.	30	8	39	$o' \not \subseteq \not \subseteq \qquad \varphi \qquad 7^{\circ} \ 13' \ \text{N} \dots \dots$	31204
		16		Greatest Hel. Lat. N.	

Explanation of symbols and abbreviations on p. 4, of time on p. $\boldsymbol{6}$

The Sun—During July the sun's R.A. increases from 6h 37m to 8h 42m and its Decl. changes from 23° 10' N. to 18° 15' N. The equation of time increases from +3m 28s to a maximum of +6m 22s on the 22nd and then drops to +6m 15s at the end of the month. On the 23rd the sun enters the sign Leo, the second summer sign of the zodiac. For changes in the length of the day see p. 16. On the 3rd the earth is in aphelion, the point of its orbit furthest from the sun. For our distance from the sun at this time see opposite page.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 9h 5m, Decl. 18° 00' N. and transits at 13.38. It is in the evening sky and on the 31st reaches its greatest elongation east, that is its greatest apparent distance from the sun in the western sky. It will, at this time be 12 degrees above the horizon at sunset and set about an hour and a quarter after the sun, the stellar magnitude being +0.6. This is not an especially favourable elongation but, given a clear horizon, it should be possible to see the planet for the last week in July.

Venus on the 15th is in R.A. 10h 14m, Decl. 12° 33' N. and transits at 14.45. It is a brilliant white star in the western evening sky, setting two hours after the sun.

Mars on the 15th is in R.A. 7h 48m, Decl. 22° 12' N. and transits at 12.18. It is in conjunction with the sun on the 24th and too near that body for observation during July.

Jupiter on the 15th is in R.A. 22h 15m, Decl. 12° 0' S. and transits at 2.45. It is approaching opposition with the sun and is in view for the major part of the night, rising shortly after sunset. It has brightened to magnitude -2.3. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 1h 10m, Decl. 4° 43' N. and transits at 5.39. It is in quadrature on the 10th and rises over 5 hours before the sun. For the elongations, etc., of its satellites see p. 55.

Uranus on the 15th is in R.A. 2h 59m, Decl. 16° 37' N. and transits at 7.29.

Neptune on the 15th is in R.A. 11h 21m, Decl. 5° 25' N. and transits at 15.49.

				JULY		Config. of
				75th Meridian Civil Time	fin. of .lgol	Jupiter's Sat. 2h 15m
1	d	h	m	ł	m	
Fri.	1			· · · · · · · · · · · · · · · · · · ·		32014
Sat.	2	19	27			1024*
		23		\oplus in Aphelion. Dist. from \odot , 94,452,000 mi		
Sun.	3				00 (01234
Mon.	4	8	47	First Quarter		2043*
Tue.	5) 40	21043
Wed.	6					43012
Thu.	7					d4310
Fri.	8			· · · · · · · · · · · · · · · · · · ·	7 30	43201
Sat.	9					41302
Sun.	10	10		$\Box \flat \odot \dots \dots$		40123
Mon.	11	16		Moon in Apogee. Dist. from \oplus , 252,500 mi14	£ 20	42103
Tue.	12	10	04	Full Moon		d42O3
Wed.	13					43012
Thu.	14				l 10	31024
Fri.	15					32014
Sat.	16	2	04	σ′ 2↓ € 2↓ 6° 33′ S		13024
Sun.	17				3 00	01324
Mon.	18					21034
Tue.	19	18	39	$\sigma \flat \mathbb{Q}$ \flat 5° 50′ S		20134
Wed.	20	7	19	C Last Quarter	1 50	dO124
Thu.	21	19	39	ර ී € ී 1° 02′ S		31024
Fri.	22			•••••		32401
Sat.	23				40	43102
Sun.	24	3		ይ in የን		40312
		14		୪ ମି⊙.		
Mon.	25				2 30	42103
Tue.	26	6		Moon in Perigee. Dist. from \oplus , 222,500 mi		42013
		22	54	Wew Moon.		
		23	57	ଟଟି ଐ ଟି 5° 59′ N.		
Wed.	27			•••••••••••••••••••••••••••••••••••••••		4032*
Thu.	28	23	57	σ ų ℚ ų 4° 24′ N19) 20	43102
Fri.	29					34201
Sat.	30	3	36	σ ≥ (Q 5° 43′ N		310**
		5	18	$\sigma' \Psi \mathbb{C}$ Ψ 6° 03' N.		
Sun.	31	2		$\sigma' \heartsuit \Psi$ \diamondsuit $0^{\circ} 26' S16$	5 10	O3142
		12		§ Greatest elongation E., 27° 15'.		
		21		b Stationary in R.A.		

The Sun—During August the sun's R.A. increases from 8h 42m to 10h 38m and its Decl. decreases from $18^{\circ} 15'$ N. to $8^{\circ} 37'$ N. The equation of time decreases from +6m 15s to +0m 16s, see p. 7. The sun enters the sign Virgo, the third summer zodiacal sign, on the 23rd. For changes in the length of the day see p. 17.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 10h 49m, Decl. 3° 14' N. and transits at 13.14. During the first week in August it may be just glimpsed in the western sky shortly after sunset. For the remainder of the month it is too near the sun for observation.

Venus on the 15th is in R.A. 12h 21m, Decl. 2° 37' S. and transits at 14.50. It is increasing slightly in brightness as it approaches greatest elongation but, owing to its rapid southward motion, is steadily slipping back into the twilight sky. It is only about 17 degrees above the south-west horizon at sunset and sets an hour and a half after the sun.

Mars on the 15th is in R.A. 9h 10m, Decl. 17° 29' N. and transits at 11.39. It is faint and too near the sun to be well observed during the month.

Jupiter on the 15th is in R.A. 22h 3m, Decl. 13° 16' S. and transits at 0.31. It is in opposition with the sun on the 21st and throughout August is in view all night appearing as a bright yellow star of magnitude -2.4. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 1h 10m, Decl. 4° 36' N. and transits at 3.37. It is at a stationary point in its orbit on the 1st and commences to retrograde at this time. Saturn is well in view for the second half of the night. For the elongations, etc., of its satellites see p. 55.

Uranus on the 15th is in R.A. 3h 2m, Decl. 16° 47' N. and transits at 5.29.

Neptune on the 15th is in R.A. 11h 24m, Decl. 5° 3' N. and transits at 13.50.

				AUGUST		Config. of
				75th Meridian Civil Time	lin. of lgol	Jupiter's Sat. 1h 00m
	d	h	m	h	m	
Mon.	1			••••••••••••••••••		12034
Tue.	2	21	00	First Quarter		20134
Wed.	3	9		 ジ in Aphelion12	50	10324
Thu.	4					d3O24
Fri.	5					32014
Sat.	6				40	31204
Sun.	7	22		Moon in Apogee. Dist. from \oplus , 252,100 mi		O412*
Mon.	8					d14O3
Tue.	9				30	42013
Wed.	10	15		ዩ in የን		41023
•		21				
Thu.	11	0	57	Full Moon		43012
Fri.	12	2	08	of 2↓ € 24 6° 33′ S	20	4320*
Sat.	13	15		§ Stationary in R.A		43210
Sun.	14					4012*
Mon.	15				10	d4103
Tue.	16	0	03	σ þ C þ 5° 43′ S		20413
Wed.	17				00	10234
Thu.	18	2	49	ර ී € ී 0° 45′ S		30124
		15	30	C Last Quarter.		
Fri.	19			••••		32104
Sat.	20	19		$\phi^{\circ} 2 \odot$ Dist. from \oplus , 373,000,000 mi17	50	32104
Sun.	21			•••••••••••••••		30124
Mon.	22					10234
Tue.	23	12		Moon in Perigee. Dist. from \oplus , 224,700 mi14	40	20143
		17		Greatest Hel. Lat. S.		
		23		Stationary in R.A.		
Wed.	24	16	46	oʻ o ⁷ € o ⁷ 6° 31′ N		10423
Thu.	25	6	17	• New Moon		43012
		14	51	σ [′] ^β ^𝔅 ^𝔅 ^𝔅 ^𝔅 ^𝔅 ^𝔅 ^𝔅 ^𝔅		
Fri.	26	16	47	$\sigma' \Psi \blacksquare \qquad \Psi \qquad 5^{\circ} 52' \text{ N} \dots $	20	43210
Sat.	27			•••••		d432O
Sun.	28	4				43012
		18	22	σ'♀ € ♀ 1°03′N.		
Mon.	29				10	41023
Tue.	30			·····		42013
Wed.	31					4103*

THE SKY FOR SEPTEMBER, 1938

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During September the sun's R.A. increases from 10h 38m to 12h 26m and its Decl. decreases from 8° 37' N. to 2° 50' S. The equation of time decreases from +0m 16s to -9m 59s. For changes in the length of the day see p. 18. On the 23rd the sun is at the autumnal equinox and crosses the equator going south. It enters Libra, the first autumn sign of the zodiac, at this time and autumn commences. Day and night are approximately equal all over the world (see p. 18).

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 10h 23m, Decl. 10° 50' N. and transits at 10.51. Greatest elongation west of the sun takes place on the 13th and the two weeks centred about this date provide the best opportunity of the year for observing Mercury in the morning sky. The planet will rise an hour and a half before the sun and will be 18 degrees above the eastern horizon at sunrise.

Venus on the 15th is in R.A. 14h 17m, Decl. 17° 4' S. and transits at 14.43. It is at greatest elongation east of the sun on the 11th but is poorly placed for observation because of its southern position. It is 12 degrees above the horizon at sunset and sets an hour and a half after the sun.

Mars on the 15th is in R.A. 10h 27m, Decl. 10° 57' N. and transits at 10.53. It is in the morning sky but not well placed for observation, being a star of the second magnitude rising a little over an hour and a half before the sun.

Jupiter on the 15th is in R.A. 21h 48m, Decl. 14° 35' S. and transits at 22.10. It is a bright star of magnitude -2.4, visible between Aquarius and Capricornus for most of the night. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 1h 4m, Decl. 3° 55' N. and transits at 1.30. Its magnitude has now brightened to +0.5 and it rises shortly after sunset, being in view for the remainder of the night. For the elongations, etc., of its satellites see p. 55.

Uranus on the 15th is in R.A. 3h 1m, Decl. 16° 44' N. and transits at 3.26.

Neptune on the 15th is in R.A. 11h 28m, Decl. 4° 37' N. and transits at 11.52.

				SEPTEMBER			Config.
				75th Meridian Civil Time	Mi of Alf	n. f gol	Jupiter's Sat. 23h 15m
	d	h	m		h	m	
Thu.	1	12	28	First Quarter	. 05	00	31204
Fri.	2	16		o ⁷ Greatest Hel. Lat. N			32014
Sat.	3			••••••			3024*
Sun.	4	12		Moon in Apogee. Dist. from \oplus , 251,600 mi	.01	50	10324
		15		♂₽♂ ₽ 3°32′S.			
Mon.	5	22		§ Stationary in R.A			20134
Tue.	6			•••••••••••••••••••••••••••••••••••••••	. 22	40	12034
Wed.	7			• • • • • • • • • • • • • • • • • • • •	•		O3124
Thu.	8	2	03	σ21 C 24 6° 37′ S			d3104
Fri.	9	15	08	Tull Moon	. 19	30	32401
Sat.	10	22		Q Greatest elongation E., 46° 19'	•		43102
Sun.	11	18		⊈ in Ω			d4O32
Mon.	12	3	22	σ¢ € b 5° 45′ S	. 16	20	42013
Tue.	13	16		g Greatest elongation W., 17° 54'			41203
Wed.	14	3		9 in Aphelion			40312
		4		ďΨ⊙			
		7	48	ഗ്ര് (റ്റ്റ് റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്			
Thu.	15	•			. 13	10	d 4310
Fri.	16	9		g in Perihelion			34201
		10		ດ 8 ດ [™] 8 0° 10′ S.			
		22	12	Last Ouarter.			
Sat.	17			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-		3102*
Sun.	18			· · · · · · · · · · · · · · · · · · ·	. 10	00	0124*
Mon.	19			· · · · · · · · · · · · · · · · · · ·			2034*
Tue.	20	7		Moon in Perigee. Dist. from \oplus . 227.800 mi			21034
Wed.	21	-			.06	50	01324
Thu.	22	8	31	ഗ്∂് ഗ് 6° 22′ N			31024
		19	02	αθ (6° 46' Ν.			
Fri.	23	4	16	άΨά Ψ 5° 47′ N			32014
		12	00	\odot enters \simeq Autumn comm. Long. of \odot 180°.			
		15	34	New Moon.			
Sat.	24		•-		03	30	3104*
Sun	25			•••••••••••••••••••••••••••••••••••••••		00	0142*
Mon	26	0		άθΨ 8 0° 50′ N			4203*
	20	15		8 Greatest Hel Lat N	•		
Tue	27	3	58	$\alpha Q = Q = \frac{1}{25'} S$	00	20	42103
Wed	28	0	00			-0	40132
Thu	20			•••••••••••••••••••••••••••••••••••••••	21	10	43109
Fri	30			•••••••••••••••••••••••••••••••••••••••		10	43201
T. I.I.	90				•		10201

The Sun—During October the sun's R.A. increases from 12h 26m to 14h 22m and its Decl. changes from 2° 50' S. to 14° 9' S. On the 24th the sun enters the sign Scorpio, the second autumnal sign of the zodiac. The equation of time decreases from -9m 59s to -16m 19s during the month. For changes in the length of the day see p. 19.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 13h 30m, Decl. 8° 50' S. and transits at 12.00. It is too near the sun for observation during October.

Venus on the 15th is in R.A. 15h 49m, Decl. 25° 52' S. and transits at 14.16. It is at its position of greatest brilliance on the 16th at which time the planet has a magnitude -4.3. It is very poorly placed for observation, however, as it is only 6 degrees above the south-west horizon at sunset and sets just a little over 30 minutes after the sun. It reaches a stationary point in its orbit on the 30th and commences to retrograde, that is to move westward among the stars, at this time.

Mars on the 15th is in R.A. 11h 38m, Decl. 3° 39' N. and transits at 10.06. It is slowly increasing its apparent distance from the sun in the morning sky but is not yet well placed for observation.

Jupiter on the 15th is in R.A. 21h 41m, Decl. 15° 9' S. and transits at 20.05. It is gradually moving out of the morning sky and sets 5 hours before sunrise on the 15th. Jupiter ceases its retrograde motion and commences to move eastward again on the 19th. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 0h 56m, Decl. 3° 1' N. and transits at 23.20. It is in opposition to the sun on the 8th and is visible all night during October, appearing as a yellow star of magnitude +0.4. For the elongations, etc., of its satellites see p. 55.

Uranus on the 15th is in R.A. 2h 58m, Decl. 16° 29' N. and transits at 1.25.

Neptune on the 15th is in R.A. 11h 32m, Decl. 4° 12' N. and transits at 9.58.

				OCTOBER	Config.
				Min. 75th Meridian Civil Time of Algol	Jupiter's Sat. 21h 30m
	d	h	m	h n	1
Sat.	1	6	45	First Quarter	43120
Sun.	2	6		Moon in Apogee. Dist. from \oplus , 251,200 mi18 00) 43012
Mon.	3			·····	41203
Tue.	4				20143
Wed.	5	5	32	$\sigma' 2 \mathbb{Q}$ 24 6° 43′ S	0234*
Thu.	6	12		Q Greatest Hel. Lat. S	13024
Fri.	7			·····	32014
Sat.	8	8		$o^{\circ} \mathfrak{b} \odot$ Dist. from \oplus , 781,000,000 mi11 40) 31204
		21		σ^{7} in Aphelion.	
Sun.	9	4	37	🕲 Full Moon	30124
		7	05	σ þ @ þ 5° 55′ S.	
Mon.	10	6		$\sigma \notin \odot$ Superior	d1034
Tue.	11	12	41	ර ී € ී 0° 29′ S 08 30	20143
Wed.	12	4		ଟଟ™ ଟ 0° 05′ N	O423*
Thu.	13				41302
Fri.	14				43201
Sat.	15				43120
Sun.	16	0		Q Greatest Brilliancy	43012
		3		Moon in Perigee. Dist. from \oplus , 230,000 mi.	
		-4	24	Last Quarter.	
Mon.	17				41023
Tue.	18				42013
Wed.	19	6		24 Stationary in R.A	41023
Thu.	20	2		ይ in የያ	dd4 02
		14	06	$\sigma' \Psi $ Ψ 5° 48' N.	
		23	03	$d' d' $ $d' 5^{\circ} 33' N.$	
Fri.	21				3201*
Sat.	$\overline{22}$				32104
Sun.	23	3	42	New Moon	30124
~		21	35	7 8 6 8 0° $23'$ N.	
Mon	24			0 + · · · · · · · · · · · · · · · · · ·	10234
Tue	25	18	47	$a' \circ a = 2$ 7° 34' S 16 30	20134
Wed	26	10			1034*
Thu	27			•••••••••••••••••••••••••••••••••••••••	01324
Fri	28			13 20	3204*
Sat	20				32140
Siin	30	2		Moon in Apogee Dist from A 251 300 mi	43012
Sull.	00	8		8 in Aphelion	10010
		16		\circ Stationary in R A	
Mon	31	- 9	45	$\mathbf{\tilde{a}} \text{First Outper} \qquad 10.10$	4102*
	01	4	τJ		1102

The Sun—During November the sun's R.A. increases from 14h 22m to 16h 26m, and its Decl. decreases from 14° 9' S. to 21° 40' S. On the 22nd the sun enters the sign Sagittarius, the third autumnal sign of the zodiac. The equation of time decreases from -16m 19s to a minimum value of -16m 22s on the 3rd and then increases to -11m 16s at the end of the month (see p. 7). For changes in the length of the day see p. 20. There is a partial eclipse of the sun on November 21, visible on the Pacific Coast just at sunset. For details see p. 29.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. There is a total eclipse of the moon on November 8, the ending visible over most of North America. For details see p. 29.

Mercury on the 15th is in R.A. 16h 38m, Decl. 24° 32' S. and transits at 13.06. It reaches greatest elongation east of the sun in the evening sky on the 25th but will not be very favourably situated for observation. It will be about 7 degrees above the south-west horizon at sunset, setting under an hour after the sun.

Venus on the 15th is in R.A. 15h 49m, Decl. 24° 18' S. and transits at 12.11. It is in inferior conjunction with the sun on the 20th and enters the morning sky at this time. Throughout the month it is too near the sun to be well observed.

Mars on the 15th is in R.A. 12h 50m, Decl. 4° 7' S. and transits at 9.15. It rises several hours before the sun almost due east and is a red star of magnitude +1.9.

Jupiter on the 15th is in R.A. 21h 45m, Decl. 14° 42' S. and transits at 18.08. It is in quadrature with the sun on the 16th, its magnitude having dropped to -2.0. It appears just to the east of the meridian at sunset. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 0h 48m, Decl. 2° 16' N. and transits at 21.10. It is in view practically all night, setting shortly before sunrise. For the elongations, etc., of its satellites see p. 55.

Uranus on the 15th is in R.A. 2h 53m, Decl. 16° 8' N. and transits at 23.14.

Neptune on the 15th is in R.A. 11h 36m, Decl. 3° 52' N. and transits at 8.00.

				NOVEMBER		Config.
				Min	.]	Jupiter's
				75th Meridian Civil Time Algo	ol :	20h 15m
	d	h	m	h	m	
Tue.	1	14	07	σ′24 € 24 6° 45′ S		42013
Wed.	2					41203
Thu.	3				00	40132
Fri.	4					43210
Sat.	5	12	50	♂ þ ℂ þ 6° 04′ S		d342O
Sun.	6				50	34012
Mon.	7	17	23	Full Moon		1024*
				Total Eclipse of Moon, see p. 29		
		19	21	ଟ ଛ ପ୍ରି 0° 34′ S.		
Tue.	8	14		δβΩ β 3°15 ⁷ Ν		20134
		16		$\circ \circ \odot$ Dist. from \oplus , 218,000,000 mi.		
Wed.	9				ł0	12034
Thu.	10	23		Moon in Perigee. Dist. from \oplus , 227,600 mi		01324
Fri.	11				30	d3104
Sat.	12			••••••		d3204
Sun.	13					3024*
Mon.	14	11	20	C Last Quarter	20	13042
Tue.	15					24013
Wed.	16	13		$\Box 2 \odot \ldots$		41203
		21	33			
Thu.	17)0	40123
Fri.	18	12	38	ଟଟି© ଟେ 4°09′ N		41302
Sat.	19	16		8 Greatest Hel. Lat. S		43201
Sun.	20	1		$\sigma \heartsuit \odot$ Inferior	50	430**
Mon.	21			Partial Eclipse of Sun, see p. 29		43102
		12	29	♂♀ € ♀ 3° 26′ S.		
		19	05	Wew Moon.		
Tue.	22					42013
Wed.	23	16	18	σ' ξ C ξ 5° 30′ S08 4	10	2103*
Thu.	24					01243
Fri.	25	6		\emptyset Greatest elongation E., 21° 51′		d1024
Sat.	26	22		Moon in Apogee. Dist. from \oplus , 251,900 mi05 3	30	32014
Sun.	27			·····		3104*
Mon.	28					d3O24
Tue.	29	3	12	$\sigma' 2 \mathbb{Q}$ 24 6° 38′ S 02 2	20	20134
		22	59	First Quarter.		
Wed.	30					21043

The Sun—During December the sun's R.A. increases from 16h 26m to 18h 42m and its Decl. changes from 21° 40' S. to its extreme southerly value of 23° 27' S. on the 22nd and then rises to 23° 6' S. at the end of the month. At 12h 14m (G.C.T.) on the 22nd the sun enters Capricornus, the first winter sign of the zodiac. The sun is at the winter solstice at this time and winter commences. The length of daylight in the northern hemisphere is at a minimum and changes very slightly for several days (see p. 21). The equation of time changes from -11m 16s at the beginning of the month to +3m 6s at the end (see p. 7).

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 17h 21m, Decl. 21° 11' S. and transits at 11.42. It will be too near the sun for observation during December.

Venus on the 15th is in R.A. 15h 13m, Decl. 15° 15' S. and transits at 9.39. It is separating from the sun in the morning sky and by the end of the month is well placed for observation. It is at greatest brilliance on the 26th at which time it rises three and a half hours before the sun and is 26 degrees above the southern horizon at sunrise. It appears as a brilliant white star of magnitude -4.4. It should be possible to follow it on into the daylight at this time.

Mars on the 15th is in R.A. 14h 0m, Decl. 11° 10' S. and transits at 8.27. It rises a little over four hours before the sun and is 32 degrees above the southern horizon at sunrise. It is brightening very slowly but is still of the second magnitude.

Jupiter on the 15th is in R.A. 22h 0m, Decl. 13° 22' S. and transits at 16.25. It is visible as a bright yellow star in the south-western sky for the first half of the night. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 0h 45m, Decl. 2° 4' N. and transits at 19.09. It is at a stationary point in its orbit on the 15th and sets 6 hours before sunrise, being well in view as a first magnitude star for the first half of the night. For the elongations, etc., of its satellites see p. 55.

Uranus on the 15th is in R.A. 2h 48m, Decl. 15° 49' N. and transits at 21.12.

Neptune on the 15th is in R.A. 11h 37m, Decl. 3° 43' N. and transits at 6.03.

				DECEMBER			Config.
				75th Meridian Civil Time	Mi o Al	in. f gol	Jupiter's Sat. 19h 15m
	d	h	m		h	m	
Thu.	1	19		♀ in 段	23	10	O4123
Fri.	2	20	39	$\sigma \flat \mathbb{G}$ \flat $6^{\circ} 02' S$			41032
Sat.	3			····			43201
Sun.	4	12		§ Stationary in R.A	20	00	43120
Mon.	5	3	59	σ΄ δ € δ 0° 39′ S			43012
Tue.	6			•••••			4203*
Wed.	7	5	22	Full Moon	16	50	42103
Thu.	8	17		§ in Q			40123
		20		Moon in Perigee. Dist. from \oplus , 224,200 mi.			
Fri.	9	8		QStationary in R.A			41032
Sat.	10				13	40	32041
Sun.	11						31204
Mon.	12			· · · · · · · · · · · · · · · · · · ·			30124
Tue.	13	8		§ in Perihelion	10	20	d104*
		90	17	A Last Quarter			
Wad	14	20 2	26	\sim 111 σ 111 5° 42' N			91094
weu.	14	0 5	90	$\nabla \Psi = \Psi = 5.45$ N			21004
Τι	15	16		b Stationary in P A			01924
I nu.	10	17					01204
F:	16	11		$\Box \Psi \bigcirc .$	7	10	10394
Set	17	1	57	$\sqrt{2}$ ($\sqrt{2}$ 9° 91/ N	,	10	22014
Sat.	10	11	01	$\sim 0 \text{cm}$ 0 2 21 N			210014
Sun. Mon	10	11	04	$0 \neq \psi \neq 2 \neq 0 $ N	м	00	24012
T.m	19	0	94	~8 / C 8 0° 22' N	94	00	41202
Tue.	20	12	04				41002
Thu	41 99	10	14	• New Mooll	'n	50	402**
Thu.	44 92	15	14	B Createst Hel Let N	0	90	403
FII. Sat	20	10		9 Greatest Hei, Lat. N)1	10	49201
Sat.	24	14		Σ Stationary in K.A		40	42001
Sun	25	Ťя		Moon in Apogee. Dist. from \oplus , 252,400 in.			13210
Mon	20	n		O Createst Brillioner			24012
wion.	20	11		⁴ Greatest Drinnancy			04012
		10	00	φ Stationary III N.A.			
Tue	97	19	09	$0 4 \sqrt{2} 0 22 3.$	10	20	1200*
Tue.	41 28			•••••••••••••••••••••••••••••••••••••••	10	90	20124
Thu	20 20	17	52	D First Ouerter			024**
т пи. Г.:	20	11	30	\mathbf{J} The Quarter \mathbf{A}	15	20	10924
ГП. Сан	00 91	9	90	и 0 44 5	ιJ	20	20014
Sat.	91			•••••••••••••••••••••••••••••••••••••••			32014

PHENOMENA OF JUPITER'S SATELLITES, 1938

E-eclipse, O-occultation, T-transit, S-shadow, D-disappearance, R-reappearance, I-ingress, e-egress. The Roman numerals denote the satellites. 75th Meridian Civil Time. (For other times see p. 6).

-															
		JANU	AR	Y				_		JULY	C	on.			
d	h m Sa	t. Phe	n.				d	h m	Sat.	Phen.	d 20	h 23	m 12	Sat.	Phen. Te
9 100	iter being n	v O earthe	Su	in, pher	iome	na of	9	$02 \ 50 \ 04 \ 12$	ΪÌΙ	ED	$\frac{20}{21}$	0 3	17	IÎ	SĬ
the	Satellites of	Jupite	er a	re not g	given	from	11	02 39	I	ED	$\frac{22}{23}$	01	17 45	IV	OR
Jan	uary 12 to N	larch 2	27.				12		Î	ŤÎ	$\tilde{26}$	03	36	Ţ	SI
		APF	<u>ur</u>		<u> </u>	Dham		02 05	I	Se Ta	27	04	14 56	Ť	ED
d 2	h m Sat. 1	Phen. Se	17	n m = 03 49	I Sat.	ED	13	00 20	Î	OR		02	02	ÎΠ	SI
7	04 32 III	OD	1 8	04 01	II	OR		$01 \ 13 \\ 04 \ 03$		Te ED		03	$\frac{51}{32}$	1 III	
9	04 17 11 04 45 I	Se	25	04 33 04 14	Î	ΤΪ	14	00 40	Îİ	SI		22	05	I	SI
14	04 12 III	ED	26	03 46	I	OR -		$\begin{array}{c} 02 & 28 \\ 03 & 32 \end{array}$	H H	TI Se	28	22 00	40 22	I	Se
16	04 00 11	511					15	23 27	ĨĨ	OR		00	57	I	Te
		MA	Y				19	$01 \ 42 \ 02 \ 29$	I		29	22	$11'_{13}$	iv	ED
d	h m Sat.	Phen.	18	h m 03 09	Sat.	Phen. SI		03 59	Ī	Se	30	00	05	II	ED
4	02 55 I	Te	10	03 46	ÎI	SI		22 02 23 01	I	ED		03	23	iv	ÖD
7	04 04 II 03 33 IV	Te	19 20	04 03 03 51	1 TT	ER	20	01 10	III	TI		04	01	II	OR
10	04 00 I	ĔĎ	20	03 54	ÎÎ	OR		$01 \ 37 \ 02 \ 05$	I	OR	31	$\frac{21}{22}$	04	ΪΪ	Se
11	02 34 I	TI	24 26	$\begin{array}{c} 02 & 30 \\ 02 & 17 \end{array}$	10	ER ED		$22 \ 28$	I	Se		23	03	II	<u>Te</u>
	03 53 II	ŤĬ	$\overline{27}$	01 47	Ĩ	Se									
16	04 02 II 01 58 IV	Se TI		03 07 04 12	1 III	ED				AUG	USI				
10	01 00 11		29	01 19	II	Te	d	h m	Sat.	Phen.	d	h	m	Sat.	Phen.
			31	03 04	111		3	02 50	Ĩ	ED	10	22	14	IV	OR
		JUI	١E				4	23 59	I		18	03	37 47	I	SI
d	h m Sat.	Phen.	d	h m 02 03	Sat.	Phen. SI	-	02 16	Ĩ	Se	10	03	52	Į	TI
3	01 24 I	SI	18	00 51	III	OR		02 41 21 19	I	ED	19	03	29	Ī	OR
	02 43 I	TI		$\begin{array}{c} 01 & 17 \\ 02 & 27 \end{array}$	IV	ED SI	5	$\overline{00}$ $\overline{01}$	Ī	OR		22	16	I	SI
	03 40 I	Se	19	00 53	Î	ΤI		20 45 21 07	I	Se Te	20	00	34	Í.	Se
4	02 19 I	OR		01 56	I	Se	6	02 41	ÎI	ED	-0	00	35	Į	Te
Э	01 02 11 02 11	Se		03 33	ÎI	sĭ	7	$ \begin{array}{c} 01 & 13 \\ 21 & 48 \end{array} $	111	SI	21	21 04	55 15	III	OD D
-	03 53 II	Te	20 21	00 28	I	OR		22 29	II	ŤĨ	22	02	58	II	TI
•	03 26 III	ΤΪ	24^{-1}	23 50	ÎÎI	ĔŔ	8	00 40	II	Se Te	23	21	02	ii	
10	03 18 I	SI	$\frac{25}{26}$	01 00	III	OD SI	10	04 45	Ţ	ED	24	00	02	II	ER
11	00 33 I	ED	20	02 42	Î	ŤÎ	11	01 53 02 08	I			01	04	IV	SI
19	04 10 I 00 56 U	OR	27	03 49	IV	OR		04 10	I	Se		21	12	III	Te
14	01 18 I	Ťe	2.	02 18	Ĩ	ŎŔ		$ \begin{array}{r} 04 & 25 \\ 23 & 14 \end{array} $	i	ED	26	$\tilde{0}2$	55	Î	OD
	03 34 II	TI	28	23 25	1 I	Te ED	12	01 45	Į	OR	27	00	01	I	TI
14	00 43 II	OR	30	$00 \ \overline{32}$	ÎĪ	Te		20 21 20 34	Î	ŤI		02	18	İ	Te
		IU	LY					22 39	I	Se		02 21	28 21	I	Se
d	h m Sat.	Phen.	d	h m	Sat.	Phen.	13	$22 31 \\ 20 11$	İ	OR		23	50	Î	ĔŔ
2	00 12 III	ED	5	$\begin{array}{c} 00 & 12 \\ 00 & 17 \end{array}$	I	Se	14	00 15	III	ED	28	20 20	44 57	I	Te
3	03 27 I	SI		01 12	I	Te	15	00 25	Î	SI	30	23	16	ÎI	ŐĎ
4	00 44 I	ED	.7	03 03	II	ED		00 43	II	TI	31	02 20	39 58		ER TI
	22 56 I	TI	1	00 56	II	Se		$03 10 \\ 03 33$	II	Te	1	22	06	iII	si

							-
		SEPTE	CM B	ER		NOVEMBER	
d	h m Sa	at. Phen.	d	h m Sat.	Phen.	d h m Sat Phen d h m Sat Phen	-
	01 40 1	III Se	15	22 52 11	ΤĬ	2 20 46 II OD 20 56 I EF	έ.
	21 09 1	II Te	16	00 09 II	SI	4 18 23 II SI 14 18 07 I S	e r
3	01 45 1	I Se	17	21 11 II	ER	20 56 I OD 18 18 28 III S	Í
Ŭ	02 06 1	I SI	1	22 21 IV	OD	21 10 II Se 20 57 II T	í
4	23 05 I	I OD	18	02 35 I		$\begin{bmatrix} 5 & 18 & 06 & 1 & TI & 21 & 54 & 111 & Si \\ 5 & 10 & 25 & I & SI & 10 & 21 & 57 & I & T \end{bmatrix}$	ř
4	20 11 1			23 55 111	ĒŔ	20 23 I Te 20 19 14 I OI	5
	20 34 1	I SI	19	00 25 I	SI	21 42 I Se 20 56 II EF	ζ T
	22 29 1 22 52 I	l Te Se		01 59 1 02 42 I	Se	22 58 IV OD 18 43 I T	e
5	20 13 1	E E Ř		21 02 1	OD	7 19 08 III OD 20 03 I S	3
7	01 31 1 00 15 1		20	00 03 I	ER	22 43 III OR 23 21 54 IV OF	6
0	02 07 1	III SI		20 26 I	Te	18 21 II TI 27 18 00 II OI	Ĵ.
	20 35 1	II TI	00	21 11 I	Se	20 59 II SI 21 11 I OI) T
	21 33 1 23 25 1	II SI II Te	23	19 16 II	OD	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ĺ
9	00 23 I	I Se		23 49 II	ĔR	12 20 01 I TI 20 41 I T	5
	20 09 I	V Te	25	20 55 III		21 21 I SI 21 59 I S 22 18 I To 20 18 15 II S	3
	01 03 I	V Se	20	18 53 II	Se	13 18 17 II ER 19 15 I EF	ε.
11	00 50 I	DO DD		19 15 IV	Se		-
	19 54 1 21 56 I		27	22 48 1 01 58 I	ER		
	22 29 I	<u>s</u> i		19 56 I	TI	DECEMBER	
12	00 14 1	l Te		20 49 1 22 13 1	SI Te		-
	19 16 I	i od		23 06 I	Se	$\begin{array}{c} d \\ 2 \\ 20 \\ 08 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	
	22 08 I	ER	28	20 27 I	ER	21 16 III TI 20 20 I S	
						$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	į
		OCTO	OBE	R	-	21 38 I SI 20 20 02 III OL	>
d	h m Sa 21 38 J	at. Phen.	13	h m Sat.	Phen. Se	6 17 38 1 OD 21 00 11 1 18 05 U SI 21 18 50 I T	i
3	00 25 Î	ÎI ÖD	10	22 17 III	ŠĬ	18 23 II Te 19 59 I S	Ĺ
	18 41 I	I SI	14	18 46 I	ER	20 09 III ER 22 19 30 1 EF	•
	21 29 I	I Se	11	23 53 11	si	21 10 I ER 24 18 03 III S	2
4	00 36 I	OD	18	00 21 II	Te	7 18 24 I Se 27 18 18 IV EL	2
	21 44 1 22 44 I		19	21 01 11 22 43 I	OD	13 18 17 11 11 29 18 05 1 OL 19 18 III OR 18 27 II OL	j.
	23 01 I	V ED	20	19 52 I	ΤĪ	19 36 I OD 30 17 38 I T	3
5	00 01 I	Te		21 05 I	SI	20 41 II SI 18 40 1 S 20 44 III ED 31 17 57 II S	3
	19 03 I	OD		21 21 111 22 09 1	Te	21 05 II Te 17 59 III Te	é
	22 22 I	ER	0.1	23 21 I	Se	14 18 03 I SI 18 43 III S	1
6	18 15 1 18 28 I	II SI Te	21	20 41 1 21 49 IV	ER		
	19 30 I	Se	24	20 01 111	ER		
•	21 45 I	II Se	96	23 59 II	TI	From April until August Jupiter's satel	-
10	19 06 I	I TI	20	23 40 II	ER	lites I, II, III, IV, are eclipsed on the west	5
	21 17 I	I SI	27	21 44 I	TI	side of the planet, and from September until December on the east side. The disappear	-
11	21 55 1 00 05 1	I Te I Se	28	23 01 1 00 01 1	SI Te	ance of satellites I and II is visible from	1 1
11	23 34 I	Î TÎ	20	18 34 II	Se	March until August, and the reappearance	;
		CT		19 03 I	OD	December. Both disappearance and reap	
12	00 40 I			00 20 T			2
12	00 40 I 18 23 I 20 52 I	I ER	29	22 36 I 18 29 J	Te	pearance of satellites III and IV are visible	
12	00 40 I 18 23 I 20 52 I 21 58 I	I ER OD V TI	29	22 36 I 18 29 I 19 25 IV	Te Te	from April until July and from September until December Note that satallite IV is	T'
12 13	00 40 I 18 23 I 20 52 I 21 58 I 00 17 I	I ER OD V TI ER	29	22 36 I 18 29 I 19 25 IV 19 46 I 18 48 JU	Te Te Se	from April until July and from September until December. Note that satellite IV is eclipsed during 1938.	r' 3
12 13	00 40 I 18 23 I 20 52 I 21 58 I 00 17 I 19 09 I 20 18 I	I ER OD V TI ER SI Te	29 31	22 36 I 18 29 I 19 25 IV 19 46 I 18 48 III 20 32 III	Te Te Se OR ED	from April until July and from September until December. Note that satellite IV is eclipsed during 1938.	r' 3

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

Planet	Mean Distance from Sun (a)		Period	Eccen- tri-	In- clina-	Long. of	Long. of Peri-	Long. of
	⊕ = 1	millions of miles	(P)	city (e)	tion (i)	Node (လူ)	helion (π)	Planet
					0	0	0	•
Mercury	.387	36.0	88.0days	.206	7.0	47.6	76.5	96.3
Venus	.723	67.2	224.7	.007	3.4	76.1	130.7	259.3
Earth	1.000	92.9	365.3	.017			101.9	99.5
Mars	1.524	141.5	687.0	.093	1.9	49.1	334.9	7.3
Jupiter	5.203	483.3	11.86yrs.	.048	1.3	99.8	13.3	311.8
Saturn	9.54	886.	29.46	.056	2.5	113.1	91.8	11.5
Uranus	19.19	1783.	84.0	.047	0.8	73.7	169.7	46.7
Neptune	30.07	2793.	164.8	.009	1.8	131.1	44.1	168.6
Pluto	39.46	3666.	247.7	.249	17.1	109.5	223.4	148.0
1				1	100 C			

ORBITAL ELEMENTS (Jan. 1, 0^h, 1938)

PHYSICAL ELEMENTS

						Mean		Ma	gni-
		Mean				Sur-		tud	e at
		Dia-	Mass	Density	Axial	face	Albedo	Opp	posi-
Object	Symbol	meter		water	Rotation	Grav-		tio	n or
						ity		Elo	nga-
		miles	$\oplus = 1$	=1		$\oplus = 1$	Bond's	ti	on
Sun	0	864,000	332,000	1.4	24 ^d .7(equa	27.9		_	26.7
					torial)				
Moon	Œ	2,160	.0123	3.3	$27^{d} 7.7^{h}$.16	.07	-	12.6
Mercury	ĝ	3,010	.056	3.8	88 ^d	.27	.07	ĺ	$0\pm$
Venus	Ŷ	7,580	.82	4.9	30 ^d ?	.85	. 59	-	$4\pm$
Earth	Ð	7,918	1.00	5.5	23 ^h 56 ^m	1.00	.29		
Mars	d	4,220	.108	4.0	24 ^h 37 ^m	.38	.15		$2\pm$
Jupiter	24	87,000	318.	1.3	$9^{h}50^{m}\pm$	2.6	. 56?	-	$2\pm$
Saturn	Þ	72,000	95.	.7	$10^{h}15^{m}\pm$	1.2	.63?		$0\pm$
Uranus	8	31,000	14.6	1.3	$10^{h}.8 \pm$.9	. 63?	+	5.7
Neptune	Ψ	33,000	17.2	1.3	16 ^h ?	1.0	.73?	+	7.6
Pluto	P	4,000?	<.1					+	14

SATELLITES OF THE SOLAR SYSTEM

£					
Name	STELLAR MAGNITUDE.	Mean Distance in Miles	Sidereal Period	DISCOVERER	Date
			a. n. m. s.		

THE EARTH

The Moon... |-12.6| 238,840 |27 6 43 11|

MARS

1.	Phobos	14	5,850		7	39	15	Asaph	Hall	Aug.	17.	1877
2.	Deimos	13	14,650	1	6	17	54	Asaph	Hall	Aug.	11,	1877

JUPITER

5. 1. 2. 3. 4. 6. 7.	(Nameless). Io Europa Ganymede. Callisto (Nameless). (Nameless).	$ \begin{array}{r} 13 \\ 6\frac{1}{2} \\ 6\frac{1}{2} \\ 6 \\ 7 \\ 14 \\ 16 \\ 16 \\ \end{array} $	$ \begin{array}{c}112,500\\261,000\\415,000\\664,000\\1,167,000\\7,372,000\\7,567,900\\\end{array}$	1 3 7 16	11 18 13 16 66	57 27 13 42 32 00 c 67 c	23 33 42 33 11 1.	Barnard Galileo Galileo Galileo Perrine Perrine	Sept Jan. Jan. Jan. Jan. Dec. Jan.	7, 7, 8, 7, 7, 7,	1892 1610 1610 1610 1610 1904 1905
8.	(Nameless).	17	15,600,000		789) d.		Melotte	Jan.		1908
9.	(Nameless).	19	18,900,000		3 v	ears		Nicholson	July	,	1914
				SA	TU	RN					
1.	Mimas	15	117,000		22	37	6	W. Herschel	July	18.	1789
2.	Enceladus.	14	157,000	1	8	53	7	W. Herschel	Aug	29.	1789
3.	Tethys	11	186.000	1	21	18	26	J. D. Cassini	Mar	21	1684
4.	Dione	11	238,000	$\overline{2}$	17	41	9	J. D. Cassini	Mar	21	1684
5.	Rhea.	10	332,000	4	12	$\overline{25}$	12	J D Cassini	Dec	23'	1672
6	Titan	9	771 000	15	22	41	23	Huvgens	Mar	25	1655
7	Hyperion	16	934,000	21	6	30	27	G P Bond	Sont	16	1848
8	Iapetus	11	2 225 000	79	7	54	17	J D Cassini	Oct	25	1671
á	Phoebe	17	8,000,000		546	\$ 5	a'l	W H Pickering	000	100,	1071
10	Themis	17		20	2010	24	u.	W H Dielering		1000) {
10.	I nemis	11 1	900,000	20	20	24	0	w.n.rickering	1	1905	,
				UR	AN	US					
1	Ariel	15	120.000	2	12	20	21	Lassell	Oct	24	1851

1.	Triton	13	221,500	5	21	2	44	Lassell		Oct.	10,	1846
]	NEF	PTU	NE	;					
4.	Oberon	14	365,000	13	11	7	6	W. Hers	chel	Jan.	11,	1787
3.	Titania	13	273,000	8	16	56	29	W. Hers	chel	Jan	11,	1787
2.	Umbriel	16	167,000	4	3	27	37	Lassell.		Oct	24,	1851
1.	Allei	10	120,000	4	14	49	41	Lassen.		Oct.	24,	1991

METEORS OR SHOOTING STARS By Peter M. Millman

Meteors are small fragmentary particles of iron or stone, the debris of space, which, on entering the earth's atmosphere at high velocity, ignite and are in general completely vaporized. On a clear moonless night a single observer should see on the average about 7 meteors per hour during the first six months of the year and approximately twice this number during the second half of the year. The above figures are averages over the whole night, however, and it should be noted that meteors are considerably more numerous during the second half of the night at which time the observer is on the preceding hemisphere of the earth in its journey around the sun.

In addition to the so-called sporadic meteors mentioned above there are wellmarked groups of meteors which travel in elliptical orbits about the sun and appear at certain seasons of the year. The meteors of any one group, or shower, move along parallel paths and hence, owing to the laws of perspective, seem to radiate from a point in the sky known as the radiant. The shower is usually named after the constellation in which the radiant is located. Prof. C. P. Olivier, president of the American Meteor Society, has listed the chief meteoric showers of the year as follows:

Shower	Duration in days	Date of maximum (evening date)	Hourly number of all meteors on this date (for one observer)
Quadrantids	$ \begin{array}{r} 4 \\ 4 \\ 8 \\ 3 \\ 25 \\ 14 \\ 7 \\ 14 \\ \end{array} $	Jan. 2	28
Lyrids		Apr. 21	7
Eta Aquarids		May 4	7
Petsa Aquarids		July 28	27
Perseids		Aug. 11	69
Orionids		Oct. 19	21
Leonids		Nov. 15	21
Geminids		Dec. 12	23

The Most Important	Meteoric Showers	of the	Ycar
--------------------	------------------	--------	------

In addition to the above dates there are three other periods at which good displays have appeared in certain years. Large number of meteors appeared on June 28, 1916; Oct. 9, 1933; and on Nov. 20 during the latter part of the nineteenth century. These dates should be carefully watched because of the possibility of a reappearance of these showers.

Of recent years the study of meteors has become increasingly important both because of its cosmic significance and because of its close association with studies of the upper atmosphere. The amateur who does not possess a telescope can render more real assistance in this field than in any other. In particular, all observations of very bright meteors or fireballs should be reported immediately in full to an observatory where such objects are being studied. Maps and instructions for meteor observations may be secured from the writer at the Dunlap Observatory, Richmond Hill, Ont.

Important records of meteors may also be made photographically by anyone possessing a camera of speed F 6.3 or better. The Perseids and the Geminids are the best subjects for meteor photography. For more complete details see Amateur Telescope Making, Advanced, p. 544, or The JOURNAL of the Royal Astronomical Society of Canada, Vol. 31, p. 295, 1937.

LUNAR OCCULTATIONS

Prepared by J. F. HEARD

When the moon passes between the observer and a star that star is said to be occulted by the moon and the phenomenon is known as a lunar occultation. The passage of the star behind the east limb of the moon is called the immersion and its appearance from behind the west limb the emersion. As in the case of eclipses, the times of immersion and emersion and the duration of the occultation are different for different places on the earth's surface. The table given below, adapted from the 1938 Nautical Almanac, gives the times of immersion or emersion or both for occultations of stars brighter than magnitude 5.0 visible at Toronto and at Montreal at night. Occultations of stars fainter than magnitude 4.5 are excluded for 24 hours before and after Full Moon. Emersions at the bright limb of the moon are given only in the case of stars brighter than magnitude 3.5, and immersions at the bright limb only in the case of stars brighter than magnitude 4.5; so that most of the phenomena listed take place at the dark limb. The terms a and b are for determining corrections to the times of the phenomena for stations within 300 miles of Toronto or Montreal. Thus if λ_o , ϕ_o , be the longitude and latitude of the standard station and λ , ϕ , the longitude and latitude of the neighbouring station then for the neighbouring station we have-

E.S.T. of phenomenon = E.S.T. of phenomenon at the standard station + $a(\lambda - \lambda_0) + b(\phi - \phi_0)$

where $\lambda - \lambda_0$ and $\phi - \phi_0$ are expressed in degrees. The quantity P in the table is the position angle of the point of contact on the moon's disc reckoned from the north point towards the east.

	1			Ι	Age	Toronto				Montreal			
Date		Star	Mag.	or E*	ot Moon	on E.S.T.		b	Р	E.S.T.	a	b	Р
Jan. 13 Feb. 9 Mar. 10 " 23 Apr. 18 " 20 July 10 Aug. 14 Sept. 29 Oct. 12 " 30	55ωx28 μμμλξεεβ	Tau Tau Ori Oph Sgr Sgr Sgr Psc Oph Tau Tau Cap	$\begin{array}{c} 3.0\\ 3.0\\ 4.8\\ 4.7\\ 4.9\\ 4.6\\ 4.0\\ 4.0\\ 4.6\\ 4.5\\ 3.6\\ 3.6\\ 3.2\end{array}$	IEIIEEIEIEIEI	d 12.4 12.4 8.6 8.0 21.2 17.6 19.6 19.6 19.6 19.6 19.4 2 19.4 7.6	h m 22 20.2 23 24.8 0 53.3 0 39.0 4 47.9 4 13.1 2 05.4 3 19.4 22 31.2 3 25.6 19 40.1 23 10.4 23 35.0 18 56.3	$\begin{array}{c} & & \\ & & \\ & & \\ -1.7 \\ -1.9 \\ -0.2 \\ 0.0 \\ & \\ -1.8 \\ -1.9 \\ -2.0 \\ -1.2 \\ & \\ -1.2 \\ & \\ -1.0 \end{array}$	$\begin{array}{c} & & \\ & & \\ -1.6 \\ +0.7 \\ -1.1 \\ -1.7 \\ & \\ +1.9 \\ 0.0 \\ +1.1 \\ -0.6 \\ & \\ +1.5 \end{array}$	126 243 83 112 328 328 56 298 56 179 68 147 191 27	h m 22 27.1 23 35.6 0 52.4 0 36.0 4 54.7 4 21.2 2 19.7 3 30.4 22 44.6 3 32.2 19 45.2 23 19.2 23 40.8 18 04.1	$ \begin{array}{c} m \\ -1.6 \\ -1.6 \\ -0.1 \\ 0.0 \\ -1.9 \\ -1.9 \\ -1.9 \\ -1.0 \\ -1.$	$\begin{array}{c} & & \\ & & & \\ & & & \\ -1.3 \\ & & & \\ -0.9 \\ -1.5 \\ & & \\ -1.5 \\ & & \\ +1.8 \\ -0.4 \\ +0.8 \\ -0.8 \\ & & \\ -0.8 \\ & & \\ -1.0 \end{array}$	117 254 73 103 336 329 49 302 54 175 70 150 188 30
" 30 " 31	β	Cap Aqr	$3.2 \\ 4.5$	Ē	7.6	20 01.7 19 49.9	$-2.2 \\ -1.2$	-1.7 +1.1	287 37	20 09.8 19 58.0	-1.8 -1.1	+0.7	283 41
Dec. 28	3 λ	Psc .	4.6	1 1	7.3	19 34.8	-1.8	-1,1	90	19 42.4	-1.5	-1.3	90

LUNAR OCCULTATIONS VISIBLE AT TORONTO AND AT MONTREAL 1938

*Immersion or Emersion.

DOUBLE AND MULTIPLE STARS

By FRANK S. HOGG

A number of the stars which appear as single to the unaided eye may be separated into two or more components by field glasses or a small telescope. Such objects are spoken of as *double* or *multiple stars*. With larger telescopes pairs which are still closer together may be resolved, and it is found that, up to the limits of modern telescopes, over ten per cent. of all the stars down to the ninth magnitude are numbers of double stars.

The possibility of resolving a double star of any given separation depends on the diameter of the telescope objective. Dawes' simple formula for this relation is d''=4.5/A, where d is the separation, in seconds of arc, of a double star that can be just resolved, and A is the diameter of the objective in inches. Thus a one-inch telescope should resolve a double star with a distance of 4''.5 between its components, while a ten-inch telescope should resolve a pair 0''.45 apart. It should be noted that this applies only to stars of comparable brightness. If one star is markedly brighter than its companion, the glare from the brighter makes it impossible to separate stars as close as the formula indicates. This formula may be applied to the observation of double stars to test the quality of the seeing and telescope.

It is obvious that a star may appear double in one of two ways. If the components are at quite different distances from the observer, and merely appear close together in the sky the stars form an *optical* double. If, however, they are in the same region of space, and have common proper motion, or orbital motion about one another, they form a *physical* double. An examination of the probability of stars being situated sufficiently close together in the sky to appear as double shows immediately that almost all double stars must be physical rather than optical.

Double stars which show orbital motion are of great astrophysical importance, in that a careful determination of their elliptical orbits and parallaxes furnishes a measure of the gravitational attraction between the two components, and hence the mass of the system.

In the case of many unresolvable close doubles, the orbital motion may be determined by means of the spectroscope. In still other doubles, the observer is situated in the orbital plane of the binary, and the orbital motion is shown by the fluctuations in light due to the periodic eclipsing of the components. Such doubles are designated as *spectroscopic* binaries and *eclipsing* variables.

The accompanying table provides a list of double stars, selected on account of their brightness, suitability for small telescopes, or particular astrophysical interest. The data are taken chiefly from Aitken's New General Catalogue of Double Stars, and from the Yale Catalogue of Bright Stars. Successive columns give the star, its 1900 equatorial coordinates, the magnitudes and spectral classes of its components, their separation, in seconds of arc, and the approximate distance of the double star in light years. The last column gives, for binary stars of well determined orbits, the period in years, and the mean separation of the components in astronomical units. For stars sufficiently bright to show colour differences in the telescope used, the spectral classes furnish an indication of the colour. Thus O and B stars are bluish white, A and F white, G yellow, K orange and M stars reddish.

A good reference work in the historical, general, and mathematical study of double stars is Aitken's *The Binary Stars*.

REPRESENTATIVE DOUBLE STAR

Star	a 1900	δ	Mag. and Spect.	d	D	Remarks
$\begin{array}{ccc} \eta & \text{And} \\ \pi & \text{Cas} \\ a & \text{UMi} \\ \gamma & \text{Ari} \\ a & \text{Pis} \end{array}$	h m 00 31.5 00 43.0 01 22.6 01 48.1 01 56.9	\circ ' +33 10 +57 17 +88 46 +18 48 +02 17	4.4B3; 8.5 3.6F8; 7.2M0 var. F8; 8.8 4.8A0; 4.8A0 5.2A2; 4.3A2	$"36 \\ 8 \\ 19 \\ 8.3 \\ 2.4$	L.Y. 410 18 270 200 162	† 479y; 66AU Polaris ††
$\begin{array}{ll} \gamma & \text{And} \\ 6 & \text{Tri} \\ \eta & \text{Per} \\ 32 & \text{Eri} \\ \beta & \text{Ori} \end{array}$	$\begin{array}{ccccccc} 01 & 57.8 \\ 02 & 06.6 \\ 02 & 43.4 \\ 03 & 49.3 \\ 05 & 09.7 \end{array}$	$+41 51 \\ +29 50 \\ +55 29 \\ -03 15 \\ -08 19$	2.3K0; 5.4A0; 6.6 5.4G4; 7.0F3 3.9K0; 8.5 5.0A; 6.3G5 0.3B8; 7.0	$10, 0.7 \\ 3.6 \\ 28 \\ 6.7 \\ 9$	$\begin{array}{c} 220 \\ 270 \\ 360 \\ 330 \\ 540 \end{array}$	5.5y; 2 3AU †† †
 θ Ori β Mon 12 Lyn a CMa δ Gem 	$\begin{array}{c} 05 & 30.4 \\ 06 & 24.0 \\ 06 & 37.4 \\ 06 & 40.7 \\ 07 & 14.2 \end{array}$	$\begin{array}{r} -05 \ 27 \\ -06 \ 58 \\ +59 \ 33 \\ -16 \ 35 \\ +22 \ 10 \end{array}$	5.4;6.8; 6.8; 7.9; O 4.7B2; 5.2; 5.6 5.3A2; 6.2; 7.4 -1.6A0; 8.5F 3.5F0; 8.0M0	$13, 17 \\7, 25 \\1.7, 8 \\11 \\6.8$	$ \begin{array}{r} 1100 \\ 330 \\ 190 \\ 9 \\ 58 \end{array} $	Trapezium † 50y; 20AU †
a Gem ζ Cnc γ Leo ξ UMa ι Leo	$\begin{array}{c} 07 & 28.2 \\ 08 & 06.5 \\ 10 & 14.5 \\ 11 & 12.9 \\ 11 & 18.7 \end{array}$	$+32 06 \\ +17 57 \\ +20 21 \\ +32 06 \\ +11 05$	$\begin{array}{c} 2.0A0; 2.8A0; 9M10\\ 5.6G0; 6.0; 6.2\\ 2.6K0; 3.8G5\\ 4.4G0; 4.9G0\\ 4.1F3; 6.8F3 \end{array}$	$4, 70 \\ 1, 5 \\ 4 \\ 2 \\ 2 \\ 2$	$ \begin{array}{c c} 44 \\ 71 \\ 140 \\ 23 \\ 57 \\ \end{array} $	340y; 79AU 60y; 21AU ††60y; 20AU
$\begin{array}{ccc} \gamma & \text{Vir} \\ a & \text{CVn} \\ \zeta & \text{UMa} \\ \pi & \text{Boo} \\ \epsilon & \text{Boo} \end{array}$	$\begin{array}{c} 12 & 36.6 \\ 12 & 51.4 \\ 13 & 19.9 \\ 14 & 36.0 \\ 14 & 40.6 \end{array}$	-00 54 +38 51 +55 27 +16 51 +27 30	3.6F0; 3.7F0 2.9A0; 5.4A0 2.4A2; 4.0A2 4.9A0; 5.1A0 2.7K0; 5.1A0	$egin{array}{c} 6 \\ 20 \\ 14 \\ 6 \\ 3 \end{array}$	$ \begin{array}{r} 38 \\ 130 \\ 76 \\ 200 \\ 180 \end{array} $	178y;42AU †† †† †
 ξ Boo δ Ser ξ Sco a Her δ Her 	$\begin{array}{c} 14 & 46.8 \\ 15 & 30.0 \\ 15 & 58.9 \\ 17 & 10.1 \\ 17 & 10.9 \end{array}$	+19 31 +10 52 -11 06 +14 30 +24 57	4.8G5; 6.7 4.2F0; 5.2F0 5.1F3; 4.8; 7G7 var.M5; 5.4G 3.2A0; 8.1G2	$3 \\ 4 \\ 1, 7 \\ 5 \\ 11$	$\begin{array}{c c} 21 \\ 130 \\ 86 \\ 470 \\ 91 \end{array}$	151y; 31AU 44.7y; 19AU † Optical
$\begin{array}{c} \epsilon & Lyr \\ \beta & Cyg \\ a & Cap \\ \gamma & Del \\ 61 & Cyg \end{array}$	$\begin{array}{c} 18 & 41.0 \\ 19 & 26.7 \\ 20 & 12.3 \\ 20 & 42.0 \\ 21 & 02.4 \end{array}$	+39 32 +27 45 -12 50 +15 46 +38 15	$\begin{array}{c} 5.1,\ 6.0A3;\ 5.1,\ 5.4A5\\ 3.2K0;\ 5.4B9\\ 3.8G5;\ 4.6G0\\ 4.5G5;\ 5.5F8\\ 5.6K5;\ 6.3K5\end{array}$	3, 2 34 376 10 23	230 220 96 11	Pairs 207'' † Optical
 β Cep ζ Agr δ Cep 8 Lac α Cas 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+70 07 \\ -00 32 \\ +57 54 \\ +39 07 \\ +55 12$	var.B1; 8.0A3 4.4F2; 4.6F1 var.G0; 7.5A0 5.8B3; 6.5B5 5.1B2; 7.2B3	14 3 41 22 3	410 120 650 650	t t

† or ††, one, or two of the components are themselves very close visual double or more generally, spectroscopic binaries.

VARIABLE STARS

By FRANK S. HOGG

Of the naked eyes stars visible to a northern observer, nearly a hundred are known to undergo variations in their light. With field glasses or a small telescope the number of variables is enormously increased. Thus there is no dearth of material with which an inquisitive amateur may satisfy himself as to the reality and nature of the fluctuations of the light of stars. Further this curiosity may be turned to real scientific value, in that the study of variable stars is one of the best organized and most fruitful fields of research for amateur observers. For years the professional astronomer has entrusted the visual observation of many of the most important variable stars entirely to amateurs, as organized into societies in England in 1890, America in 1911, and France in 1921. The American Association of Variable Star Observers has charts of the fields of 350 of these stars, and in general supervises the work of amateur observers. The Recorder is Mr. Leon Campbell, at the Harvard Observatory, Cambridge, Massachusetts. New observers are welcomed, and supplied with charts.

In our galaxy there are already known about 5,000 variables, while in globular clusters and outside systems there are some 3,000 more. Almost all those which have been sufficiently studied may be conveniently classified, according to their light variation into ten groups, by Ludendorff's classification. His classes, with their typical stars, are listed as follows:

- I. New or temporary stars: Nova Aquilae 3, 1918.
- II. Nova-like variables: T Pyxidis, RS Ophiuchi.
- III. R Coronae stars: R. Coronae Borealis. Usually at constant maximum, with occasional sharp minima.
- IV. U Geminorum stars: U Geminorum. Usually at constant minimum, with occasional sharp maxima.
- V. Mira stars: oCeti. Range of several magnitudes, fairly regular period of from 100 to 600 days.
- VI. μ Cephei stars: μ Cephei. Red stars with irregular variations of a few tenths of a magnitude.
- VII. RV Tauri stars: RV Tauri. Usually a secondary minimum occurs between successive primary minima.
- VIII. Long period Cepheids: δCephei. Regular periods of one to forty-five days. Range about 1.5 magnitudes.
 - IX. Short period Cepheids: RR Lyrae. Regular periods less than one day. Range about a magnitude.
 - X. Eclipsing stars: β Persei. Very regular periods. Variations due to covering of one star by companion.

|--|

N	lame	Design.	Max.	Min.	Sp.	Period	Туре	Date	Discoverer
η Ν ε υ	Aql Aql Aur Cep Cep	$194700\\184300\\045443\\222557\\005381$	$\begin{array}{r} 3.7 \\ -0.2 \\ 3.3 \\ 3.6 \\ 6.8 \end{array}$	$\begin{array}{r} 4.4 \\ 10.9 \\ 4.1 \\ 4.3 \\ 9.2 \end{array}$	G4 Q F5p G0 A0	7.17652 Irr. 9833. 5.36640 2.49293	VIII I X VIII X	$1784 \\1918 \\1821 \\1784 \\1880$	Pigott Bower Fritsch Goodricke W. Ceraski
ο RR R χ P	Cet ¹ Cet CrB Cyg Cyg	0214 <i>03</i> 012700 154428 194632 201437a	$2.0 \\ 8.4 \\ 5.8 \\ 4.2 \\ 3.5$	$10.1 \\ 9.0 \\ 13.8 \\ 14.0 \\ 6.0$	M5e F0 cG0e M7e B1qk	331.8 0.55304 Irr. 412.9 Irr.	V IX III V II	$1596 \\ 1906 \\ 1795 \\ 1686 \\ 1600$	Fabricius Oppolzer Pigott Kirch Blaeu
SS XX ζ η R	Cyg Cyg Gem Gem Gem	$\begin{array}{c} 213843\\ 200158\\ 065820\\ 060822\\ 070122a \end{array}$	$8.1 \\ 11.4 \\ 3.7 \\ 3.3 \\ 6.5$	$12.0 \\ 12.1 \\ 4.1 \\ 4.2 \\ 14.3$	Pec. A cG1 M2 Se	Irr. 0.13486 10.15353 235.58 370.1	IV IX VII V V	$1896 \\ 1904 \\ 1847 \\ 1865 \\ 1848$	Wells L. Ceraski Schmidt Schmidt Hind
U α R β	Gem Her Hya Leo Lyr	$\begin{array}{c} 074922 \\ 171014 \\ 132422 \\ 094211 \\ 184633 \end{array}$	$8.8 \\ 3.1 \\ 3.5 \\ 5.0 \\ 3.4$	$13.8 \\ 3.9 \\ 10.1 \\ 10.5 \\ 4.3$	Pec. M5 M7e M7e B5e	Irr. Irr. 414.7 310.3 12.90800	IV VI V X	$1855 \\ 1795 \\ 1670 \\ 1782 \\ 1784$	Hind W. Herschel Montanari Koch Goodricke
RR α U β ρ	Lyr Ori² Ori Per³ Per	$\begin{array}{c} 192242\\ 054907\\ 054920\\ 030140\\ 025838 \end{array}$	$7.2 \\ 0.2 \\ 5.4 \\ 2.3 \\ 3.3$	$\begin{array}{r} 8.0 \\ 1.2 \\ 12.2 \\ 3.5 \\ 4.1 \end{array}$	A5 M2 M7e B8 M4	0.56685 2070.Irr. 376.9 2.86731 Irr.	IX VI V X VI	$1901 \\ 1840 \\ 1885 \\ 1669 \\ 1854$	Fleming J. Herschel Gore Montanari Schmidt
R R λ RV SU	Sge Sct Tau Tau Tau	$\begin{array}{c} 200916 \\ 1842 o_5 \\ 035512 \\ 044126 \\ 054319 \end{array}$	$8.6 \\ 4.5 \\ 3.8 \\ 9.4 \\ 9.5$	$10.4 \\ 9.0 \\ 4.1 \\ 12.5 \\ 15.4$	cG7 K5e B3 K0 G0e	70.84 141.5 3.95294 78.60 Irr.	VII VII X VII III	$1859 \\ 1795 \\ 1848 \\ 1905 \\ 1908$	Baxendell Pigott Baxendell L. Ceraski Cannon
a N N	UMi⁴ Her Lac	$\begin{array}{c} 012288 \\ 180445 \\ 221255 \end{array}$	$2.3 \\ 1.5 \\ 2.2$	$ \begin{array}{c} 2.4 \\ 14.0 \\ \end{array} $	cF7 Q Q	3.96858 Irr. Irr.	VIII I I	$1911 \\ 1934 \\ 1936$	Hertzsprung Prentice Peltier

¹O Cet (Mira); ²a Ori (Betelgeuse); ³B Per (Algol); ⁴a UMi (Polaris).

Most of the data in this Table are from Prager's 1936 Katalog und Ephemeriden Veranderlicher Sterne. The stars are arranged alphabetically in order of constellations. The second column, the Harvard designation, gives the 1900 position of the star. The first four figures of the designation give the hour and minute of right ascension, the last two the declination in degrees, italicised for stars south of the equator. Thus the position of the fourth star of the list, δ Cephei, is R.A. 22h 25m, Dec. +57, (222557). The remaining columns give the maximum and minimum magnitudes, spectral class, the period in days and decimals of a day, the classification on Ludendorff's system, and the discoverer and date. In the case of eclipsing stars, the spectrum is that of the brighter component.

THE DISTANCES OF THE STARS

The measurement of the distances of the stars is one of the most important problems in astronomy. Without such information it is impossible to form any idea as to the magnitude of our universe or the distribution of the various bodies in it.

The parallax of a star is the apparent change of position in the sky which the star would exhibit as one would pass from the sun to the earth at a time when the line joining earth to sun is at right angles to the line drawn to the star; or, more accurately, it is the angle subtended by the semi-major axis of the earth's orbit when viewed perpendicularly from the star. Knowing the parallax, the distance can be deduced at once.

For many years attempts were made to measure stellar parallaxes, but without success. The angle to be measured is so exceedingly small that it was lost in the unavoidable instrumental and other errors of observation. The first satisfactory results were obtained by Bessel, who in 1838, by means of a heliometer, succeeded in determining the parallax of 61 Cygni, a 6th magnitude star with a proper motion of 5" a year. On account of this large motion the star was thought to be comparatively near to us, and such proved to be the case. At about the same time Henderson, at the Cape of Good Hope, from meridian-circle observations, deduced the parallax of Alpha Centauri to be 0".75. For a long time this was considered to be the nearest of all the stars in the sky, but in 1913 Innes, director of the Union Observatory, Johannesburg, South Africa, discovered a small 11th mag. star, 2° 13' from Alpha Centauri, with a large proper motion and to which, from his measurements, he assigned a parallax of 0".78. Its brightness is only 1/20,000 that of Alpha Centauri. In 1916 Barnard discovered an 11th mag. star in Ophiuchus with a proper motion of 10" per year, the greatest on record, and its parallax is about 0".53. It is believed to be next to Alpha Centauri in distance from us.

The distances of the stars are so enormous that a very large unit has to be chosen to express them. The one generally used is the light-year, that is, the distance travelled by light in a year, or $186,000x60x24x365\frac{1}{2}$ miles. A star whose parallax is 1" is distant 3.26 light years; if the parallax is 0".1, the distance is 32.6 l.-y.; if the parallax is 0".27 the distance is $3.26 \div .27 = 12$ l.-y. In other words, the distance is inversely proportional to the parallax. In recent years the word *parsec* has been introduced to express the distances of the stars. A star whose distance is 1 parsec is such that its *par*-allax is 1 *sec*-ond. Thus 1 parsec is equivalent to 3.26 l.-y., 10 parsecs = 32.6 l.-y., etc.

In later times much attention has been given to the determination of parallaxes, chiefly by means of photography, and now several hundred are known with tolerable accuracy.

THE SUN'S NEIGHBOURS

By J. A. PEARCE

Through the kindness of Dr. Adriaan van Maanen, who has supplied the fundamental data, this table has been revised to contain all stars known to be nearer than five parsecs or 16.3 light-years. One star of the former table, has been discarded, and five new members have been added, making a total of forty stars in a space of 524 cubic parsecs. With the exceptions of Sirius, Procyon and Altair, all the stars are dwarfs; the list including the three white dwarfs, Sirius B, 40 Eridani B, and van Maanen's star. Forty-five per cent. of the stars are members of binary systems.

Star	(a(19	9UU)0		Sp_	μ	π	L.y.		Μ		L
	h	m	c	-			"					
Sun					G0		o o=		-26.7	4.8	1.	.0
Groom 34A	0	13	+43	27	M2	2.89	0 274	11.9	8.1	10.3	Ι.	0063
Groom 34B					M5	2.85	.271	12.1	10.7	12.9	Ι.	0006
van Maanen	0	44	+4	55	F3	3.01	.242	13.5	12.3	14.2		0002
τ Ceti	1	39	-16	28	G7	1.92	.292	11.2	3.6	5.9		.36
εEri	3	28	- 9	48	K1	0.96	.304	10.7	3.8	6.2		.28
40 Eri A	4	11	- 7	49	K0	4.08	.213	15.3	4.5	6.1		. 30
40 Eri B					A0	4.03	.213	15.3	9.7	11.3		.0025
40 Eri C					M6	4.03	.213	15.3	10.8	12.4	.	0009
Gould 5h 243	5	08	-44	59	M0	8.70	.264	12.3	9.2	11.3	Ι.	0025
aCMa A	6	41	-16	35	A2	1.32	.373	8.7	- 1.6	1.3	25.	.1
a CMa B					F0	1.32	.373	8.7	8.4	11.3	Ι.	0025
aCMi A	7	34	+ 5	29	F4	1.24	.303	10.8	0.5	2.9	5.	.8
aCMi B			••••			1.24	.303	10.8	12.5	14.9	Ι.	.00009
Groom 1618	10	05	+49	58	M0	1.45	.230	14.2	6.8	8.6	Ι.	.030
WB 10h 234	10	14	+20	22	M4e	0.49	.217	15.0	9.0	10.7	.	.0044
Wolf 359	10	52	+7	36	M6e	4.84	.413	7.9	13.5	16.6	Ι.	00002
Lal 21185	10	58	+36	38	M2	4.78	.381	8.6	7.6	10.5	.	.0052
Innes	11	12	-57	02		2.69	.339	9.6	(12.5)	13.2		.0004
aCen A	14	33	-60	25	G5	3.68	.758	4.3	0.3	4.7	1.	.10
aCen B					K1	3.68	.758	4.3	1.7	6.1	.	. 30
Prox. Cen	14	23	-62	15	M	3.85	.758	4.3	11.0	15.4	.	.00006
DM-12.4523.	16	25	-12	24	M5	1.24	.270	12.1	9.5	11.7	.	.0017
DM-46.11540	17	21	-46	- 1		1.06	.239	13.6	9.4	11.3	.	.0025
CD-44.11909.	17	30	-44			1.14	.215	15.2	(12.9)	12.6	.	.0008
AO 17415	17	37	+68	26	M4	1.33	.214	15.2	9.1	10.7	.	.0044
Barnard	17	53	+ 4	25	M5	10.30	.541	6.0	9.7	13.4	.	.0004
Bu 8798A	18	42	+59	29	M4	2.31	•290	11.2	9.2	11.5		.0021
Bu 8798B			• • • • •	•••	M5	2.31	-290	11.2	9.7	12.0		.0013
aAqu	19	46	+8	36	A2	0.66	$\cdot 207$	15.7	0.9	2.5	8	.3
61 Cyg A	21	02	+38	15	K8	5.27	.301	10.8	5.6	8.0		.052
61 Cyg B		•••	•••••	•••	M0	5.15	.301	10.8	6.3	8.7		.028
Lac 8760	21	11	-39	15	M1	3.53	.255	12.8	6.6	8.6		.030
€ Indi	21	56	-57	12	K8	4.70	.288	11.3	4.7	7.0	.	.13
Kruger 60A	22	24	+57	12	M3	0.87	.247	13.2	9.2	11.2	.	.0028
Kruger 60B			• • • •		M4	0.92	.247	13.2	10.8	12.8		.0006
BD + 43.4305	22	42	+43	49	M5e	0.86	.217	15.0	9.5	11.2	.	.0028
Lac 9352	22	59	-36	26	M2	6.90	.274	11.9	7.4	9.6	.	.012
Ross 248	23	36	+43		M6	1.82	.319	10.2	(13.8)	14.3		.0002
DM - 37.15492.	23	59	-37	51	M3	6.11	.217	15.0	8.3	10.0		.0083

Note.—Magnitudes in brackets are photographic, all others are visual. A colour index of +2.0 has been taken to compute the visual absolute magnitudes of these stars. Symbols: Sp, spectrum; μ , proper motion; π , parallax; L.-y., light-year; m, apparent magnitude; M, absolute magnitude; L, luminosity compared to the sun.

THE BRIGHTEST STARS

Their magnitudes, Types, Proper Motions, Distances and Radial Velocities

By W. E. HARPER

The accompanying table contains the principal facts regarding 257 stars brighter than apparent magnitude 3.51 which it is thought may be of interest to our amateur members. The various columns should be self-explanatory but some comments may be in order.

The first column gives the name of the star and if it is preceded by the sign || such means that the star is a visual double and the combined magnitude is entered in the fourth column. Besides the 44 thus indicated there are 12 others on the list with faint companions but for these it is not thought that there is any physical connection. In the case of the 13 stars variable in light this fourth column shows their maximum and minimum magnitudes. The 20 first magnitudes stars are set up in bold face type.

In the fifth column are given the types as revised at various observatories principally at our own, but omitting the s and n designations descriptive of the line character. The annual proper motion follows in the next column and these may not necessarily be correct to the third decimal place.

The parallaxes are taken from Schlesinger's Catalogue of Bright Stars, 1930. The distance is given also in light years in the eighth column as to the lay mind that seems a fitting unit. In only one case (α Cygni) was the parallax negative and it was entered as formerly as ".005. The absolute magnitudes in the ninth column are the magnitudes the stars would have if all were at a uniform distance of 32.6 light years ($\pi = 0$."1). At that distance the sun would appear as a star of magnitude 4.8.

The radial velocities in the last column have been taken from Vol. 18 of the Lick Publications. An asterisk * following the velocity means that such is variable. In these cases the velocity of the system, if known, is given; otherwise a mean velocity for the observations to date is set down.

Of the 257 stars or star systems here listed 144 are south and 113 north of the equator. This is to be expected from the fact that the northern half of the sky includes less of the Milky Way than the southern.

The number in each spectral class, apart from the one marked peculiar, is as follows: O, 3; B, 72; A, 55; F, 22; G, 43; K, 42 and M, 19. The B-stars are intrinsically luminous and appear in this list out of all proportion to their total number. The stars of Classes A and K are by far the most numerous but the revision of types throws many originally labelled K back into the G group.

From the last column we see that 92 velocities are starred, indicating that 36 per cent. of the bright stars, or at least one in every three, are binary in character. For visual binaries the proportion has usually been listed as one in nine. Our list shows one in six but it is only natural to expect that we would observe a higher proportion among the nearby stars, such as these are on the average.

• Other relationships can be established from the list if our amateur members care to study it.

			_						4	
Star	R.A. 1900	Decl. 1900		Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
a Andromedae β Cassiopeiae	hr 0	$n \circ 3 + 28 4 + 58 4 + 14$, 32 36 38	2.2 2.4 2.9	A1 F2 B2	.217 .561	.040 .071	81 46 326	0.2 1.7	km./sec. -13.0* +11.4 + 5.0*
β Hydri a Phoenicis δ Andromedae	22	0 -77 1 -42 4 +30	49 51 19	2.9 2.4 3.5	G0 G5 K3	2.243 .446 .167	.141 .045 .028	23 72 116	3.6 0.7	+22.8 +74.6* - 7.1*
a Cassiopeiae β Ceti $ \gamma$ Cassiopeiae	3	5 + 55 9 - 18 1 + 60	59 32 11	2.2 - 2.8 2.2 2.2 2.2	G8 G7 B0e	.062	.017 .040 .036	192 81 91		-3.8 +13.1 -6.8
$\begin{array}{l} \ \beta \ \text{Phoenicis} \\ \beta \ \text{Andromedae} \end{array}$	1	2 - 47 4 + 35	15 5	3.4 2.4	G4 M0	.042 .219	.021 .044	155 74	0.0	-1.2 + 0.1
δ Cassiopeiae α Ursae Minoris γ Phoenicis	1 2 2	9 + 59 3 + 88 4 - 43	43 46 50	2.8 2.1 3.4	A3 F7 M1	.306 .043 .222	.030 .012 .024	109 272 136	0.2 -2.3 0.3	+ 6.8 -17.4^* $+25.7^*$
a Eridani ϵ Cassiopeiae β Arietis		4 - 57 7 +63 9 +20	44 11 19	0.6 3.4 2.7	B9 B5 A3	.093 .043 .150	.045 .013 .066	72 251 49	-1.1 -1.0 1.8	$+19 - 8.1 - 0.6^*$
$\begin{vmatrix} \alpha & \text{Hydri} \\ \gamma & \text{Andromed} \\ \gamma & Andro$		$\begin{vmatrix} 6 & -62 \\ 8 & +41 \\ 2 & +32 \end{vmatrix}$	3 51	3.0 2.3	A7 K0	.256	.067 .015	49 217	$\begin{bmatrix} 2.2 \\ -1.0 \\ 0.2 \end{bmatrix}$	+7.0* -11.7
a Arietis β Trianguli o Ceti		2 + 22 4 + 34 4 - 3 4 - 40	31 26	2.2 3.1 1.7-9.6	A6 M6e	.242	.040 .027 .013	121 251	0.2 0.2 -2.7	$+10.4^{*}$ +59.8^{*}
a Ceti γ Persei ρ Persei	5	7 + 3 8 +53 9 +38	42 42 7 27	$ \begin{array}{c} 3.4 \\ 2.8 \\ 3.1 \\ 3.4 - 4 2 \end{array} $	M1 F9 M6	.071 .080 .012 .176	.022 .017 .017 .018	192 192 181	-0.1 -0.8 -0.3	+11.9 -25.7 $+1.0^{*}$ +28.2
β Persei a Persei	3	2 + 40 7 + 49	2. 34 30	2.1-3.2 1.9	B8 - F4	.011	.025	130 163	-0.9 -1.6	+ 5.7* - 2.4
δ Persei η Tauri ζ Persei	3 4 4	$ \begin{array}{r} 6 +47 \\ 1 +23 \\ 8 +31 \end{array} $	28 48 35	3.1 3.0 2.9	B5 B5p B1	.047 .053 .023	.015 .013 .006	217 251 543	-1.0 -1.5 -3.2	-10.0^{*} +10.3 +20.9
γ Hydri ε Persei γ Eridani	4 5 5	$9 - 74 \\ 1 + 39 \\ 3 - 13$	33 43 47	3.2 3.0 3.2	M3 B2 M0	.128 .041 .133	.012 .006 .021	272 543 155	-1.4 -3.2 -0.2	+16.0 - 6. * +61.7
λ Tauri α Reticuli	5 41	5 + 12 3 - 62	12 43	3.3-4.2 3.4	B3 G5	.015	.006 .022	543 148	-2.8	+13.0*

Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
	h m	0	'	1	"	"	1		km./sec.
a Ta uri	4 30	$+16\ 1$	8 1.1	K8	.205	.057	57	-0.1	+54.1
a Doradus	32	$-55\ 1$	5 3.5	A0p	.003				+25.6
π^3 Orionis	44	+ 6 4	7 3.3	F5	.474	.124	26	3.0	+24.6
ι Aurigae	50	+33	0 2.9	K4	.030	.021	155	-0.5	+17.6
e Aurigae	55	+43 4	13.4-4.1	F2	.015	.006	543	-2.8	- 4.1*
η Aurigae	50	+41	6 3.3	B3	.082	.012	272	-1.3	+ 7.8
Leporis	1	-22 3	0 3.3	K5	.074	.026	$1\bar{2}5$	0.4	+ 1.0
β Eridani	3	- 51	3 2.9	A1	.117	.052	63	1.5	- 7.
μ Leporis	8	-16 1	9 3.3	A0p	.053	.030	109	0.7	+27.7
a Aurigae	9	+455	4 0.2	G1	.439	.068	48	-0.6	+30.2*
$ \beta$ Orionis	10	- 81	9 0.3	B8p	.005	.006	543	-5.8	$+23.6^{*}$
$ \eta$ Orionis	19	-22	9 3.4	B0	.009	.007	466	-2.3	$+19.5^{*}$
γ Orionis	20	+ 6 1	6 1.7	B2	.019	.017	192	-2.2	+18.0
β Tauri	20	+28 3	1 1.8	B8	.180	.035	93	-0.5	+ 8.0
$oldsymbol{eta}$ Leporis	. 24	-205	0 3.0	G 2	.095	.021	155	-0.4	-13.5
δ Orionis	27	-02	2 2.4	B0	.006	.0 0 9	362	-2.8	$+19.9^{*}$
a Leporis	28	-175	4 2.7	F6	.006	.017	192	-1.2	+24.7
ι Orionis	31	- 55	9 2.9	08	.007	.007	466	-2.9	$+21.5^{*}$
e Orionis	31	- 11	6 1.8	B0	.004	.008	407	73	+25.8
ζ Tauri	32	+21	5 3.0	B3e	.028	.014	233	-1.3	$+16.4^{*}$
ζ Orionis	36	- 2	0 1.8	B0	.012	.008	407	-3.4	+18.0
a Columbae	36	-34	8 2.8	B8	.040	.022	148	-0.5	+34.6
κ Orionis	4 3	- 94	2 2.2	B0	.009	.013	251	-2.2	+20.1
β Columbae	47	-35 4	8 3.2	K0	.397	.019	172	-0.4	+89.4
a Orionis	50	+72	30.5-1.1	M2	.032	.012	272	-4.1	$+21.0^{*}$
β Aurigae	52	+44 5	6 2.1	A0p	.046	.029	112	-0.4	-18.1^{*}
θ Aurigae	5 3	+37 1	2 2.7	A1	. 106	.032	102	0.2	+28.6
η Geminorum	69	+22 3	23.2-4.2	M2	.062	.013	251	-1.2	+21.4*
μ Geminorum	17	+22 3	4 3.2	M3	.129	.016	204	-0.8	+54.8
β Canis Majoris	18	-17 5	4 2.0	B1	.003	.012	272	-2.6	+34.4*
a Carinae	22	-52 3	8 -0.9	F0	.022	.016	204	-4.8	+20.5
γ Geminorum	32	$+16\ 2$	9 1.9	A2	.066	.047	69	0.3	-11.3*
ν Puppis	35	-43	6 3.2	B8	.020	.025	130	0.2	+28.2*
ε Geminorum	38	+25 1	4 3.2	G9	.020	.010	326	-1.8	+ 9.9
ξ Geminorum	40	+13	0 3.4	F5	.230	.048	68	1.8	+25.1
a Canis Majoris	41	$-16\ 3$	5 - 1.6	A2	1.315	.375	9	1.3	- 7.5*
a Pictoris	47	-61 5	0 3.3	A5	.271				+20.9
			1						

Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
D i	h m	° /	n 0	Co	// 004	// 091	105	0.2	km./sec.
τ Puppis	0 47 55	-28 50	4.8 1.6	Gð B1	.094	.031	100 979	-3.0	± 30.4
Ceminorum	58	$\pm 20 43$	37-43	Gûn	.005	004	815	-3.3	+ 6.7*
o ² Can. Majoris	59	-23 41	3.1	B5p	.000	.007	466	-2.7	+48.6
		22 14	0.0	A 4	0.05	010	000		1.04.0*
δ Can. Majoris	7 4	-26 14	2.0	G4p	.005	.010	326	-2.9	$+34.3^{+}$
L ² Puppis	10	-44 29	3.4-0.2	Mbe	. 334				+33.0
π Puppis	14	-30 33	2.7	Kð Do	.012	.023	142	-0.4	+10.8
β Can. Minoris	22	+ 8 29	3.1	B8	.003	.024	130	0.0	+23.
σ Puppis	20	-43 0	3.3	MU	. 192	.027	121	0.4	+88.1
a ₂ Geminorum	28	+32 0	2.0	AZ	.201	.074	44	1.4	+ 0.0*
a Geminorum	28	+32 0	4.8	AU Ef	.209	.074	44	2.2	- 1.2
a Can. Minoris	34 20	+ 0 29	0.0	гэ Со	1.242	. 310	20	4.9	- 3.0
β Geminorum	39 45	+20 10	1.4	G9 121	.023	. 110	015	1.4	+ 0.0 + 9.7*
ξ Puppis	40	-24 51	0.0	KI	.007	.004	910	-3.5	+ 0.7
ζ Puppis	8 0	-39 43	2.3	08	.036			· · · · ·	-24.
ρ Puppis	3	-24 1	2.9	F6	.097	.016	204	-1.1	+46.6
γ Velorum	6	-47 3	2.2	OW9	.002			· · · · ·	+35.
e Carinae	20	-59 11	1.7	K0	. 032	.014	233	-2.5	+11.5
o Urs. Majoris	22	-61 3	3.5	G2	.166	.011	296	-1.3	+19.8
]∉ Hydrae	41	+ 6 47	3.5	F9	. 193	.024	136	0.4	+36.8*
δ Velorum	42	-54 20	2.0	A0	.093	.030	109	-0.6	+2.2
ζ Hydrae	50	+ 6 20	3.3	G7	.101	.016	204	-0.7	+22.6
ι Urs. Majoris	52	-48 26	3.1	A4	. 500	.070	47	2.3	+12.6
λ Velorum	94	-43 2	2.2	K4	.022	.018	181	-1.5	+18.4
β Carinae	12	-69 18	1,8	A0	. 192				- 5.
ι Carinae	14	-5851	2.2	F0	.023				+13.3
a Lyncis	15	+34 49	3.3	K8	.214	.023	142	0.1	+37.4
κ Velorum	19	-54 35	2.6	B3	.017	.015	217	-1.5	+21.7*
a Hydrae	23	- 8 14	2.2	K4	.036	.016	204	-1.8	- 4.4
θ Urs. Majoris	26	-52 8	3.3	F7	1.096	.060	54	2.2	+15.8
N Velorum	28	-56 36	3.0	K5	.041	.039	84	1.4	-13.9
€ Leonis	40	+24 14	3.1	G0	.045	.012	272	-1.4	+ 5.1
v Carinae	45	-64 36	3.1	F0	.019	••••			+13.6
a Leonis	10 3	$\pm 12 27$	13	B6	244	055	59	0.0	+26
o Carinae	14	-6050	3.4	K5	.045	.012	272	-1.2	+ 8.6
γ Leonis	14	+20 21	2.3	G8	.347	.024	136	-0.7	-36.8

Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
 μ Urs. Majoris θ Carinae η Carinae μ Velorum ν Hydrae β Urs. Majoris α Urs. Majoris ψ Urs. Majoris 	h m 10 16 39 41 42 45 56 58 11 4	$\begin{array}{c} \circ & \prime \\ +42 & 0 \\ -63 & 52 \\ -59 & 10 \\ -48 & 54 \\ -15 & 40 \\ +56 & 55 \\ +62 & 17 \\ +45 & 2 \end{array}$	$\begin{array}{r} 3.2\\ 3.0\\ 1.0-7.4\\ 2.8\\ 3.3\\ 2.4\\ 2.0\\ 3.2\end{array}$	K4 B0 Pec. G5 K3 A3 G5 K0	".082 .023 .007 .084 .214 .089 .137	" .033 .008028 .033 .043 .030 .044	99 407 116 99 76 109 74	$0.8 \\ -2.4 \\ 0.1 \\ 0.9 \\ 0.6 \\ -0.7 \\ 1.4$	$\begin{array}{r} \text{km./sec.} \\ -20.3 \\ +24. \\ * \\ -25.0 \\ + 6.9 \\ -10 \\ -12.1 \\ * \\ - 8.6 \\ - 3.6 \end{array}$
δ Leonis θ Leonis λ Centauri β Leonis γ Urs. Majoris δ Centauri	9 9 31 44 49	$\begin{array}{rrrr} +21 & 4 \\ +15 & 59 \\ -62 & 28 \\ +15 & 8 \\ +54 & 15 \\ & 50 & 10 \end{array}$	$ \begin{array}{c} 2.6 \\ 3.4 \\ 3.3 \\ 2.2 \\ 2.5 \\ 2.0 \\ 2.0 \\ 2.0 \\ 0.0 $	A2 A2 B9 A2 A0	.208 .103 .046 .507 .095	.072 .025 .022 .095 .041	45 130 148 34 79	1.9 0.4 0.0 2.1 0.6	-23.2 + 7.8 + 7.9 - 2.3 -11.1
ε Corvi δ Crucis δ Urs. Majoris γ Corvi a^1 Crucis a^2 Crucis $δ$ Corvi γ Crucis	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.9 3.2 3.1 3.4 2.8 1.6 2.1 3.1 5 1.5	K2 B3 A0 B8 B1 B3 A0 M4	.044 .063 .051 .113 .159 .048 .048 .249 .270	.018 .027 .044 .021 .015 .015 .030	131 121 74 155 217 217 109 	-0.8 -0.4 1.7 -0.6 -2.5 -2.0 0.5 \cdots	+ 9. + 4.9 +26.4 -12. - 4.2* + 0.3* + 8.7 +21.3
$\begin{array}{l} \beta \ \text{Corvi} \\ \textbf{a} \ \text{Muscae} \\ \gamma \ \text{Centauri} \\ \gamma \ \text{Virginis} \\ \beta \ \text{Muscae} \\ \beta \ \text{Crucis} \\ \boldsymbol{\epsilon} \ \text{Urs. Majoris} \\ \textbf{a} \ \text{Can. Venat.} \\ \boldsymbol{\epsilon} \ \text{Virginis} \end{array}$	29 31 36 36 40 42 50 51 57	$\begin{array}{r} -22 51 \\ -68 35 \\ -48 24 \\ -0 54 \\ -67 34 \\ -59 9 \\ +56 30 \\ +38 51 \\ +11 30 \end{array}$	2.8 2.9 2.4 2.9 3.3 1.5 1.7 2.8 3.0	G5 B5 A0 F0 B3 B1 A2 A1 G6	.061 .038 .200 .561 .041 .054 .117 .233 .270	.020 .012 .032 .085 .014 .011 .045 .025 .034	163 272 102 38 233 296 72 130 96	$ \begin{array}{c} -0.6 \\ -1.7 \\ -0.1 \\ 2.6 \\ -1.0 \\ -3.3 \\ 0.0 \\ -0.1 \\ 0.6 \\ \end{array} $	$\begin{array}{r} -7.7 \\ +18. \\ -7.5 \\ -19.6 \\ +42. \\ +20.0 \\ -11.9 \\ -3.6 \\ -14.0 \end{array}$
γ Hydrae ι Centauri ζ ¹ Urs. Majoris a Virginis ζ Virginis	13 13 15 20 20 30	$ \begin{array}{r} -22 & 39 \\ -36 & 11 \\ +55 & 27 \\ -10 & 38 \\ - & 0 & 5 \\ \end{array} $	$ \begin{array}{c} 3.3\\ 2.9\\ 2.4\\ 1.2\\ 3.4 \end{array} $	G7 A2 A2p B2 A2	.085 .351 .131 .051 .285	.017 .043 .017 .036	192 76 192 91		-5.4 + 0.1 - 9.9* + 1.6* -13.1
	1	1		1			1	1	· · · · · · · · · · · · · · · · · · ·
-----------------------------	-----------	--------------	-------------	---------------	----------------------	----------	----------------------------	-----------	---------------------------------------
Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Prope Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel
	h m	0 /		·	11	"	1		km /sec
e Contouri	12 24	- 52 57	26	B 9	010	012	951	1 1 0	
e Centauri m Ura Moioria	10 04		2.0	D2 D9	.040	.010	201	-1.9	+ 5.0
η OIS. Majoris	44	41 50	1.9	D0 D2-	.110	.013	201	-2.5	-10.9
μ Centauri	44	-41 09	0.0	Бое	.030			1	+12.0
(Centauri	49	-40 48	3.1	BS	.079	.010	326	-1.9	0.0*
η Bootis	50	+18 54	2.8	GI	.370	.100	33	2.8	-0.2^{*}
β Centauri	57	-59 53	0.9	B3	.039	.020	163	-2.6	$+12.0^{*}$
	14 1	00.10		170	100	000	0.1	1.0	1.07.0
π Hydrae	14 1	-20 12	3.5	KJ	.105	.036	91	-1.3	+27.2
0 Centauri		-35 53	2.3	G8	.748	.067	49	-1.4	+1.3
a Bootis	11	+19 42	0.2	KO	2.287	.085	38	-0.1	- 5.1
γ Boötis	28	+38 45	3.0	A3	.182	.058	56	1.8	-35.5
η Centauri	29	-41 43	2.6	B3e	.052	.016	204	-1.3	-0.2
a Centauri	33	$ -60 \ 25 $	0.1	G 0	3.682	.760	4	4.7	-22.2
a Circini	34	-64 32	3.4	F0	.312	.070	47	2.6	+7.4
a Lupi	35	-4658	2 .9	B2	.036	.009	362	-2.3	$+ 7.3^{*}$
€ Boötis	41	+27 30	2.7	G8	.045	.018	181	-1.0	+16.4
a² Librae	45	-15 38	2.9	F1	.129	.073	45	2.2	—10 . *
β Urs. Minoris	51	+74 34	2.2	K4	.028	.035	93	0.0	+16.9
β Lupi	52	-42 44	2.8	$\mathbf{B3}$.066	.012	272	-1.8	- 0.3*
κ Centauri	53	-41 42	3.4	B 2	.037	.009	362	-1.9	$+ 9.1^{*}$
σ Librae	58	-24 53	3.4	M4	.094	.024	136	0.3	- 4.3
ζ Lupi	15 5	-51 43	3.5	G5	.132	.017	192	-0.4	- 9.7
γT Australis	10	-68 19	3.1	A0	.064				0.
β Librae	12	- 9 1	2.7	B 8	.108	024	136	-0.4	-37. *
δ Lupi	15	-40.17	3.4	B3	032	010	326	-16	+16
γ Urs. Minoris	21	+72 11	3 1	A2	017	042	78	1 3	- 3.9*
1 Draconis	23	+59 19	3 5	K3	010	031	105	0.9	-11 1
lly Lupi	28	-40 50	3.0	B3	042	016	204	-1.0	11.1 1 6
a Cor Borealis	30	± 27 3	2 3	40	160	044	74	-1.0	+ 1.0*
a Serpentis	30	+ 6 44	2.0	K2	149	.015	79	1.0	+ 1.0
BT Australia	39	62 7	2.0	LO LO	.142	.040	14	1.0	+ 3.0
	40	-03 7	3.0	г0 102	.440	.090	00 070	2.8	- 0.3
π Scorph	33	-25 50	3.0	B3 D1	.042	.012	272	-1.0	-3.0^{*}
o Scorph	54	-22 20	2.5	BI	.042	.011	296	-2.3	-16. *
IIA Scorpii	16 0	10_20	20	D2	041	00=	659	1 4	0.9*
A Ophinahi		-19 52	4.0	D0 170	.041	.000	110	-1.4	- 9.3 [.]
• Ophiuchi	9	- 3 20	ა. პ	кð С0	.159	.029	112	0.4	-19.8
	13	- 4 2/	3.3	69 D1	.088	.030	109	0.7	-10.3
lla Scorph	15	-25 21	3.1	BI	.033	.007	466	-2.7	- 0.4*
η Draconis	23	+61 44	2.9	G5	062	.038	86	0.8	-14.3

Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
 a Scorpii β Herculis τ Scorpii ζ Ophiuchi ζ Herculis aT Australis ϵ Scorpii μ¹ Scorpii ζ Arae κ Ophiuchi 	h m 16 23 26 30 32 38 38 38 44 45 50 53	$\begin{array}{c} \circ & -26 & 12 \\ +21 & 42 \\ -28 & 1 \\ -10 & 22 \\ +31 & 47 \\ -68 & 51 \\ -34 & 7 \\ -37 & 53 \\ -55 & 50 \\ + & 9 & 32 \end{array}$	$1.2 \\ 2.8 \\ 2.9 \\ 2.7 \\ 3.0 \\ 1.9 \\ 2.4 \\ 3.1 \\ 3.1 \\ 3.4$	M1 G4 B1 G0 K5 G9 B3 K5 K3	".032 .104 .042 .024 .601 .034 .668 .032 .047 .296	".020 .021 .007 .009 .106 .030 .040 .012 .021 .037	163 155 466 362 31 109 81 272 155 88	$-2.3 \\ -0.6 \\ -2.9 \\ -2.5 \\ 3.1 \\ -0.7 \\ 0.4 \\ -1.5 \\ -0.3 \\ 1.3 $	km. sec. -3.2^* -25.8^* +0.6 $-19.^*$ -70.8^* -3.7 -2.5 * -6.0 -55.6
$ \begin{array}{l} \left \begin{array}{l} \eta \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \eta \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \varphi \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -15 & 36 \\ -43 & 6 \\ +65 & 50 \\ +14 & 30 \\ +24 & 57 \\ +36 & 55 \\ -24 & 54 \\ -55 & 26 \\ -37 & 13 \\ -49 & 48 \\ -37 & 2 \\ +52 & 23 \\ -42 & 56 \\ +12 & 38 \\ -38 & 58 \\ +4 & 37 \\ -40 & 5 \\ +27 & 47 \\ -37 & 1 \\ -9 & 46 \\ +51 & 30 \\ \end{array}$	$\begin{array}{c} 2.6\\ 3.4\\ 3.2\\ 3.1-3.9\\ 3.2\\ 3.4\\ 2.8\\ 2.8\\ 2.8\\ 3.0\\ 1.7\\ 3.0\\ 2.0\\ 2.1\\ 2.5\\ 2.9\\ 3.1\\ 3.5\\ 3.2\\ 3.5\\ 2.4\\ \end{array}$	A2 A7 B8 M7 A2 K3 B2 K1 B3 B3e B2 G0 F0 A0 B3 K2 F8 G5 K2 G7 K5	.094 .294 .023 .030 .164 .021 .030 .035 .040 .012 .010 .264 .032 .157 .004 .817 .068 .118 .026	.036 .069 .026 .007 .036 .022 .009 .017 .010 .017 .010 .017 .016 .008 .052 .011 .036 .007 .112 .028 .023 .028	91 47 125 466 91 148 362 192 326 192 204 407 63 296 91 466 29 116 142 116	$\begin{array}{c} 0.4\\ 2.6\\ 0.3\\ -2.7\\ 0.9\\ 0.1\\ -1.9\\ -1.0\\ -2.2\\ -0.9\\ -2.3\\ -2.5\\\\ 0.7\\ -2.3\\ 0.7\\ -2.6\\ 3.7\\ 0.5\\ 0.3\\ -0.3\\ -0.3\\ \end{array}$	$\begin{array}{c} -1.0\\ -28.4\\ -14.1\\ -32.5\\ -39.*\\ -25.7\\ -3.6\\ -0.4\\ +18.*\\ -2.2\\ 0.*\\ -20.1\\ +1.4\\ +15.*\\ -10.*\\ -11.9\\ -27.6\\ -16.1\\ +24.7\\ +12.4\\ -27.8\\ +22.8\\ -2$
η Sagittarii δ Sagittarii η Serpentis ε Sagittarii λ Sagittarii a Lyrae	18 11 15 16 18 22 34	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.2 2.8 3.4 2.0 2.9 0.1	M4 K4 G9 A0 K1 A1	.200 .223 .042 .898 .139 .197 .348	.032 .035 .060 .048 .123	102 93 54 68 26	$ \begin{array}{c} -1.1 \\ 0.7 \\ 0.6 \\ 2.3 \\ -1.4 \\ 0.6 \end{array} $	+ 0.5 -20.0 + 8.9 -10.8 -43.3 -13.8

Star	R.A. 1900		Decl. 1900			Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
φ Sagittarii β Lyrae σ Sagittarii γ Lyrae ζ Sagittarii	h 18 3 4	m 39 46 49 55 56	$^{\circ}$ +33 -26 +32 -30	, 15 25 33 1	3.4	3.3 1-4.: 2.1 3.3 2.7	B8 B2p B3 B9p A2	".053 .011 .081 .010 .026	" .018 .003 .018 .016 .036	181 1086 181 204 91	$ \begin{array}{c} -0.4 \\ -4.2 \\ -1.6 \\ -0.7 \\ 0.5 \end{array} $	km./sec. +21.5* -19.0* -10.7 -21.5* +22.1
 τ Sagittarii ζ Aquilae π Sagittarii δ Draconis δ Aquilae β Cygni γ Aquilae δ Cygni a Aquilae 	19	1 1 4 13 21 27 42 42 42 46	$ \begin{array}{r} -27 \\ +13 \\ -21 \\ +67 \\ +2 \\ +27 \\ +10 \\ +44 \\ +8 \end{array} $	49 43 11 29 55 45 22 53 36		3.4 3.0 3.0 3.2 3.4 3.2 3.4 3.2 3.4 3.2 3.4 3.2 3.4 3.2 3.4 3.2 3.3 3.0 3.0 3.0 3.0	K0 A0 F2 G8 A3 K0 K3 A1 A2	$\begin{array}{c} .265\\ .103\\ .041\\ .135\\ .267\\ .010\\ .018\\ .067\\ .659\end{array}$.043 .037 .022 .032 .057 .020 .023 .034 .200	$76\\88\\148\\102\\57\\163\\142\\96\\16$	1.60.9-0.30.82.20.3-0.40.62.4	$+45.4^{*}$ - 25. * - 9.8 +24.8 -32.3^{*} -23.9^{*} - 2.0 -20. -26.1
 θ Aquilae β Capricorni a Pavonis γ Cygni a Indi a Cygni ϵ Cygni 	20]] ; ; ;	6 15 18 19 31 38 42	-1 -15 -57 +39 -47 +44 +33	7 6 3 56 38 55 36		3.4 3.2 2.1 2.3 3.2 1.3 2.6	A0 F8 B3 F8 G2 A2p G7	$\begin{array}{c} .035\\ .042\\ .090\\ .006\\ .072\\ .004\\ .485\end{array}$.017 .017 .013 .007 .036 .005 .045	192 192 251 466 91 652 72	-0.5-0.6-2.3-3.41.0-5.20.9	$\begin{array}{r} -28.6^{*} \\ -19.0^{*} \\ +1.8^{*} \\ -7.6 \\ -1.1 \\ -6.3^{*} \\ -10.5^{*} \end{array}$
ζ Cygni a Cephei β Aquarii β Cephei ε Pegasi δ Capricorni γ Gruis	21 2 2 3 4 4	9 16 26 27 39 42 48	+29 +62 - 6 +70 + 9 -16 -37	49 10 1 25 35 50		3.4 2.6 3.1 3.3 2.5 3.0 3.2	G6 A2 G1 B1 K2 A3 B8	.061 .163 .020 .013 .028 .395 .108	.018 .078 .006 .008 .020 .095 .018	181 42 543 407 163 34 181	$-0.3 \\ 2.1 \\ -3.0 \\ -2.2 \\ -1.0 \\ 2.9 \\ -0.6$	$+16.9^{*} - 8. + 6.7 - 7.2^{*} + 5.2 - 6.4^{*} - 2.1$
a Aquarii a Gruis a Tucanae β Gruis η Pegasi a P Australis β Pegasi a Pegasi γ Cephei	22 1 3 5 5 23 3	1 2 12 37 38 52 59 59 59	$ \begin{array}{r} -0 \\ -47 \\ -60 \\ -47 \\ +29 \\ -30 \\ +27 \\ +14 \\ +77 \end{array} $	48 27 45 24 42 9 32 40 4		3.2 2.2 2.9 3.1 3.3 2.6 3.4	G0 B5 K5 G1 A3 M3 A0 K1	.018 .200 .085 .132 .039 .367 .235 .077 .167	.007 .028 .023 .015 .013 .122 .020 .034 .069	$\begin{array}{c} 466\\ 116\\ 142\\ 217\\ 251\\ 26\\ 163\\ 96\\ 47 \end{array}$	$-2.6 \\ -0.3 \\ -1.9 \\ -1.3 \\ 1.7 \\ -0.9 \\ 0.2 \\ 2.6$	$\begin{array}{r} + 7.6 \\ +11.8 \\ +42.2^* \\ + 1.6 \\ + 4.4^* \\ + 6.5 \\ + 8.6 \\ - 4. \\ \end{array}$

STAR CLUSTERS AND NEBULAE

Prepared by J. F. HEARD

The amateur who possesses a telescope will find great interest in the observation and identification of star clusters and nebulae. Such objects, of course, have been extensively catalogued and classified. The most frequently quoted catalogue is Dreyer's New General Catalogue (N.G.C.) containing 7,840 objects, extended by the Index Catalogue (I.C.) containing 5,386 more. The most interesting catalogue historically, however, and one which is still quoted for reference to the more conspicuous objects is Messier's Catalogue (M) which contains 103 objects. It was drawn up in 1781 by Charles Messier for his own convenience in identifying comets.

Messier's Catalogue as given below is adapted from a publication by Shapley and Davis (Pub. A.S.P., XXIX, 178, 1917). It includes the Messier number, the N.G.C. number, the 1900 position, the classification of the object and, under remarks, the name of the object (if any).

The classification is not that of Messier; it is the new classification based on modern knowledge of these objects. The clusters are classified as open clusters, which are loose irregular aggregates usually of a few scores of stars, or as globular clusters which are compact aggregates of upwards to hundreds of thousands of stars in spherical formation. The nebulae are classified as diffuse, planetary or spiral. The diffuse nebulae are great clouds of gas and "star-dust" rendered luminous by nearby stars and the planetaries are compact atmospheres of the same materials surrounding a single star. The spirals, on the other hand, are self-luminous and quite outside our stellar system and must be thought of as island universes or other galaxies like our own.

Messier	N.G.C.	R.A. (1900)	Dec. (1900)	Type of Object	Remarks
1	1952	$egin{array}{ccc} \mathrm{h} & \mathrm{m} \\ 5 & 28.5 \end{array}$	$^{\circ} +21 57$	Diffuse nebula	The Crab nebula in Taurus
2 3 4 5 6 7 8	$7089 \\ 5272 \\ 6121 \\ 5904 \\ 6405 \\ 6475 \\ 6523 \\$	$\begin{array}{c} 21 & 28.3 \\ 13 & 37.6 \\ 16 & 17.5 \\ 15 & 13.5 \\ 17 & 33.5 \\ 17 & 47.3 \\ 17 & 57.6 \end{array}$	$\begin{array}{r} -1 & 16 \\ +28 & 53 \\ -26 & 17 \\ + & 2 & 27 \\ -32 & 9 \\ -34 & 47 \\ -24 & 23 \end{array}$	Globular cluster Globular cluster Globular cluster Globular cluster Open cluster Open cluster Diffuse nebula	The Lagoon nebula
9 10 11 12 13	6333 6254 6705 6218 6205	$\begin{array}{c} 17 \ 13.3 \\ 16 \ 51.9 \\ 18 \ 45.7 \\ 16 \ 42.0 \\ 16 \ 38.1 \end{array}$	$\begin{array}{rrrr} -18 & 25 \\ - & 3 & 57 \\ - & 6 & 23 \\ - & 1 & 46 \\ +36 & 39 \end{array}$	Globular cluster Globular cluster Open cluster Globular cluster Globular cluster	The Hercules cluster —best example

MESSIER'S CATALOGUE OF CLUSTERS AND NEBULAE

MESSIER'S CATALOGUE OF CLUSTERS AND NEBULAE-continued

Messier	N.G.C.	R.A. (1900)	Dec. (1900)	Type of Object	Remarks
14 15 16 17	$\begin{array}{c} 6402 \\ 7078 \\ 6611 \\ 6618 \end{array}$	h m 17 32.4 21 25.2 18 13.2 18 15.0	$ \begin{array}{c} \circ & \prime \\ - & 3 & 11 \\ + 11 & 44 \\ - 13 & 49 \\ - 16 & 13 \end{array} $	Globular cluster Globular cluster Open cluster Diffuse nebula	The Horseshoe or Omega nebula—
18 19 20	$\begin{array}{c} 6613 \\ 6273 \\ 6514 \end{array}$	$\begin{array}{c} 18 \ 14.1 \\ 16 \ 56.4 \\ 17 \ 56.3 \end{array}$	$\begin{array}{c} -17 \ 10 \\ -26 \ 7 \\ -23 \ 2 \end{array}$	Open cluster Globular cluster Diffuse nebula	The Trifid nebula-
21 22 23 24 25 26 27	6531 6656 6494 6603 I.C. 4725 6694 6853	$\begin{array}{c} 17 \ 58.6 \\ 18 \ 30.3 \\ 17 \ 51.0 \\ 18 \ 12.6 \\ 18 \ 25.8 \\ 18 \ 39.8 \\ 19 \ 55.3 \end{array}$	$\begin{array}{r} -22 \ 30 \\ -23 \ 59 \\ -19 \ 0 \\ -18 \ 27 \\ -19 \ 19 \\ -9 \ 30 \\ +22 \ 27 \end{array}$	Open cluster Globular cluster Open cluster Open cluster Open cluster Planetary ne-	The Dumb-bell ne-
28 29 30 31	6626 6913 7099 224	$\begin{array}{c} 18 \ 18.4 \\ 20 \ 20.3 \\ 21 \ 34.7 \\ 0 \ 37.3 \end{array}$	$\begin{array}{r} -24 \ 55 \\ +38 \ 12 \\ -23 \ 38 \\ +40 \ 43 \end{array}$	Globular cluster Open cluster Globular cluster Spiral nebula	Dula The Andromeda ne- bula—largest
32	221	0 37.2	+40 19	Spiral nebula	spiral Very close to M31 much smaller
33 34 35 36 37 38 39 40	598 1039 2168 1960 2099 1912 7092 	$\begin{array}{c}1&28.2\\2&35.6\\6&2.7\\5&29.5\\5&45.8\\5&22.0\\21&28.6\\12&17.4\end{array}$	$\begin{array}{r} +30 9 \\ +42 21 \\ +24 21 \\ +34 4 \\ +32 31 \\ +35 45 \\ +48 0 \\ +58 40 \end{array}$	Spiral nebula Open cluster Open cluster Open cluster Open cluster Open cluster Open cluster	Two faint stars mis-
41 42	2287 1976	$\begin{array}{c} 6 & 42.7 \\ 5 & 30.4 \end{array}$	-20 38 - 5 27	Open cluster Diffuse nebula	taken for a nebula by Messier The Orion nebula—
43 44	$1982 \\ 2632$	$\begin{array}{c}5&30.6\\8&34.3\end{array}$	$^{-520}_{+2020}$	Diffuse nebula Open cluster	very bright Praesepe or the Bee-
45 46 47 48 49 50 51	2437 2478 4472 2323 5194	$\begin{array}{c} 3 & 41.5 \\ 7 & 37.2 \\ 7 & 50.2 \\ 8 & 9.0 \\ 12 & 24.7 \\ 6 & 58.2 \\ 13 & 25.7 \end{array}$	$\begin{array}{r} +23 \ 48 \\ -14 \ 35 \\ -15 \ 9 \\ -1 \ 39 \\ + 8 \ 33 \\ - 8 \ 12 \\ +47 \ 43 \end{array}$	Open cluster Open cluster Open cluster Open cluster Spiral nebula Open cluster Spiral nebula	The Pleiades
52 53 54	$7654 \\ 5024 \\ 6715$	$\begin{array}{cccc} 23 & 19.8 \\ 13 & 8.0 \\ 18 & 48.7 \end{array}$	$+61^{-}3 \\ +18 42 \\ -30 36$	Open cluster Globular cluster Globular cluster	bula

MESSIER'S CATALOGUE OF CLUSTERS AND NEBULAE-continued

Messier	N.G.C.	R.A. (1900)	Dec. (1900)	Type of Object	Remarks
55 56 57	6809 6779 6720	h m 19 33.7 19 12.7 18 49.9	$^{\circ}$ ' -31 10 +30 0 +32 54	Globular cluster Globular cluster Planetary ne-	The Ring nebula in
$58\\59\\60\\61\\62\\63\\64\\65\\66\\67\\68\\70\\71\\72\\73\\75$	$\begin{array}{c} 4579\\ 4621\\ 4649\\ 4303\\ 6266\\ 5055\\ 4826\\ 3623\\ 3623\\ 3627\\ 2682\\ 4590\\ 6637\\ 6681\\ 6838\\ 6981\\ 6994\\ 628\\ 6864\end{array}$	$\begin{array}{c} 12 & 32.7 \\ 12 & 37.0 \\ 12 & 38.6 \\ 12 & 16.8 \\ 16 & 54.8 \\ 13 & 11.3 \\ 12 & 51.8 \\ 11 & 13.7 \\ 11 & 15.0 \\ 8 & 45.8 \\ 12 & 34.2 \\ 18 & 24.8 \\ 18 & 36.7 \\ 19 & 49.3 \\ 20 & 48.0 \\ 20 & 53.5 \\ 1 & 31.3 \\ 20 & 0 & 2 \end{array}$	$\begin{array}{c} +12 & 22 \\ +12 & 12 \\ +12 & 6 \\ +5 & 2 \\ -29 & 58 \\ +42 & 34 \\ +22 & 13 \\ +13 & 32 \\ +13 & 32 \\ +12 & 11 \\ -26 & 12 \\ -32 & 23 \\ +18 & 31 \\ -12 & 55 \\ -13 & 16 \\ +22 & 12 \\ \end{array}$	bula Spiral nebula Spiral nebula Spiral nebula Globular cluster Spiral nebula Spiral nebula Spiral nebula Spiral nebula Open cluster Globular cluster Globular cluster Globular cluster Open cluster Globular cluster Open cluster Spiral nebula Copen cluster Spiral nebula Cluster Open cluster	Lyra
75 76	6864 650	20 0.2 1 36.0	-22 12 +51 4	Globular cluster Planetary ne-	
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91	$\begin{array}{c} 1068\\ 2068\\ 1904\\ 6093\\ 3031\\ 3034\\ 5236\\ 4374\\ 4382\\ 4406\\ 4486\\ 4486\\ 4501\\ 4552\\ 4569\\ \ldots \end{array}$	$\begin{array}{c} 2 \ 37.6 \\ 5 \ 41.6 \\ 5 \ 20.1 \\ 16 \ 11.1 \\ 9 \ 47.3 \\ 9 \ 47.5 \\ 13 \ 31.4 \\ 12 \ 20.0 \\ 12 \ 20.4 \\ 12 \ 21.1 \\ 12 \ 25.8 \\ 12 \ 26.9 \\ 12 \ 30.6 \\ 12 \ 31.8 \\ 12 \ 36.0 \end{array}$	$\begin{array}{c} - & 0 & 26 \\ + & 0 & 1 \\ - & 24 & 37 \\ - & 22 & 44 \\ + & 69 & 32 \\ + & 70 & 10 \\ - & 29 & 21 \\ + & 13 & 26 \\ + & 13 & 46 \\ + & 13 & 30 \\ + & 12 & 57 \\ + & 14 & 58 \\ + & 13 & 6 \\ + & 13 & 43 \\ + & 13 & 50 \end{array}$	Spiral nebula Diffuse nebula Globular cluster Globular cluster Spiral nebula Spiral nebula Spiral nebula Spiral nebula Spiral nebula Spiral nebula Spiral nebula Spiral nebula Spiral nebula Spiral nebula	Not confirmed— probably comet
92 93 94 95 96 97	$\begin{array}{c} 6341 \\ 2447 \\ 4736 \\ 3351 \\ 3368 \\ 3587 \end{array}$	$\begin{array}{c} 17 \ 14.1 \\ 7 \ 40.5 \\ 12 \ 46.2 \\ 10 \ 38.7 \\ 10 \ 41.5 \\ 11 \ 9.0 \end{array}$	$\begin{array}{r} +43 \ 15 \\ -23 \ 38 \\ +41 \ 40 \\ +12 \ 14 \\ +12 \ 21 \\ +55 \ 34 \end{array}$	Globular cluster Open cluster Spiral nebula Spiral nebula Planetary ne- bula	The Owl nebula
98 99 100 101 102 103	$\begin{array}{c c} & 4192 \\ & 4254 \\ & 4321 \\ & 5457 \\ & 5866? \\ & 581 \end{array}$	$ \begin{vmatrix} 12 & 8.7 \\ 12 & 13.8 \\ 12 & 17.9 \\ 13 & 59.6 \\ 15 & 3.8 \\ 1 & 26.6 \end{vmatrix} $	$\begin{vmatrix} +15 & 27 \\ +14 & 58 \\ +16 & 23 \\ +54 & 50 \\ +56 & 9 \\ +60 & 11 \end{vmatrix}$	Spiral nebula Spiral nebula Spiral nebula Spiral nebula Spiral nebula Open cluster	

Mid	nigl	htFeb.	6
11	p.m	····· · · · · · · · · · · · · · · · ·	21
10	"	Mar.	. 7
9	"	•••	22
8	"	Apr.	6
7	" "		21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

Mid	nig	ht	May	8
11	p.m	ı		24
10	"		. June	7
9	"		. "	22
8	• •		July	6

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

Mic	lnigl	ht	Aug.	5
11	p.m		"	21
10	"		Sept.	7
9	"	• • • • • •	"	23
8	"	.	Oct.	10
7	"		"	26
6	"		Nov.	6
5	"		''	21
9 8 7 6 5	44 44 44 44	••••••	Oct. ''	23 10 26 6 21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

Mid	nig	ht	Nov.	6
11	p.n	ı	"	21
10	"		Dec.	6
9	" "		''	21
8	"		Jan.	5
7	" "		''	20
6	" "		Feb.	6

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

			Me	an T	`empe	ratu	re, I	ahre	nheit				A	vera	ge
Station.	Jan.	Feb.	Ma.	Ap.	May	Ju.	Jul.	Aug.	Sep.	Oc.	No.	De.	M	H	L
Victoria, B.C Vancouver, B.C Edmonton, Alta	$30 \\ 36 \\ 6$	40 39 12	$\begin{array}{c} 44\\ 43\\ 22 \end{array}$	49 48 40	$53 \\ 53 \\ 51$	57 60 57	60 63 62	56 63 59	56 57 50	51 50 41	$45 \\ 43 \\ 26$	41 38 14	49 50 37	86 86 89 -	19 13 -41
Calgary, Alta Regina, Sask Winnipeg, Man	$ \begin{array}{c} 11 \\ -4 \\ -3 \end{array} $	$ \begin{array}{c} 14 \\ -2 \\ 2 \end{array} $	$25 \\ 14 \\ 16$	40 37 38	$49 \\ 50 \\ 52$	$56 \\ 59 \\ 62$	$\begin{array}{c} 61\\ 64\\ 62\end{array}$	$59 \\ 61 \\ 64$	50 51 54	$42 \\ 39 \\ 41$	$26 \\ 21 \\ 22$	20 8 6	38 33 35	91 - 94 - 94 -	-34 -40 -38
Toronto, Ont Ottawa, Ont Montreal, Que	$23 \\ 12 \\ 14$	$22 \\ 13 \\ 15$	30 25 26	$\begin{array}{c} 42\\ 42\\ 41\end{array}$	53 55 55		69 69 70		60 59 59	48 46 47	37 33 33	27 17 20	$\begin{array}{r} 45\\ 42\\ 43\end{array}$	92 - 93 - 90 -	-12 -24 -18
Halifax, N.S Churchill, Man Aklavik, N.W.T	$23 \\ -19 \\ -18$	23 -17 -16	$ \begin{array}{r} 30 \\ - 6 \\ -12 \end{array} $	39 15 8	49 29 31	$58 \\ 42 \\ 49$		$ \begin{array}{r} 64 \\ 52 \\ 50 \end{array} $	$58 \\ 41 \\ 38$	49 26 19	39 7 - -4 -	28 -10 -14	$ \begin{array}{r} 44 \\ 18 \\ 16 \end{array} $	89 81 - 83 -	-9 - 46 - 52
St. John's, Nfld New York, N.Y Washington, D.C	23 31 33	$22 \\ 31 \\ 35$	28 37 42	$35 \\ 49 \\ 53$	$43 \\ 60 \\ 64$	$51 \\ 68 \\ 72$	59 73 76	60 73 75	$54 \\ 56 \\ 68$	45 56 57	$\begin{array}{c} 37\\ 44\\ 45\end{array}$	29 35 36	$41 \\ 52 \\ 55$	83 95 98	-624
Chicago, Ill. Denver, Colo. San Francisco	25 29 50	28 32 51	36 39 53	48 47 54	59 57 56	68 67 57	74 72 57	73 71 58	66 63 60	55 51 59	41 39 55	$30 \\ 32 \\ 51$	50 50 55	95 - 97 - 91	-10 -13 37

TEMPERATURE AND PRECIPITATION AT CANADIAN AND UNITED STATES STATIONS Prepared by Andrew Thompson.

High and Low are the averages of the highest and of the lowest temperatures each year at the station, over the total time since the station was installed.

2011	Me	an I	Precip	oitat	ion.	(Un	it =c	one te	enth	of an	n inc	h)	7	lear.	
Station	Jan.	Fe.	Ma.	Ap.	May	Ju.	Jul.	Aug.	Sep.	Oc.	No.	De.	м	W	D
Victoria, B.C Vancouver, B.C Edmonton, Alta	45 88 9	30 57 7	23 52 7	$ \begin{array}{c} 12 \\ 32 \\ 9 \end{array} $	10 28 17	9 23 31	$\begin{array}{c} 4\\13\\33\end{array}$	$\begin{array}{c} 6\\16\\24\end{array}$	$ \begin{array}{c} 15 \\ 38 \\ 13 \end{array} $	$28 \\ 58 \\ 7$	43 85 7	47 86 8	$271 \\ 575 \\ 171$	$510 \\ 676 \\ 278$	$173 \\ 378 \\ 82$
Calgary, Alta Regina, Sask Winnipeg, Man	5 4 9	6 3 8	7 5 11	7 7 13	$24 \\ 20 \\ 22$	$32 \\ 32 \\ 31$	$26 \\ 25 \\ 31$	$27 \\ 19 \\ 23$	$\begin{array}{c}13\\12\\23\end{array}$	$\begin{array}{c} 6\\7\\15\end{array}$	7 5 11	5 4 9	$\begin{array}{c} 164\\141\\206\end{array}$	346 272 302	79 101 102
Toronto, Ont Ottawa, Ont Montreal, Que	28 30 37	$25 \\ 25 \\ 32$	$25 \\ 26 \\ 35$	$25 \\ 22 \\ 25 \\ 25 \\ $	29 28 30	$27 \\ 32 \\ 35$	30 33 37	29 30 35	30 27 35	$\begin{array}{c} 24\\ 28\\ 33 \end{array}$	$28 \\ 25 \\ 35$	26 29 37	$325 \\ 335 \\ 407$	$436 \\ 444 \\ 530$	$176 \\ 232 \\ 292$
Halifax, N.S Churchill, Man Aklavik, N.W.T	56 6 7	45 10 8	50 11 6	45 10 7	42 10 8	37 20 7	39 18 16	$45 \\ 25 \\ 14$	$36 \\ 26 \\ 10$	53 13 8	54 12 10	54 9 5	$555 \\ 168 \\ 105$	678 150	388 98
St. John's, Nfld New York, N.Y Washington, D.C	$54 \\ 36 \\ 35$	$51 \\ 41 \\ 35$	$45 \\ 35 \\ 37$	42 33 33	$36 \\ 32 \\ 36$	$36 \\ 34 \\ 42$	$37 \\ 42 \\ 46$	36 43 39	38 34 33	54 35 28	$ \begin{array}{r} 61 \\ 30 \\ 24 \end{array} $	49 35 32	538 430 422	691 587 614	427 331 307
Chicago, Ill Denver, Colo San Francisco	19 4 44	$23 \\ 6 \\ 42$	26 10 31	28 21 17	35 22 8	$\begin{array}{c} 34\\ 14\\ 2\end{array}$	33 17 0	$\begin{array}{c} 32\\14\\0\end{array}$	32 10 4	25 11 11	$\begin{array}{c}24\\6\\24\end{array}$	20 7 39	$327 \\ 141 \\ 220$	461 228 390	244 79 91

Wetlest and Driest indicate the greatest and the least total precipitation in one year from Jan. 1 to Dec. 31 recorded at a station, records being available for varying periods from 30 to 50 years.

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

This Society was incorporated in 1890 under the name of The Astronomical and Physical Society of Toronto, and assumed its present name in 1903.

The Society has active Centres in Montreal, P.Q.; Ottawa, Toronto, Hamilton, and London, Ont.; Winnipeg, Man.; Edmonton, Alta.; Vancouver and Victoria, B.C.

The Society publishes a monthly JOURNAL containing each year about 500 pages and a yearly OBSERVER'S HANDBOOK of about 80 pages. Single copies of JOURNAL or HANDBOOK are 25 cents.

Membership is open to anyone interested in astronomy. Annual dues, \$2.00. life membership, \$25.00. Publications are free to members, or may be subscribed for separately. Apply to the General Secretary, 198 College St., Toronto, or to the local secretary of a Centre.

Extract from the By-Laws: Candidates who are elected to membership will be attached to a particular Centre, or to a section known as Members at Large. Members of the Society who live outside of Canada, or in a province in which there is no Centre of the Society will be considered Members at Large and not attached to any particular Centre, unless these members are expressly nominated for membership and attachment to a particular Centre. Members may be transferred from one Centre to another, or to the section Members at Large by the Council of the Society if written application for such transfer is made by such member to the Council.

The Society has for Sale:

Reprinted from the JOURNAL of the Royal Astronomical Society, 1936-1937.

The Physical State of the Upper Atmosphere, by B. Haurwitz. Pages 96; Price 50 cents postpaid.

Telescope Mountings for Amateur Builders, by H. Boyd Brydon, 48 pages; Price 25 cents postpaid.

General Instructions for Meteor Observing, by Peter M. Millman, 18 pages; Price 10 cents postpaid.

Meteor Photography, by Peter M. Millman, 16 pages; Price 10 cents postpaid.

General Index to the TRANSACTIONS of the R.A.S.C., 1890-1905, and the JOURNAL, Vols. 1 to 25, 1907-31.

Compiled by W. E. Harper, Assistant Director, Dominion Astrophysical Observatory, Victoria, B.C., 122 pages, Price \$1.00 postpaid.

Send Money Order to 198 College St., Toronto.