THE

OBSERVER'S HANDBOOK FOR 1930

PUBLISHED BY

The Royal Astronomical Society of Canada

EDITED BY C. A. CHANT

TWENTY-SECOND YEAR OF PUBLICATION

TORONTO 198 College Street Printed for the Society 1930

- 1	n	3	n
1	Э	3	U

CALENDAR

1930

JANUARY	FEBRUARY	MARCH	APRIL		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
MAY	JUNE	JULY	AUGUST		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Sun. . 7 14 21 28 Mon. 1 8 15 22 29 Tues. 2 9 16 23 30 Wed. 3 10 17 24 31 Thur 4 11 18 25 . Frl. . 5 12 19 26 Sat. . 6 13 20 27		

THE Observer's Handbook for 1930

PUBLISHED BY

The Royal Astronomical Society of Canada

Edited by C. A. CHANT

TWENTY-SECOND YEAR OF PUBLICATION

TORONTO 198 College Street Printed for the Society 1930

CONTENTS

Preface	-	-	_	-	-	-	-	3
Anniversar	ies and F	estivals	-	-	-	-	-	3
Symbols an	d Abbre	viations	- "	-	-	-	-,	4
Solar and S	dereal T	Time	-	-	-	-	-	5
Ephemeris	of the Su	ın -	-	_	-	-	-	6
Occultation	s of Fixe	d Stars I	oy the	e Moon	-	-	-	8
Times of St	unrise an	d Sunset	-	-	-	-	- 1	9
Planets for	the Year	r -	-	-	-	-	-	22
Eclipses in	1930	-	•	-		-		2 6
The Sky an	nd Astron	omical F	Pheno	mena for	each l	Month	· _	28
Phenomena	of Jupit	er's Sate	llites	· · ·	-	-	-	52
Meteors an	d Shooti	ng Stars	-	-		_	-	54
Elements o	f the Sola	ar Syster	n	-	-	_	-	55
Satellites of	f the Sola	ar Systen	n -	-		-	-	56
Double Sta	rs, with a	a short li	st	-	-	-	·_	57
Variable St	ars, with	a short	list	-	-	-	-	59
Distances o	of the Sta	irs	-	-	-	· · <u>-</u>	1	61
The Bright	est Stars	, their ma	agnitı	ides, typ	es, proj	per motio	ons,	
distances	and rad	ial veloci	ties	-	. · · ·	-	-	63
Astronomic	al Const	ants	-	-	-	-	-	71
Index	-	-	-	-	-	-	-	72

PREFACE

The present issue of the HANDBOOK is similar to those of recent past years. The chief improvement this year is a new table of "Distances of the Stars" (p. 61).

It may be stated that four circular star-maps, 9 inches in diameter, roughly for the four seasons, may be obtained from the Director of University Extension, University of Toronto, for one cent each; also a set of 12 circular maps, 5 inches in diameter, with brief explanation, is supplied by *Popular Astronomy*, Northfield, Minn., for 15 cents. Besides these may be mentioned Young's *Uranography*, containing four maps with R.A. and Decl. circles and excellent descriptions of the constellations, price 72 cents; Norton's *Star Atlas and Telescopic Handbook* (10s. 6d.); Olcott's *A Field-book of the Stars* (\$1.50); McKready's *A Beginner's Star Book* (\$5.00).

In the preparation of this HANDBOOK the Editor has received great assistance from Miss M. S. Burland, Mr. R. M. Motherwell and Dr. R. J. McDiarmid, of the Dominion Observatory, Ottawa; Mr. J. A. Pearce, of the Dominion Astrophysical Observatory, Victoria, B.C.; and his colleague, Dr. R. K. Young, of the University of Toronto.

The mimima of Algol have been computed from an observation by Stebbins (Ap. J., vol. 53, 1921), J.D. 2422619.7866 with the period 2.86731077, given by Hellerick (A.N., vol. 209, p. 227, 1919).

TORONTO, December, 1929.

THE EDITOR.

ANNIVERSARIES AND FESTIVALS, 1930

New Year's Day Wed.,	Jan.	1	
Epiphany	Jan.	6	
Septuagesima Sunday	Feb.	16	
St. DavidSat.,	Mar.	1	
Quinquagesima (Shrove			
Sunday)	Mar.	2	
Ash Wednesday	Mar.	5	
Quadragesima (First			
Sunday in Lent)	Mar.	9	
St. Patrick Mon.,	Mar.	17	
Annunciation (Lady			
Day)Tues.,	Mar.	25	
Palm Sunday	Apr.	13	
Good Friday	Apr.	18	
Easter Sunday	Apr. 2	20	
St. GeorgeWed.,	Apr.	23	
Accession of King George			
V, (1910)	May	6	
Empire (Victoria) DaySat.,	May 2	24	
Rogation Sunday	May 2	25	
Birthday of Queen Mary,			
(1867)	May 2	26	
Ascension DayThur.,	May 2	29	

Birthday of King George		
(1865) Ju	ıne	3
Whit Sunday (Pentecost) Ju	une	8
Trinity Sunday Ju	ıne	15
Corpus Christi	ıne	19
Birthday of Prince of		
Wales (1894) Ju	ine	23
St. John Baptist (Mid-		
summer Day) Ju	ine	24
Dominion Day Tues., Ju	ıly	1
Labour Day	ept.	1
Hebrew New Year (Rosh		
Hashanah) (5691)Tues., Se	pt.	23
St. Michael (Michaelmas		
Day) Mon., Se	ept.	29
All Saints' Day Sat., N	ov.	1
Armistice Day (Thanks-		
giving) No	ov.	11
St. AndrewSun., No	ov.	30
First Sunday in Advent.Sun., No	ov.	30
Queen Alexandria (1844-		
1925) Mon., De	ec.	21
Christmas Day Thur., De	ec.	25

SYMBOLS AND AGBREVIATIONS

SIGNS OF THE ZODIAC

Υ	Aries 0°	Ω Leo	オ Sagittarius240
×	Taurus	MP Virgo 150°	で Capricornus 270°
й	Gemini	\simeq Libra180°	\approx Aquarius 300°
6	Cancer	M Scorpio 210°	\mathcal{H} Pisces

SUN, MOON AND PLANETS

	The Sun. New Moon. Full Moon. First Quarter	§ ⊕ +0 tœ 🔊	The Moon generally. Mercury. Venus. Earth. Mors	2 ゅ じ い い い い い い い い い い い い い い い い い い	Jupiter. Saturn. or 뷰 Uranus Neptune.
Ø	Last Quarter.	d	Mars.		

ASPECTS AND ABBREVIATIONS

σ' Conjunction, or having the same Longitude or Right Ascension ^φ Opposition, or differing 180° in Longitude or Right Ascension □ Quadrature, or differing 90° in Longitude or Right Ascension Ω Ascending Node; ^ψ Descending Node. ^a or A. R., Right Ascension; ^δ Declination. h, m, s, Hours, Minutes, Seconds of Time. ^a ' ", Degrees, Minutes, Seconds of Arc.

THE GREEK ALPHABET

A. a.	Alpha.	Ι,ι,	Iota.	Ρ,ρ,	Rho.
Β ΄, β΄,	Beta.	Κ, κ,	Kappa.	Σ,σ,ς,	Sigma.
Γ.γ.	Gamma.	Λ, λ,	Lambda.	Τ, τ,	Tau.
Δ, δ	Delta.	Μ, μ,	Mu.	Υ, ν,	Upsilon.
Ε΄.ε΄.	Epsilon.	Ν, ν,	Nu.	Φ, φ,	Phi.
$\mathbf{Z}, \boldsymbol{\zeta}, \boldsymbol{\zeta}$	Zeta.	$\Xi(\xi)$	Xi.	Χ, χ,	Chi.
H. n.	Eta.	0,0,	Omicron.	$\Psi, \psi,$	Psi.
θ, θ, ϑ,	Theta.	Π,π,	Pi.	Ω,ω,	Omega

In the Configurations of Jupiter's Satellites (pages 29, 31, etc.), O represents the disc of the planet, d signifies that the satellite is on the disc, * signifies that the satellite is behind the disc or in the shadow. Configurations are for an inverting telescope.

SOLAR AND SIDEREAL TIME

In practical astronomy three different kinds of time are used, while in ordinary life we use a fourth.

I. Apparent Time—By apparent noon is meant the moment when the sun is on the meridian, and apparent time is measured by the distance in degrees that the sun is east or west of the meridian. Apparent time is given by the sun-dial.

2. Mean Time—The interval between apparent noon on two successive days is not constant, and a clock cannot be constructed to keep apparent time. For this reason mean time is used. The length of a mean day is the average of all the apparent days throughout the year. The real sun moves about the ecliptic in one year; an imaginary mean sun is considered as moving uniformly around the celestial equator in one year. The difference between the times that the real sun and the mean sun cross the meridian (*i. e.* between apparent noon and mean noon) is the equation of time. (See next page).

3. Sidereal Time—This is time as determined from the stars. It is sidereal noon when the Vernal Equinox or First of Aries is on the meridian. In accurate time-keeping the moment when a star is on the meridian is observed and the corresponding mean time is then computed with the assistance of the Nautical Almanac. When a telescope is mounted equatorially the position of a body in the sky is located by means of the sidereal time.

4. Standard Time—In everyday life we use still another kind of time. A moment's thought will show that in general two places will not have the same mean time; indeed, difference in longitude between two places is determined from their difference in time. But in travelling it is very inconvenient to have the time varying from station to station. For the purpose of facilitating transportation the system of *Standard Time* was introduced in 1883. Within a certain belt approximately 15° wide, all the clocks show the same time, and in passing from one belt to the next the hands of the clock are moved forward or backward one hour.

In Canada we have six standard time belts, as follows; — 60th meridian or Atlantic Time, 4h. slower than Greenwich; 75th meridian or Eastern Time, 5h.; 90th meridian or Central Time, 6h.; 105th meridian or Mountain Time, 7h.; 120th meridian or Pacific Time, 8h.; and 135th meridian or Yukon Time, 9h. slower than Greenwich.

Date	Apparent R.A.	Equation of Time	Apparent Decl.	Date	Apparent R.A.	Equation of Time	Apparent Decl.
Jan. 1 " 4 4 " 7 7 " 10 " 13 " 16 " 19 " 22 " 25 " 28 " 31 Feb. 3 " 6 " 9 " 12 " 15 " 18 " 21 " 15 " 18 " 21 " 25 " 31 Feb. 3 " 6 " 9 " 12 " 25 " 28 " 31 Feb. 3 " 6 " 9 " 12 " 25 " 25 " 28 " 31 Feb. 3 " 6 " 9 " 12 " 25 " 15 " 16 " 22 " 25 " 15 " 15 " 15 " 15 " 16 " 22 " 25 " 15 " 15 " 15 " 15 " 15 " 15 " 15 " 15 " 15 " 16 " 21 " 21 " 25 " 15 " 15 " 15 " 18 " 21 " 25 " 15 " 18 " 21 " 25 " 28 " 21 " 24 " 25 " 28 " 21 " 24 " 20 " 4 " 20 " 20 " 20 " 20 " 20 " 20 " 20 " 20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} {\rm m} {\rm s} \\ + \; 3\; 13.5 \\ + \; 4\; 38.2 \\ + \; 5\; 59.2 \\ + \; 7\; 16.0 \\ + \; 8\; 27.5 \\ + \; 9\; 33.5 \\ + \; 10\; 23.4 \\ + \; 11\; 27.0 \\ + \; 12\; 13.9 \\ + \; 13\; 26.4 \\ + \; 13\; 26.4 \\ + \; 13\; 26.4 \\ + \; 14\; 09.4 \\ + \; 14\; 19.7 \\ + \; 14\; 09.4 \\ + \; 14\; 19.7 \\ + \; 14\; 09.4 \\ + \; 14\; 19.7 \\ + \; 14\; 09.4 \\ + \; 13\; 29.2 \\ + \; 13\; 29.2 \\ + \; 13\; 29.2 \\ + \; 13\; 29.2 \\ + \; 13\; 29.2 \\ + \; 13\; 29.2 \\ + \; 11\; 51.6 \\ + \; 13\; 29.2 \\ + \; 11\; 51.6 \\ + \; 11\; 09.5 \\ + \; 10\; 24.2 \\ + \; 9\; 35.7 \\ + \; 8\; 44.8 \\ + \; 7\; 52.0 \\ + \; 6\; 03.3 \\ + \; 5\; 08.4 \\ \end{array}$	$\begin{array}{c} \circ \ , \ \ \ , \ \ \ \ , \$		$ \begin{array}{c} h \ m \ s \\ 0 \ 38 \ 45 \\ 0 \ 49 \ 40 \\ 1 \ 00 \ 37 \\ 1 \ 11 \ 36 \\ 122 \ 37 \\ 1 \ 33 \ 41 \\ 1 \ 55 \ 58 \\ 2 \ 07 \ 13 \\ 2 \ 18 \ 32 \\ 2 \ 29 \ 56 \\ 2 \ 41 \ 24 \\ 252 \ 57 \\ 3 \ 16 \ 19 \\ 3 \ 28 \ 07 \\ 3 \ 40 \ 00 \\ 3 \ 51 \ 59 \\ 4 \ 04 \ 03 \\ 51 \ 59 \\ 4 \ 04 \ 03 \\ 51 \ 59 \\ 4 \ 04 \ 03 \\ 51 \ 59 \\ 4 \ 04 \ 03 \\ 51 \ 59 \\ 4 \ 06 \ 11 \\ 4 \ 28 \ 23 \\ 4 \ 46 \ 11 \\ 4 \ 28 \ 23 \\ 4 \ 46 \ 11 \\ 4 \ 28 \ 23 \\ 4 \ 46 \ 11 \\ 4 \ 28 \ 23 \\ 4 \ 46 \ 11 \\ 5 \ 55 \ 10 \\ 6 \ 07 \ 39 \\ 5 \ 05 \ 10 \\ 6 \ 20 \ 07 \\ 6 \ 32 \ 34 \\ \end{array} $	$\begin{array}{c} m & s \\ + 4 & 13.9 \\ + 3.20.2 \\ + 2.27.6 \\ + 1.36.6 \\ + 0.47.9 \\ + 0.01.9 \\ - 1.19.9 \\ - 1.25.4 \\ - 2.25.4 \\ - 2.51.4 \\ - 2.25.4 \\ - 2.329.2 \\ - 3.40.8 \\ - 3.35.9 \\ - 3.$	

1930 EPHEMERIS OF THE SUN AT 0h GREENWICH CIVIL TIME

Ξ

Date	Apparent R.A.	Equation of Time	Apparent Decl.	Date	Apparent R.A.	Equation of Time	Apparent Decl.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} h \ m \ s \\ 6 \ 44 \ 59 \\ 6 \ 57 \ 22 \\ 7 \ 09 \ 411 \\ 7 \ 21 \ 57 \ 22 \\ 7 \ 09 \ 411 \\ 7 \ 21 \ 57 \ 22 \\ 8 \ 7 \ 46 \ 16 \\ 7 \ 58 \ 18 \\ 8 \ 10 \ 16 \\ 8 \ 22 \ 09 \\ 8 \ 33 \ 57 \\ 15 \ 8 \ 45 \ 39 \\ 8 \ 57 \ 15 \\ 9 \ 20 \ 11 \\ 9 \ 42 \ 47 \\ 9 \ 42 \ 47 \\ 9 \ 42 \ 47 \\ 9 \ 42 \ 47 \\ 10 \ 16 \ 07 \\ 10 \ 25 \ 04 \\ 11 \ 10 \ 38 \ 01 \\ 10 \ 48 \ 54 \\ 11 \ 10 \ 38 \ 01 \\ 11 \ 53 \ 37 \\ 11 \ 42 \ 51 \\ 11 \ 42 \ 51 \\ 11 \ 42 \ 51 \\ 11 \ 53 \ 37 \\ 12 \ 04 \ 24 \\ 12 \ 15 \ 13 \\ \end{array} $	$\begin{array}{c} {\rm m} {\rm s} \\ + 3 49.0 \\ + 4 21.7 \\ + 4 51.2 \\ + 5 517.2 \\ + 5 517.2 \\ + 5 517.2 \\ + 5 517.2 \\ + 5 517.2 \\ + 5 517.2 \\ + 5 517.2 \\ + 5 517.2 \\ + 5 519.2 \\ + 6 11.5 \\ + 6 619.3 \\ + 6 619.3 \\ + 6 619.3 \\ + 6 539.1 \\ + 5 539.1 \\ + 5 514.8 \\ + 4 411.1 \\ + 3 32.4 \\ + 2 49.4 \\ - 1 55.6 \\ - 1 39.2 \\ - 7 56.8 \\ - 8 58.2 \\ \end{array}$	$\begin{array}{c} \circ & , & , & , \\ +23 & 02 & 51 \\ +22 & 206 & 51 \\ +22 & 206 & 51 \\ +22 & 206 & 51 \\ +21 & 41 & 16 \\ +21 & 12 & 200 \\ +20 & 04 & 52 \\ +19 & 26 & 32 \\ +19 & 26 & 32 \\ +18 & 45 & 17 \\ +18 & 01 & 17 \\ +17 & 14 & 38 \\ +16 & 25 & 29 \\ +15 & 33 & 58 \\ +11 & 46 & 46 \\ +10 & 45 & 22 \\ +13 & 44 & 19 \\ +12 & 46 & 28 \\ +11 & 46 & 46 \\ +10 & 45 & 22 \\ +9 & 42 & 27 \\ +8 & 38 & 09 \\ +7 & 32 & 38 \\ +6 & 26 & 01 \\ +5 & 18 & 27 \\ +8 & 38 & 09 \\ +7 & 32 & 38 \\ +6 & 26 & 01 \\ +5 & 18 & 27 \\ +3 & 01 & 02 \\ +1 & 51 & 28 \\ +0 & 41 & 30 \\ -0 & 28 & 40 \\ -1 & 38 & 53 \\ \end{array}$	$\begin{array}{c} \text{Oct. 1} & & & 4 \\ & & & 4 \\ & & & 7 \\ & & & 10 \\ & & & 13 \\ & & & 16 \\ & & & 19 \\ & & & 25 \\ & & & 28 \\ & & & 31 \\ & & & 24 \\ & & & & 15 \\ & & & & 18 \\ & & & & 24 \\ & & & & 27 \\ & & & & 30 \\ \textbf{Dec. 3} & & & 6 \\ & & & & 9 \\ & & & & 12 \\ & & & & 24 \\ & & & & & 21 \\ & & & & & 18 \\ & & & & & 18 \\ & & & & & & 12 \\ & & & & & & 15 \\ & & & & & & 18 \\ & & & & & & 12 \\ & & & & & & 15 \\ & & & & & & 18 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 15 \\ & & & & & & & 15 \\ & & & & & & & 15 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & 12 \\ & & & & & & & & 12 \\ & & & & & & & & 12 \\ & & & & & & & & 12 \\ & & & & & & & & 12 \\ & & & & & & & & 12 \\ & & & & & & & & 12 \\ & & & & & & & & & 12 \\ & & & & & & & & & 12 \\ & & & & & & & & & 12 \\ & & & & & & & & & & 12 \\ & & & & & & & & & & 12 \\ & & & & & & & & & & 12 \\ & & & & & & & & & & 12 \\ & & & & & & & & & & & 12 \\ & & & & & & & & & & & & 12 \\ & & & & & & & & & & & & & & 12 \\ & & & & & & & & & & & & & & & & & 12 \\ & & & & & & & & & & & & & & & & & & $	$\begin{array}{c} {\rm h} \ {\rm m} \ {\rm s} \\ 12\ 26\ 03 \\ 12\ 36\ 55 \\ 12\ 47\ 50 \\ 12\ 58\ 49 \\ 13\ 09\ 51 \\ 13\ 20\ 59 \\ 13\ 32\ 12 \\ 13\ 32\ 12 \\ 13\ 32\ 12 \\ 13\ 32\ 12 \\ 14\ 30 \\ 13\ 54\ 54 \\ 14\ 18\ 01 \\ 14\ 29\ 45 \\ 15\ 05\ 41 \\ 15\ 17\ 55 \\ 15\ 30\ 17 \\ 15\ 42\ 46 \\ 15\ 55\ 23 \\ 16\ 08\ 06 \\ 16\ 33\ 52 \\ 46\ 54 \\ 17\ 00\ 00 \\ 17\ 13\ 11 \\ 17\ 26\ 26 \\ 17\ 39\ 43 \\ 18\ 19\ 41 \\ 18\ 32\ 59 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \circ & , & , & , \\ - & 2 & 48 & 58 & 47 \\ - & 5 & 08 & 10 \\ - & 6 & 16 & 58 & 47 \\ - & 5 & 02 & 10 \\ - & 8 & 32 & 12 \\ - & 9 & 38 & 19 \\ - & 10 & 43 & 10 \\ - & 11 & 46 & 23 \\ - & 12 & 48 & 24 \\ - & 13 & 48 & 23 \\ - & 14 & 46 & 23 \\ - & 12 & 48 & 24 \\ - & 13 & 48 & 23 \\ - & 14 & 46 & 23 \\ - & 12 & 48 & 24 \\ - & 13 & 48 & 23 \\ - & 11 & 46 & 23 \\ - & 12 & 48 & 24 \\ - & 13 & 48 & 23 \\ - & 11 & 46 & 23 \\ - & 12 & 48 & 24 \\ - & 13 & 48 & 23 \\ - & 12 & 48 & 24 \\ - & 13 & 48 & 23 \\ - & 12 & 48 & 24 \\ - & 13 & 48 & 23 \\ - & 14 & 46 & 23 \\ - & 20 & 21 & 58 \\ - & 20 & 21 & 58 \\ - & 20 & 21 & 58 \\ - & 20 & 21 & 58 \\ - & 20 & 21 & 57 \\ - & 21 & 58 & 22 \\ - & 23 & 10 & 21 \\ - & 23 & 22 & 24 \\ - & 23 & 22 & 24 \\ - & 23 & 22 & 24 \\ - & 23 & 14 & 02 \\ \end{array}$

1930 EPHEMERIS OF THE SUN AT Oh GREENWICH CIVIL TIME

To obtain the R.A. of Mean Sun, subtract the Equation of Time from the Right Ascension; adding 12h to this gives the Sidereal Time at 0h G.C.T. In the Equation of Time the Sign + means the watch is faster than the Sun, - that it is slower. To obtain the Local Mean Time, in the former case add the Equation of Time to, and in the latter case subtract it from, apparent or sun-dial time.

OCCULTATIONS OF STARS BY THE MOON, 1930

The following list of occultations was prepared for Ottawa and contains no stars fainter than magnitude 4.5. Anyone who has not observed an occultation or eclipse of a star by the moon should plan to do so. It is a striking phenomenon, especially when the immersion occurs at the dark limb of the moon, although an emersion at the dark limb is not without its thrill as the star suddenly pops into view apparently from out the depths of space. From new moon to full moon the immersion occurs at the dark limb and from full moon to new moon the emersion occurs at the dark limb. In the accompanying list the letter d after the position angle indicates that that particular phenomenon occurs at the dark limb.

The graphical method of the late Wm. F. Rigge has been used in these predictions and the time is correct within a minute for all central occultations, but in the case of a grazing occultation the error is likely to be quite large.

Date	Star	Mag.	Imme	rsion*	Position Angle	Emer	sion*	Position Angle
1930			h	m	0	h	m	0
Jan. 8	o Piscium	4.5	20	29	356 d	21	05	293
June 10	σ Scorpii	3.0	0	48	158 d	1	36	228
July 23	136 Tauri	4.6	7	32	22	8	10	318 d
July 29	η Virginis	4.0	18	43	66 d	19	04	18
Sept. 7-8	ψ Aquarii	4.5	22	40	61	0	00	222
Sept. 13	δ Arietis	4.5	5	35	118	6	32	206 d
Sept. 16	136 Tauri	4.6				0	39	292 d
Oct. 13	136 Tauri	4.6	7	45	135	8	34	233 d
Oct. 24	a Scorpii	1.3	15	57	78 d	17	08	305
Nov. 16	η Virginis	4.0	7	57	76	8	37	2 d
Dec. 4	δ Arietis	4.5	3	27	118 d	4	13	213
Dec. 6	136 Tauri	4.6	18	55	43	19	38	296 d

75th MERIDIAN CIVIL TIME

*Eastern Standard Civil Time.

TIMES OF SUNRISE AND SUNSET

In the tables on pages 10 to 21 are given the times of sunrise and sunset for places in latitudes 44° , 46° , 48° , 50° and 52° , which cover pretty well the populated parts of Canada. The times are given in Mean Solar Time, and in the table on the page following this, are given corrections to change these times to the Standard or Railroad times of the cities and towns named, or for places near them.

How the Tables are Constructed

The time of sunrise and sunset at a given place, in mean solar time, varies from day to day, and depends principally upon the declination of the sun. Variations in the equation of time, the apparent diameter of the sun and atmospheric refraction at the points of sunrise and sunset also affect the final result. These quantities, as well as the solar declination, do not have precisely the same values of corresponding days from year to year, and so it is impossible to give in any general table the exact time of sunrise and sunset day by day.

With this explanation the following general table has been computed, givin³ the rising and setting of the upper limb of the sun, corrected for refraction, using the values of the solar declination and equation of time given in the Nautical Almanac for 1899; these are very close average values and may be accepted as approximately correct for years. It must also be remembered that these times are computed for the sea horizon, which is only approximately realised on land surfaces, and is generally widely departed from in hilly and mountainous localities. The greater or less elevation of the point of view above the ground must also be considered, to get exact results.

The Times for Any Station

In order to find the time of sunrise and sunset for any place on any day, first from the list below find the approximate latitude of the place and the correction, in minutes, which follows the name. Then find in the monthly table the time of sunrise and sunset for the proper latitude, on the desired day, and apply the correction.

44°		46°		48°	48°			520		=
n	nins.	m	ins.]	mins.	1	mins	r	nins.	-
Barrie	+ 17	Charlotte-		Port Arth	ur + 57	Brandon	+ 40	Calgary	+ 2	6
Brantford	+ 21	town	+13	Victoria	+ 13	Indian		Edmon-	• 5	Ť
Chatham	+ 29	Fredericton	+ 26		5	Head	- 5	to	n + 2	A
Goderich	+ 27	Montreal	- 6			Kamloops	+ 2	Prince		•
Guelph	+21	Ottawa	+ 3		i	Kenora	+ 18	Alber	t+ .	
Halifax	+ 14	Parry Sound	+ 20			Medicine		Saska-		7
Hamilton	+ 20	Quebec	- 15			Ha	t + 22	too	n + (6
Kingston	+ 6	Sherbrooke	~ 12			Moosejaw	+ 2			-
London	+ 25	St. John,			1	Moosomin	+ 40			
Orillia	+ 18	N.B.	+24			Nelson	- 11			
Owen Sound	i + 24	Sydney	+ i		·	Portage La	L			
Peterboro	+13	Three Rivers	- 10			Prairie	+ 33			
Port Hope	+14					Regina	- 2			
Stratford	+ 24					Vancouver	+ 12			
Toronto	+ 18				}	Winnipeg	+28			
Windsor	+ 32					FB				
Woodstock	+23									
Yarmouth	+ 24)			

Example.—Find the time of sunrise at Owen Sound, also at Regina, on February 11.

In the above list Owen Sound is under "44°", and the correction is +24 min. On page 11 the time of sunrise on February 11 for latitude 44° is 7.05; add 24 min. and we get 7.29 (Eastern Standard Time). Regina is under "50°", and the correction is -2 min. From the table the time is 7.18 and subtracting 2 min. we get the time of sunrise 7.16 (Central Standard Time).

Dever	Latitu	de 44°	Latitu	de 46°	Latitu	de 48°	Latitu	de 50 °	Latitue	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunnise	Sunset	Sunrise	Sunset
1 2 3 4 5	h. m. 7 35 7 35 7 35 7 35 7 35 7 35 7 35	h. m. 4 33 4 34 4 35 4 36 4 37	h. m. 7 42 7 42 7 42 7 42 7 42 7 42 7 42	h. m. 4 26 4 26 4 27 4 28 4 29	h. m. 7 50 7 50 7 50 7 50 7 50 7 50	h. m. 4 18 4 19 4 20 4 21 4 22	h. m. 7 59 7 59 7 59 7 59 7 58 7 58	h. m. 4 9 4 10 4 11 4 12 4 13	h. m. 8 9 8 8 8 8 8 7 8 7	h. m. 3 59 4 0 4 2 4 3 4 4
6 7 8 9 10	7 35 7 35 7 34 7 34 7 34 7 34	4 38 4 39 4 40 4 41 4 42	7 42 7 42 7 41 7 41 7 41 7 41	4 30 4 32 4 33 4 34 4 35	7 49 7 49 7 49 7 49 7 49 7 48	4 23 4 24 4 25 4 26 4 27	7 58 7 58 7 57 7 57 7 57 7 56	4 14 4 16 4 17 4 18 4 19	8 6 8 6 8 5 8 5 8 5 8 4	4 6 4 7 4 8 4 9 4 11
11 12 13 14 15	7 34 7 33 7 33 7 32 7 32 7 32	4 43 4 44 4 45 4 46 4 48	7 40 7 40 7 39 7 39 7 39 7 38	4 36 4 38 4 39 4 40 4 41	7 48 7 47 7 47 7 46 7 45	4 29 4 3 ⁰ 4 3 ¹ 4 33 4 34	7 56 7 55 7 55 7 54 7 53	4 21 4 22 4 23 4 25 4 26	8 4 8 3 8 2 8 1 8 0	4 12 4 14 4 15 4 17 4 19
16 17 18 19 20	7 31 7 30 7 30 7 29 7 28	4 49 4 50 4 52 4 53 4 53 4 54	7 38 7 37 7 36 7 35 7 34	4 42 4 44 4 45 4 47 4 48	7 45 7 44 7 43 7 42 7 41	4 36 4 37 4 38 4 40 4 41	7 52 7 52 7 51 7 50 7 49	4 28 4 29 4 31 4 32 4 34	8 0 7 59 7 58 7 57 7 57 7 56	4 21 4 22 4 24 4 26 4 27
21 22 23 24 25	7 28 7 27 7 26 7 25 7 25 7 25	4 55 4 57 4 58 4 59 5 1	7 34 7 33 7 32 7 31 7 30	4 49 4 5 ¹ 4 5 ² 4 54 4 55	7 40 7 40 7 39 7 38 7 36	4 43 4 44 4 46 4 47 4 49	7 48 7 46 7 45 7 44 7 43	4 36 4 37 4 39 4 41 4 42	7 55 7 54 7 52 7 51 7 50	4 29 4 31 4 32 4 34 4 36
26 27 28 29 30	7 24 7 23 7 22 7 21 7 20 7 18	5 2 5 3 5 5 5 6 5 8	7 29 7 28 7 27 7 26 7 25 7 23	4 56 4 58 4 59 5 1 5 3	7 35 7 34 7 33 7 32 7 30 7 20	4 50 4 52 4 54 4 55 4 57 4 57	7 42 7 40 7 39 7 38 7 36 7 35	4 44 4 46 4 47 4 49 4 51	7 49 7 47 7 46 7 45 7 43	4 38 4 39 4 41 4 43 4 44 4 44

JANUARY

	Latitu	de 44°	Latitud	le 46 °	Latitu	de 48°	Latitu	de 50°	Latitud	e 52 °
Month Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
I	h. m. 7 17	h. m. 5 10	h. m. 7 22	h. m.	h. m. 7 28	h.m. 5 0	h. m.	h. m. 4 54	h. m. 7 40	h. m. 4 48
2	7 16	5 12	7 2 I	5 7	7 26	5 1	7 32	4 56	7 38	4 50
3	7 15	5 13	7 20	5 8	7 25	5 3	7 30	4 58	7 36	4 52
4 5	7 13	5 14 5 15	7 19	5 10	7 24 7 22	55 56	7 29 7 27	4 59 5 I	7 34 7 33	4 54 4 56
6 7 8 9 10	7 12 7 10 7 9 7 8 7 6	5 17 5 18 5 20 5 21 5 23	7 17 7 15 7 13 7 12 7 11	5 12 5 14 5 15 5 17 5 18	7 21 7 19 7 18 7 16 7 15	5 8 5 9 5 11 5 13 5 14	7 26 7 24 7 23 7 21 7 19	5 3 5 5 5 6 5 8 5 10	7 31 7 29 7 27 7 25 7 23	4 57 4 59 5 1 5 3 5 5
11 12 13 14 15	7 5 7 3 7 2 7 1 6 59	5 24 5 25 5 27 5 28 5 29	7 IO 7 8 7 6 7 4 7 3	5 19 5 21 5 23 5 24 5 26	7 13 7 12 7 10 7 8 7 6	5 16 5 17 5 19 5 21 5 22	7 18 7 16 7 14 7 12 7 10	5 11 5 13 5 15 5 17 5 18	7 21 7 19 7 18 7 16 7 14	5 7 5 9 5 10 5 12 5 14
16 17 18 19 20	6 58 6 56 6 55 6 53 6 52	5 31 5 32 5 34 5 35 5 36	7 I 7 0 6 58 6 56 6 54	5 27 5 29 5 30 5 32 5 33	7 5 7 3 7 1 6 59 6 58	5 24 5 26 5 27 5 29 5 30	7 9 7 7 7 5 7 3 7 1	5 20 5 22 5 23 5 25 5 27	7 12 7 10 7 9 7 7 7 5	5 16 5 18 5 19 5 21 5 23
21 22 23 24 25	6 50 6 48 6 47 6 45 6 44	5 38 5 39 5 40 5 42 5 43	6 53 6 51 6 49 6 47 6 46	5 35 5 36 5 38 5 39 5 41	6 56 6 54 6 52 6 50 6 49	$\begin{array}{cccc} 5 & 3^2 \\ 5 & 33 \\ 5 & 35 \\ 5 & 36 \\ 5 & 38 \end{array}$	6 59 6 57 6 55 6 53 6 51	5 29 5 30 5 32 5 34 5 35	$\begin{array}{ccc} 7 & 3 \\ 7 & 0 \\ 6 & 58 \\ 6 & 56 \\ 6 & 54 \end{array}$	5 25 5 27 5 29 5 31 5 33
26 27 28	6 42 6 40 6 38	5 44 5 45 5 47	6 44 6 42 6 41	5 42 5 43 5 45	6 47 6 45 6 43	5 39 5 41 5 42	6 49 6 48 6 45	5 37 5 38 5 49	6 51 6 49 6 47	5 34 5 36 5 38

FEBRUARY

MARCH

	Latitu	de 44°	Latitude	e 46°	Latitud	e 48°	Latitude 50°	Latitude 52°
Day of Month	Sunrise	Sunset	Sunrise S	Sunset	Sunt se	Sunset	Sunrise Sunset	Sunrise Sunset
I 2 3 4 5	h m 6 37 6 35 6 34 6 32 6 30	h m 5 48 5 49 5 50 5 52 5 53	h m 1 6 39 6 37 6 35 6 33 6 31	h m 5 46 5 47 5 49 5 50 5 5 ²	h m 6 41 6 39 6 37 6 35 6 33	h m 5 44 5 45 5 47 5 48 5 50	h m h m 6 43 5 42 6 41 5 44 6 39 5 45 6 37 5 47 6 35 5 48	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
6 7 8 9 10	6 28 6 26 6 25 6 23 6 21	$\begin{array}{cccc} 5 & 55 \\ 5 & 56 \\ 5 & 57 \\ 5 & 58 \\ 6 & 0 \end{array}$	6 30 6 28 6 26 6 24 6 22	5 53 5 54 5 56 5 57 5 59	6 31 6 29 6 27 6 25 6 23	5 51 5 53 5 54 5 56 5 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 13 14 15	6 19 6 18 6 16 6 14 6 12	6 1 6 2 6 4 6 5 6 6	6 20 6 18 6 16 6 15 6 13	6 0 6 1 6 3 6 4 6 5	6 21 6 19 6 17 6 15 6 13	5 59 6 0 6 2 6 3 6 5	6 22 5 58 6 20 6 0 6 18 6 2 6 15 6 3 6 13 6 5	6 23 5 57 6 21 5 59 6 19 6 1 6 16 6 3 6 14 6 4
16 17 18 19 20	6 10 6 8 6 7 6 5 6 3	6 7 6 8 6 10 6 11 6 12	6 11 6 9 6 7 6 5 6 3	67 68 69 611 612	6 II 6 9 6 7 6 5 6 3	6 6 6 8 6 9 6 11 6 12	6 11 6 6 6 9 6 8 6 7 6 9 6 5 6 11 6 3 6 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 22 23 24 25	6 I 5 59 5 58 5 56 5 54	6 13 6 14 6 16 6 17 6 18	6 I 5 59 5 57 5 55 5 53	6 14 6 15 6 16 6 17 6 19	6 I 5 59 5 56 5 54 5 52	6 14 6 15 6 17 6 18 6 20	$\begin{array}{c ccccc} 6 & 0 & 6 & 14 \\ 5 & 58 & 6 & 16 \\ 5 & 56 & 6 & 17 \\ 5 & 54 & 6 & 19 \\ 5 & 52 & 6 & 20 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 27 28 29 30	5 5 ² 5 5 ⁰ 5 48 5 47 5 45	6 19 6 21 6 22 6 23 6 24	5.51 5 49 5 47 5 46 5 44	6 20 6 22 6 23 6 24 6 25	5 50 5 48 5 46 5 44 5 42	6 21 6 23 6 24 6 26 6 27	5 50 6 22 5 47 6 24 5 45 6 25 5 43 6 27 5 41 6 28	5 48 6 24 5 46 6 26 5 43 6 27 5 41 6 29 5 39 6 31
31	5 43	6 25	5 42	6 27	5 40	6 28	5 38 6 30	5 36 6 32

APRIL

	Latitu	de 44°	Latituc	le 46°	Latitu	ide 48°	Latitu	de 50°	Latitu	de 52°
Day of Montỳ	Sunrise	Sunset								
I 2 3 4 5	h. m. 5 41 5 39 5 38 5 36 5 34	h. m. 6 27 6 28 6 29 6 30 6 32	h. m. 5 40 5 38 5 36 5 34 5 32	h. m. 6 28 6 30 6 31 6 32 6 33	h. m. 5 38 5 36 5 34 5 32 5 30	h. m. 6 30 6 31 6 33 6 34 6 36	h. m. 5 36 5 34 5 32 5 30 5 28	h. m. 6 31 6 33 6 35 6 36 6 38	h. m. 5 34 5 32 5 30 5 27 5 25	h. m. 6 34 6 36 6 37 6 39 6 41
6	5 32	6 33	5 30	6 34	5 28	6 37	5 26	6 39	5 23	6 43
7	5 30	6 34	5 28	6 36	5 26	6 38	5 24	6 41	5 21	6 44
8	5 29	6 35	5 26	6 37	5 24	6 40	5 21	6 42	5 19	6 46
9	5 27	6 36	5 24	6 39	5 22	6 41	5 19	6 44	5 16	6 48
10	5 25	6 37	5 23	6 40	5 20	6 43	5 17	6 46	5 14	6 49
11	5 24	6 38	5 21	6 41	5 18	6 44	5 15	6 47	5 11	6 51
12	5 22	6 40	5 19	6 43	5 16	6 45	5 13	6 49	5 9	6 53
13	5 20	6 41	5 17	6 44	5 14	6 47	5 11	6 50	5 7	6 54
14	5 18	6 42	5 15	6 45	5 12	6 48	5 9	6 52	5 5	6 56
15	5 17	6 43	5 14	6 46	5 10	6 50	5 7	6 53	5 3	6 58
16	5 15	6 45	5 12	6 48	5 8	6 51	5 5	6 55	5 I	7 0
17	5 13	6 46	5 10	6 49	5 6	6 53	5 2	6 56	4 58	7 I
18	5 11	6 47	5 8	6 50	5 5	6 54	5 1	6 58	4 56	7 3
19	5 10	6 48	5 6	6 52	5 3	6 55	4 59	6 59	4 54	7 5
20	5 8	6 49	5 5	6 53	5 1	6 57	4 57	7 I	4 52	7 6
21	5 7	6 50	5 3	6 54	4 59	6 58	4 55	7 2	4 50	7 8
22	5 5	6 52	5 I	6 56	4 57	7 0	4 53	7 4	4 48	7 10
23	5 3	6 53	4 59	6 57	4 55	7 1	4 50	7 6	4 46	7 11
24	5 2	6 54	4 58	6 58	4 54	7 3	4 49	7 7	4 44	7 13
25	5 0	6 56	4 56	7 0	4 52	7 4	4 47	7 9	4 42	7 14
26	4 59	6 57	4 54	7 I	4 50	7 5	4 45	7 10	4 40	7 16
27	4 57	6 58	4 53	7 2	4 48	7 7	4 43	7 12	4 38	7 18
28	4 56	6 59	4 51	7 3	4 47	7 8	4 41	7 13	4 36	7 19
29	4 54	7 0	4 50	7 5	4 45	7 10	4 39	7 15	4 34	7 21
30	4 53	7 1	4 48	7 6	4 43	7 12	4 3 ⁸	7 16	4 32	7 22

MAY

	Latitu	d e 44°	Latitu	de 46 °	Latitu	de 48 °	Latitu	de 50°	Latitu	de 52°
Day of Monih	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
1	4 51	7 4	4 47	7 0	4 42	7 14	4 30	7 20	4 30	7 26
2	4 50	7 4	4 45	7 10	4 40	7 15	4 34	7 21	4 20	7 20
3	4 40	7 6	4 43	7 11	4 30	7 17	4 34	7 21	4 20	7 27
4	4 41	7 8	4 44	7 12	4 3/	7 18	4 31	7 23	4 24	7 29
5	4 40	10	4 41	1 13	4 35	/ 10	4 29	/ 24	4 22	/ 31
6	4 44	79	4 39	7 14	4 34	7 19	4 27	7 26	4 21	7 33
7	4 43	7 10	4 38	7 15	4 32	7 21	4 20	7 27	4 19	7 34
8	4 4 2	7 11	4 36	7 16	4 31	7 22	4 24	7 29	4 17	7 36
9	4 40	7 12	4 35	7 17	4 29	7 23	4 22	7 30	4 15	7 38
10	4 39	7 13	4 34	7 19	4 28	7 25	4 21	7 32	4 13	7 39
11	4 38	7 14	4 32	7 20	4 26	7 26	4 20	7 33	4 11	7 4 I
I 2	4 37	7 16	4 31	7 21	4 25	7 28	4 18	7 34	4 10	7 42
13	4 36	7 17	4 30	7 23	4 24	7 29	4 16	7 36	4 8	7 44
14	4 35	7 18	4 49	7 24	4 22	7 30	4 15	7 37	4 7	7 45
15	4 34	7 19	4 28	7 25	4 21	7 31	4 14	7 39	4 5	7 47
16	4 32	7 20	4 26	7 26	4 20	7 33	4 12	7 40	4 4	7 48
17	4 31	7 21	4 25	7 27	4 18	7 34	4 11	7 42	4 3	7 50
18	4 30	7 22	4 24	7 28	4 17	7 35	4 10	7 43	4 I	7 51
19	4 30	7 23	4 23	7 30	4 16	7 36	4 8	7 44	4 0	7 52
20	4 29	7 24	4 22	7 31	4 15	7 38	4 7	7 46	3 58	7 54
21	4 28	7 25	4 21	7 32	4 14	7 39	4 6	7 47	3 57	7 55
22	4 27	7 26	4 20	7 33	4 13	7 40	4 5	7 48	3 56	7 56
23	4 26	7 27	4 19	7 34	4 12	7 41	4 4	7 49	3 55	7 58
24	4 25	7 28	4 18	7 35	4 11	7 43	4 3	7 51	3 53	7 59
25	4 24	7 29	4 17	7 36	4 10	7 44	4 2	7 52	3 52	8 1
26	4 24	7 30	4 16	7 37	4 9	7 45	4 0	7 53	3 51	8 2
27	4 22	7 31	4 16	7 38	4 8	7 46	3 50	7 54	3 50	8 2
28	4 22	7 32	4 15	7 30	4 7	7 47	3 58	7 56	3 40	8 5
20	4 22	7 32	4 14	7 40	4 6	7 48	3 58	7 57	3 47	8 6
30	4 21	7 34	4 14	7 41	4 5	7 49	3 57	7 58	3 46	8 8
31	4 21	7 34	4 13	7 42	4 5	7 50	3 56	7 59	3 45	89

Deviat	Latitu	de 44°	Latitud	le 46 °	Latitu	de 48°	Latitu	ie 50°	Latitu	de 52°
Jonth	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
т	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
2	1 10	1 35	4 12	7 43	4 4	7 51	3 50	80	3 45	8 10
3	4 10	7 30	4 12	7 44	4 4	7 52	3 55	0 1	3 44	8 11
4	4 18	7 28	4 11	7 44	4 3	7 52	3 54	8 2	3 44	8 11
5	4 18	7 39	4 10	7 45	4 2	7 53	3 54	8 4	3 43	8 13
6	4 17	7 39	4 10	7 47	4 2	7 55	3 52	8 1	2 42	8 14
7	4 17	7 40	4 10	7 48	4 1	7 56	3 52	8 5	3 43	815
8	4 17	7 41	4 9	7 48	4 I	7 57	3 52	8 6	3 42	8 15
9	4 17	741	4 9	7 49	4 I.	7 57	3 51	8 7	3 41	8 16
10	4 16	7 42	49	7 49	40	7 58	3 51	8 8	3 41	8 17
II	4 16	7 42	49	7 50	4 0	7 59	3 50	8 8	3 41	8 18
12	4 16	7 43	4 9	7 51	4 0	7 50	3 50	8 0	2 41	8 18
13	4 16	7 43	4 8	7 51	4 0	8 0	3 50	8 10	3 40	8 10
14	4 16	7 44	48	7 52	4.0	8 o	3 50	8 10	3 40	8 10
15	4 16	7 44	48	7 52	4 0	8 і	3 50	8 11	3 40	8 20
16	4 16	7 45	48	7 53	4 0	8 I	3 50	8 11	3 40	8 21
17	4 17	7 45	4 8	7 53	4 0	8 2	3 50	8 12	3 40	8 21
18	4 17	7 45	4 8	7 54	4 0	8 2	3 50	8 12	3 39	8 22
19	4 17	7 46	48	7 54	4 0	8 2	3 50	8 12	3 39	8 23
20	4 17	746	48	7 54	4 0	83	3 50	8 13	3 39	8 23
21	4 17	7 46	4 8	7 54	4 0	8 3	3 50	8 13	3 30	8 23
22	4 18	7 46	4 9	7 55	4 0	8 3	3 50	8 13	3 39	8 23
23	4 18	7 46	4 9	7 55	4 I	8 3	3 51	8 13	3 40	8 23
24	4 18	7 47	4 IO	7 55	4 1	8 3	3 51	8 13	3 40	8 23
25	4 18	7 47	4 10	7 55	4 I	83	3 51	8 13	3 40	8 23
26	4 19	7 47	4 10	7 55	4 2	8 3	3 52	8 13	3 41	8 23
27	4 19	7 47	4 11	7 55	4 2	8 3	3 52	8 13	3 41	8 23
28	4 19	7 47	4 11	7 55	4 3	8 3	3 53	8 13	3 42	8 23
29	4 20	7 47	4 I 2	7 55	4 3	8 3	3 53	8 13	3 42	8 23
30	4 20	7 47	4 12	7 54	4 4	8 3	3 54	8 13	3 43	8 23

JULY

	Latitu	d e 44°	Latitu	de 46 °	Latitu	de 48°	Latitu	de 50°	Latitu	ide 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
1	h. m. 4 2 I	h. m.	h. m. 4 13	h. m.	h. m.	h. m. 8 3	h. m.	h. m. 8 12	h. m. 3 44	h. m. 8 23
2	4 21	7 46	4 14	7 54	4 5	8 2	3 56	8 12	3 45	8 2 2
3	4 22	7 46	4 14	7 54	4 6	8 2	3 56	8 1 2	3 46	8 22
4	4 22	7 46	4 15	7 54	4 6	8 2	3 57	8 11	3 47	8 21
5	4 23	7 46	4 15	7 53	4 7	8 2	3 58	8 11	3 48	8 21
6	4 24	7 45	4 16	7 53	4 8	8 і	3 59	8 10	3 48	8 20
7	4 24	7 45	4 17	7 53	4 9	8 1	4 0	8 10	3 49	8 20
8	4 25	7 45	4 18	7 52	4 10	80	4 0	8 9	3 50	8 19
9	4 20	7 44	4 18	7 52	4 10	0 6	4 1	8 9	3 51	0 19
10	4 27	7 43	4 19	7 51	4 11	7 59	4 2	0 0	5 54	0 10
11	4 28	7 43	4 20	7 50	4 12	7 59	4 3	8 7	3 53	8 17
12	4 29	7 42	4 21	7 50	4 13	7 50	4 4	8 6	3 54	8 10
13	4 29	7 42	4 22	7 49	4 14	7 56	4 5	8 5	2 57	8 14
14	4 30	7 41	4 23	7 40	4 15	7 56	4 7	8 4	3 57	8 13
15	4 3*	7 40	4 24	1 40	4 10	1 30	4 /		3.50	3
16	4 32	7 40	+ 25	7 47	4 17	7 55	4 8	8 3	3 59	8 12
17	4 33	7 39	4 26	7 46	4 18	7 54	4 19	8 2	4 0	8 II
18	4 34	7 38	4 27	7 45	4 19	7 53	4 11	8 1	4 2	8 10
19	4 34	7 38	4 28	7 44	4 20	7 52	4 12	7 50	4 3	8 8
20	4 30	7 37	4 29	7 43	4 21	7 51	4 13	1 :9	4 4	00
21	4 37	7 36	4 30	7 42	4 23	7 50	4 15	7 58	4 5	8 7
22	4 38	7 35	4 31	7 41	4 24	7 49	4 10	7 57	4 7	8 5
23	4 39	7 34	4 32	7 40	4 25	7 40	4 17	7 50	4 0	8 2
24	4 40	7 33	4 33	7 39	4 20	7 47	4 10	7 54	4 10	8 7
25	4 40	7 32	4 34	7 30	4 27	7 40	4 20	7 53	4 11	0.
26	4 41	7 31	4 35	7 37	4 28	7 44	4 21	7 52	4 12	8 0
27	4 42	7 30	4 36	7 30	4 30	7 43	4 22	7 50	4 14	7 50
20	4 44	7 29	4 38	7 35	4 31	7 42	4 24	7 49	4 15	7 51
29	4 45	7 20	4 39	7 34	4 32	7 40	4 25	7 41	4 18	7 54
.40	4 40	1 21	4 40	7 33	4 33	1 39	4 20	1 40	4.10	1 54
31	4 47	7 26	4 41	7 32	4 35	7 38	4 28	7 44	4 20	7 52

AUGUST

	Latitu	de 44°	Latitu	de 46°	Latitud	de 48°	Latitu	ide 50°	Latitu	de 52º
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	S unrise	Sunset	S unrise	Sunset
-	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
I	4 40	7 24	4 42	7 30	4 30	7 30	4 29	7 43	4 21	7 40
2	4 49	7 23	4 44	7 29	4 37	7 33	4 31	7 40	4 24	7 49
3	4 50	7 21	4 45	7 26	4 40	7 32	4 33	7 38	4 20	7 45
5	4 52	7 19	4 47	7 24	4 41	7 30	4 35	7 37	4 28	7 43
6	4 53	7 18	4 48	7 23	4 43	7 29	4 36	7 35	4 29	7 4 I
7	4 54	7 17	4 49	7 22	4 44	7 27	4 38	7 33	4 31	7 40
8	4 56	7 15	4 51	7 20	4 45	7 26	4 39	7 32	4 32	7 38
9	4 57	7 14	4 52	7 19	4 46	724	4 40	7 30	4 34	736
10	4 58	7 12	4 53	7 17	4 48	7 22	4 42	728	4 36	7 34
11	4 59	7 11	4 54	7 16	4 49	7 2I	4 44	7 26	4 37	7 32
12	50	7 9	4 56	7 14	4 51	7 19	4 45	7 25	4 39	7 30
13	5 2	7 8	4 57	7 12	4 52	7 17	4 47	7 23	4 40	7 28
14	5 3	76	4 58	7 11	4 53	7 16	4 48	7 21	4 42	7 26
15	5 4	7 5	4 59	79	4 55	7 14	4 50	7 19	4 44	724
16	5 5	7 3	5 I	78	4 56	7 12	4 51	7 17	4 45	7 22
17	5 6	7 2	52	76	4 57	7 10	4 53	7 15	4 47	7 20
18	5 7	70	5 3	74	4 59	79	4 54	7 13	4 48	7 18
. 19	5 8	6 59	54	73	5 0	77	4 55	7 12	4 50	7 10
20	5 10	6 57	56	7 I	52	75	4 57	79	4 52	7 14
2 I	5 11	6 55	57	6 59	53	7 3	4 59	7 7	4 53	7 12
22	5 12	6 54	58	6 57	54	7 I	5 0	75	4 55	7 10
23	5 13	6 52	59	6 56	5 6	6 59	5 2	7 3	4 50	7 8
24	5 14	0 50	5 11	0 54	5 7	0 57	5 3	7 1	4 50	7 0
25	5 15	6 49	5 12	0 52	50	0 50	54	7 0	5 0	/ 4
26	5 16	6 47	5 13	6 50	5 10	6 54	5 6	6 57	5 I	72
27	5 18	6 45	5 14	6 48	5 11	6 52	58	6 55	5 3	7 0
28	5 19	6 44	5 16	0 40	5 12	0 50	5 9	0 53	5 4	058
29	5 20	0 42	5 17	0 45	5 14	0 48	5 10	6 40	5 0	6 50
30	5.21	0 40	5 18	U 43	5 15	0 40	5 12	v 49	5 0	° 54
31	5 22	6 38	5 19	641	5 17	6 44	5 14	6 47	5 10	651

	Latitu	de 44°	Latitud	le 46°	Latitue	le 48°	Latitu	de 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
1 2 3 4	h. m. 5 23 5 24 5 25 5 27	h , m, 6 36 6 35 6 33 6 31	h. m. 5 20 5 22 5 23 5 24	h. m. 6 39 6 37 6 35 6 33	h. m. 5 18 5 19 5 21 5 22	h. m. 6 42 6 40 6 38 6 36	h. m. 5 15 5 16 5 18 5 20	h. m. 6 45 6 43 6 40 6 38	h. m. 5 11 5 13 5 15 5 17	h. m. 6 49 6 46 6 44 6 42
5 6 7 8 9 10	5 20 5 29 5 30 5 31 5 32 5 33	0 29 6 28 6 26 6 24 6 22 6 20	5 20 5 27 5 28 5 30 5 31 5 32	6 31 6 29 6 27 6 26 6 24 6 22	5 23 5 25 5 26 5 27 5 29 5 30	0 34 6 32 6 30 6 28 6 26 6 24	5 21 5 23 5 24 5 25 5 27 5 28	6 36 6 34 6 32 6 30 6 28 6 25	5 19 5 20 5 22 5 24 5 26 5 27	6 39 6 37 6 34 6 32 6 30 6 27
11 12 13 14 15	5 34 5 36 5 37 5 38 5 39	6 19 6 17 6 15 6 13 6 11	5 33 5 34 5 36 5 37 5 38	6 20 6 18 6 16 6 14 6 12	5 31 5 33 5 34 5 36 5 37	6 22 6 20 6 17 6 15 6 13	5 30 5 31 5 33 5 34 5 36	6 23 6 21 6 19 6 17 6 14	5 29 5 30 5 32 5 33 5 33 5 35	6 25 6 23 6 21 6 18 6 16
16 17 18 19 2 0	5 40 5 41 5 42 5 44 5 45	6 9 6 8 6 6 6 4 6 2	5 39 5 41 5 42 5 44 5 45	6 IO 6 8 6 6 6 4 6 2	5 38 5 40 5 41 5 42 5 44	6 11 6 9 6 7 6 5 6 3	5 38 5 39 5 41 5 42 5 43	6 12 6 10 6 8 6 5 6 3	5 36 5 38 5 39 5 41 5 42	6 14 6 11 6 9 6 7 6 4
21 22 23 24 25	5 46 5 47 5 48 5 49 5 50	6 0 5 58 5 56 5 55 5 53	5 46 5 47 5 48 5 5° 5 5 [°] 5 5 [°]	6 0 5 58 5 56 5 54 5 52	5 45 5 47 5 48 5 50 5 51	6 1 5 59 5 56 5 54 5 52	5 45 5 46 5 48 5 50 5 51	6 I 5 59 5 56 5 54 5 52	5 44 5 46 5 48 5 49 5 51	6 2 6 0 5 58 5 55 5 53
26 27 28 29 30	5 52 5 53 5 54 5 55 5 56	5 51 5 49 5 47 5 45 5 43	5 52 5 54 5 55 5 56 5 57	5 50 5 48 5 46 5 44 5 43	5 52 5 54 5 55 5 57 5 58	5 50 5 48 5 46 5 44 5 42	5 52 5 54 5 55 5 57 5 58	5 50 5 48 5 46 5 44 5 41	5 53 5 54 5 56 5 58 5 59	5 51 5 48 5 46 5 44 5 41

SEPTEMBER

OCTOBER

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D. (Latitude 44	Latitude 46°	Latitude 48° Latitu	ude 50° Latitude 52 °
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Day 51 Month	Sunrise Sunse	t Sunrise Sunset	Sunrise Sunset Sunrise	Sunset Sunrise Sunset
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I 2 3 4 5	h m h m 5 58 5 41 5 59 5 40 6 0 5 38 6 1 5 36 6 2 5 34	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h m h m h m 5 39 6 1 5 39 5 37 6 3 5 37 5 35 6 5 5 35 5 33 6 6 5 32 5 31 6 8 5 30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 7 8 9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 12 13 14 15	6 10 5 24 6 11 5 22 6 12 5 20 6 13 5 19 6 15 5 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5 18 6 18 5 17 5 16 6 19 5 15 5 14 6 21 5 13 5 12 6 23 5 10 5 10 6 24 5 8
2I 6 22 5 7 6 25 5 4 6 28 5 1 6 32 4 57 6 35 4 22 6 24 5 6 6 27 5 2 6 30 4 59 6 34 4 56 6 37 4 23 6 25 5 4 6 28 5 1 6 30 4 59 6 34 4 56 6 37 4	16 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 18 5 13 6 20 5 11 6 21 5 9 6 22 5 8 6 24 5 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21 22 23 24 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 25 5 4 6 27 5 2 6 28 5 1 6 30 4 59 6 31 4 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 27 28 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 48 6 44 4 44 4 46 6 46 4 42 4 44 6 48 4 40 4 42 6 50 4 38 4 41 6 52 4 36

										The second s
	Latitu	de 44 °	Latitud	e 46 °	Latitu	de 48°	Latituo	le 50°	Latitu	de 52°
Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Suaset
I 2	h. m. 6 37 6 38	h. m. 451 449	h. m. 6 41 6 42	h. m. 4 46 4 45	h. m. 6 45 6 47	h. m. 4 42 4 41	h. m. 6 50 6 52	h. m. 4 37 4 36	h. m. 6 55 6 57	h. m. 4 33 4 31
3 4 5	6 40 6 41 6 42	4 48 4 47 4 45	6 44 6 45 6 47	4 44 4 42 4 41	6 48 6 50 6 51	4 39 4 38 4 36	6 53 6 55 6 57	4 34 4 32 4 31	659 71 72	4 20 4 27 4 26
6 7 8 9	6 43 6 44 6 46 6 47 6 49	4 44 4 43 4 42 4 41 4 40	6 48 6 49 6 51 6 52 6 54	4 39 4 38 4 37 4 36 4 35	6 53 6 54 6 56 6 58 6 59	4 35 4 33 4 32 4 30 4 20	6 58 7 0 7 2 7 3 7 5	4 29 4 28 4 26 4 25 4 23	7 4 7 6 7 8 7 9 7 11	4 24 4 22 4 21 4 19 4 18
11 12 13 14 15	6 50 6 51 6 53 6 54 6 55	4 38 4 37 4 36 4 35 4 34	6 55 6 56 6 58 6 59 7 1	4 33 4 32 4 31 4 30 4 29	7 I 7 2 7 4 7 5 7 7	4 28 4 26 4 25 4 24 4 23	7 7 7 8 7 10 7 11 7 13	4 22 4 20 4 19 4 18 4 16	7 13 7 15 7 16 7 18 7 20	4 16 4 15 4 13 4 12 4 10
16 17 18 19 20	6 57 6 58 6 59 7 0 7 2	4 33 4 32 4 32 4 31 4 30	7 2 7 4 7 5 7 6 7 8	4 28 4 27 4 26 4 25 4 24	7 8 7 10 7 12 7 13 7 14	4 21 4 20 4 19 4 18 4 17	7 15 7 16 7 18 7 20 7 21	4 15 4 14 4 13 4 11 4 10	7 21 7 23 7 25 7 26 7 28	4 9 4 7 4 6 4 5 4 4
21 22 23 24 25	7 3 7 4 7 6 7 7 7 8	4 29 4 28 4 28 4 28 4 27 4 26	7 9 7 10 7 12 7 13 7 14	4 23 4 22 4 22 4 21 4 21 4 20	7 15 7 17 7 19 7 20 7 21	4 17 4 16 4 15 4 14 4 13	7 23 7 24 7 26 7 28 7 29	4 9 4 8 4 7 4 6 4 5	7 30 7 32 7 33 7 35 7 37	4 3 4 2 4 0 3 59 3 58
26 27 28 29 30	7 9 7 10 7 12 7 13 7 14	4 26 4 25 4 25 4 24 4 24	7 16 7 17 7 18 7 19 7 21	4 19 4 19 4 18 4 18 4 18 4 17	7 23 7 24 7 25 7 27 7 28	4 12 4 12 4 11 4 10 4 10	7 31 7 32 7 33 7 35 7 36	4 4 4 4 4 3 4 2 4 2	7 38 7 40 7 41 7 43 7 44	3 57 3 56 3 55 3 55 3 55 3 54

NOVEMBER

	Latitu	de 44°	Latitude 46°		Latitu	de 48°	Latitu	de 50°	Latitude 52°		
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	S unrise	Sunset	S unrise	Sunset	
I 2 3 4 5	h m 7 15 7 16 7 17 7 18 7 19	h m 4 23 4 23 4 23 4 23 4 23 4 22	h m 7 22 7 23 7 24 7 25 7 26	h m 4 16 4 16 4 16 4 16 4 16 4 15	h m 7 29 7 31 7 32 7 33 7 33 7 34	h m 4 9 4 9 4 8 4 8 4 8 4 8	h m 7 37 7 39 7 40 7 41 7 42	h m 4 I 4 I 4 0 4 0 3 59	h m 7 46 7 47 7 48 7 50 7 51	h m 3 54 3 53 3 52 3 52 3 51	
6 7 8 9 10	7 20 7 21 7 22 7 23 7 24	4 22 4 22 4 22 4 22 4 22 4 22	7 27 7 29 7 30 7 30 7 31	4 15 4 15 4 15 4 15 4 15 4 15	7 35 7 36 7 37 7 37 7 37 7 38	4 8 4 7 4 7 4 7 4 7 4 7	7 43 7 45 7 46 7 47 7 48	3 59 3 59 3 59 3 59 3 58 3 58	7 53 7 54 7 55 7 56 7 57	3 51 3 50 3 50 3 50 3 50 3 50	
11 12 13 14 15	7 25 7 26 7 26 7 27 7 27 7 28	4 22 4 22 4 22 4 22 4 22 4 23	7 32 7 33 7 34 7 35 7 3 ⁶	4 15 4 15 4 15 4 15 4 15 4 15	7 40 7 41 7 42 7 43 7 44	4 7 4 7 4 7 4 7 4 7 4 7	7 49 7 50 7 51 7 52 7 53	3 58 3 58 3 58 3 58 3 58 3 58 3 58	7 58 7 59 7 59 8 0 8 1	3 50 3 50 3 49 3 49 3 49 3 49	
16 17 18 19 20	7 29 7 30 7 30 7 31 7 31 7 31	4 23 4 23 4 24 4 24 4 24 4 24	7 36 7 37 7 38 7 38 7 38 7 39	4 15 4 16 4 16 4 16 4 16 4 17	7 44 7 45 7 46 7 46 7 46 7 47	4 7 4 8 4 8 4 8 4 8 4 9	7 53 7 54 7 55 7 55 7 55 7 5 ⁶	3 58 3 59 3 59 3 59 3 59 4 0	8 2 8 3 8 4 8 4 8 4 8 5	3 49 3 49 3 50 3 50 3 51	
21 22 23 24 25	7 32 7 32 7 33 7 33 7 33 7 34	4 25 4 25 4 26 4 27 4 27 4 27	7 39 7 40 7 40 7 41 7 41 7 41	4 17 4 18 4 18 4 19 4 20	7 47 7 48 7 48 7 49 7 49 7 49	4 9 4 10 4 10 4 11 4 12	7 5 ⁶ 7 57 7 57 7 58 7 58 7 58	4 0 4 I 4 I 4 2 4 3	8 5 8 6 8 6 8 7 8 7 8 7	3 51 3 52 3 52 3 53 3 53 3 53	
26 27 28 29 30	7 34 7 34 7 34 7 35 7 35 7 35	4 28 4 28 4 29 4 30 4 31	7 42 7 42 7 42 7 42 7 42 7 42 7 42	4 20 4 21 4 22 4 22 4 22 4 23	7 50 7 50 7 50 7 50 7 50 7 50	4 I2 4 I3 4 I4 4 I5 4 I6	7 58 7 59 7 59 7 59 7 59 7 59	4 3 4 4 4 5 4 6 7	8 8 8 8 8 8 8 8 8 8 8 8	3 54 3 54 3 55 3 56 3 57	
31	7 35	4 32	7 42	4 24	7 50	+ 17	7 59	4 8	88	3 58	

DECEMBER

THE PLANETS DURING 1930

In the following notes on the planets a general account of the phenomena resulting from their motions is given. Fuller details regarding any particular phenomenon will be found on the pages headed "The Sky for the Month" (pages 28, $30, \ldots$).

Mercury

Among the planets Mercury is notable in several respects. It is the smallest in diameter, the smallest in mass, the nearest to the sun and the swiftest in its orbital motion. It also has the most eccentric orbit, with the greatest inclination to the ecliptic

Its apparent separation from the sun is never great, its maximum values ranging from 18° to 28°. In the year 1930, it reaches greatest elongation seven times. At such times, when we search for it, in the west just after sunset, or in the east just before sunrise, it is never high above the horizon, and even with clear sky, the planet is not easily located although it is as bright as a first magnitude star.

Fig. 1. ORBITS OF THE EARTH AND MERCURY. This diagram shows the relative positions of the earth and Mercury during the period April 15 to July 4, 1930. The planet reaches greatest elongation when the line from the earth to it is tangent to its orbits. This occurs on April 27 (eastern) and June 14 (western).

On account of the inclination of the ecliptic to the horizon, Mercury is usually best seen, in northern latitudes, as an evening star in the spring and as a morning star in the autumn.

The greatest eastern elongations in 1930 (Mercury, an evening star), are on January 5, 19° 15', April 27, 20° 35', August 25, 27° 20', December 20, 20° 11'.

The greatest western elongations (Mercury, a morning star), are on February 15, 26° 14', June 14, 23° 16', October 7, 17° 58'.

The April elongation is the best of the year for evening observation, while the elongation of June is the most suitable for morning observation.

VENUS

At the beginning of the year, Venus is seen as a morning star, slowly moving toward the sun, until February 6, when it is in superior conjunction with the sun. Shortly after conjunction, it is visible as an evening star and continues as an evening star throughout the summer and early fall. On September 13, it has its greatest elongation, east 46° 22', and on October 18 it attains its greatest brilliancy, magnitude -4.3. At this time the telescope reveals its phase as nearly half moon (third Quarter) Following this, Venus gradually draws in toward the sun and reaches inferior conjunction November 22, after which it becomes a morning star. Venus, for the second time in the year, reaches its greatest brilliancy December 28, magnitude -4.4, fifteen times as bright as Sirius.

Fig. 2. PATH OF VENUS AMONG THE STARS FROM AUGUST 1 TO DECEMBER 31, 1930.

Mars

Mars was in opposition on December 21, 1928, and as opposition occurs approximately every 780 days, next opposition will be in February 1931. At the beginning of the year Mars is in the constellation Sagittarius, and is not visible, on account of its proximity to the sun, until nearly the middle of the year, when it appears as a morning star about July 1. Its magnitude then is 1.3, slightly brighter than Polaris, and grows gradually brighter, reaching magnitude -0.6at the end of the year. (See Fig. 3 on p. 3 of cover).

JUPITER

Jupiter, the next planet beyond Mars, is easily the largest and most massive of all the planets, and in brightness it is second only to Venus.

A small telescope will give a good view of the planet since a magnification of 60 diameters gives to it an apparent diameter equal to that of the moon as seen by the naked eye. Bands are seen on the planet's surface, parallel to the equator. They are believed to be clouds, though they are much more permanent than the cloud formations on the earth's surface.

Jupiter is known to possess nine moons. The four largest (two of them larger than Mercury) can be seen with field glasses, but the others are extremely faint bodies and require the most powerful instruments to detect them.

In January Jupiter crosses the meridian about 9.30 p.m., and for several months it can be seen in the evening. On June 20, it is in conjunction with the sun, after which it is a morning star.

Fig. 4. PATH OF JUPITER AMONG THE STARS DURING 1930.

SATURN

Saturn possesses a remarkable set of rings and has nine satellites. It is considered to be one of the finest objects in the sky for the visual astronomer. During 1930, the rings of Saturn are still well placed for examination.

Saturn is a morning star in early spring, and gradually improves its position for observation. On June 30, it is in opposition to the sun and is visible the entire night. During the latter part of the year Saturn is an evening star but by December it is too close to the sun, being in conjunction with the sun January 5th, 1931.

Fig. 5. PATH OF SATURN AMONG THE STARS DURING 1930.

Uranus

Uranus was discovered by Sir William Herschel in 1781. Before that time Saturn's path was considered the outermost boundary of the solar system, and when the planet was first seen by Herschel he thought it must be a comet. A year later its true nature was recognized.

The period of Uranus about the sun is 84 years, and consequently its motion in the heavens is slow. Its period of rotation is $10\frac{3}{4}$ hours. It is of the sixth magnitude and can be seen with the naked eye, but its motion is better observed by the aid of a field glass. A large telescope is necessary to show an appreciable disc. Uranus is in conjunction with the sun on April 1, some time later it is visible in the morning. On October 7, it is in opposition to the sun and is visible the entire night.

Neptune

Neptune was discovered in 1846 as the result of the mathematical discussion of the planet Uranus, which, for some unknown reason, was not following the path predicted for it. The story of the discovery is one of the most interesting romances in the history of astronomy.

Neptune is the most distant planet of the solar system, being 2,800 millions of miles from the sun and requiring 165 years to complete a revolution.

Neptune is in opposition with the sun February 21, and is visible all night at the beginning of the year. On August 27 it is in conjunction with the sun and is not visible. Neptune appears as an eighth magnitude star and hence can be seen only with a telescope. It has a single satellite.

ECLIPSES, 1930

In the year 1930 there will be four eclipses, two of the sun and two of the moon.

I. A Partial Eclipse of the Moon, April 12-13. This is a comparatively small eclipse, only one-ninth of the moon's diameter being covered. The beginning is visible in the southwestern part of Europe, the northwestern part of Africa, the Atlantic Ocean, North America, South America, and the Pacific Ocean except the western part; the ending is visible generally in the Atlantic Ocean, North America, and the Pacific Ocean except the western part.

Circumstances of the Eclipse

Moon enters penumbra	April	13d	3h	42.9m	G.C.T.
Moon enters umbra		13	5	20.7	
Middle of eclipse		13	5	58.2	
Moon leaves umbra		13	6	35.6	
Moon leaves penumbra		13	8	13.8	
Magnitude of eclipse, 0.111 (Moon's	diame	ter,	1.0))	

II. A Central Eclipse of the Sun, April 28. Visible in all parts of North America as a total, annular or partial eclipse. The central path begins far out in the Pacific Ocean, enters California near San Francisco, passes near Boise City, Idaho, and Helena, Mont., enters Saskatchewan at Long. 106W., passes near Broadview, Sask., and Dauphin, Man., crosses Lake Winnipeg, reaching the eastern shore near the mouth of Berens River, enters Hudson Bay in Long. 85° , crosses the Belcher Islands and reaches the Atlantic Ocean near Nain, Labrador. The eclipse will be total for about 38 min. at the middle of its duration, the greatest duration of the total phase being 1.5 sec. For the rest of the time the eclipse will be annular.

Fig. 6. THE SOLAR ECLIPSE OF APRIL 28. The appearance of the eclipse at Torontc. Greatest eclipse at 3.19 p.m., E.S.T., .64 per cent of the sun's diameter being covered.

In Toronto the eclipse begins at 2.00 and ends at 4.29 p.m., E.S.T. Sun's altitude at beginning 52° ; at end, 28° . Greatest eclipse at 3.19 p.m., when 64% of the sun's diameter will be covered. See Fig. 6. (Further information will be published in the JOURNAL for February, 1930.)

III. A Partial Eclipse of the Moon, October 7, invisible in North and South America. The entire eclipse is visible generally in Asia, Australia, the Indian Ocean, Europe and Africa.

Circumstances of the Eclipse

Moon enters penumbraOct.	7d	16h	41.3m	G.C.T.		
Moon enters umbra	7	18	46.2			
Middle of the eclipse	7	19	6.5			
Moon leaves umbra	7	19	27.0			
Moon leaves penumbra	7	21	31.9			
Magnitude of the eclipse, 0.029 (Moon's diameter, 1.0).						

IV. A Total Eclipse of the Sun, Oct. 22. Invisible in North America. The path of totality lies in the Pacific Ocean. It begins north of New Guinea and ends at Patagonia. The only land on which the total eclipse is visible (excepting the mere dot of Nurakita, (179° 30' E., 10° 45' S.), is the island of Niuafou, about 250 miles from Samoa, in Long. 175° 41' W., Lat. 15° 35' S. Totality begins at this place at 9.09 a.m. (local time) and lasts 83 sec.; sun's altitude 52°.

THE SKY FOR JANUARY, 1930

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During January the sun's R.A. increases from 18h 43m to 20h 55m, and its Decl. changes from 23° 5' S. to 17° 22' S. The equation of time (see p. 6) increases from 3m 13s to 13m 36s. Due to this rapid rise in value the time of mean noon appears, for the first ten days of the month, to remain at the same distance from the time of sunrise, that is the forenoons as indicated by our clocks are of the same length. On the 20th, the sun enters the sign Aquarius, the second winter sign of the zodiac. On January 3rd, the earth is in perihelion.

The Moon—For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 20h 40m, Decl. 16° 54' S, and transits at 13.00. It reaches its greatest elongation east on the 5th, but is not very favourably situated for observation. At sunset it is in the S.W. about 5° above the horizon. It sets about 40 minutes after the sun. On the 21st, it is in inferior conjunction with the sun, and is too close to it for observation.

Venus on the 15th is in R.A. 19h 21m, Decl. 22° 46' S, and transits at 11.47. During the most of the month Venus is too close to the sun to be observed.

Mars on the 15th is in R.A. 18h 55m, Decl. $23^{\circ} 39'$ S, and transits at 11.19. It is a morning star in the constellation of Sagittarius, but too close to the sun for observation.

Jupiter on the 15th is in R.A. 4h 20m, Decl. 20° 50' N, and transits at 20.41. It is an evening star in the constellation of Taurus. Its magnitude decreases from -2.3 to -2.1 during January. On the 15th the planet is about 35° above the eastern horizon at sunset and is well situated for observation. For the configurations of its satellites, see next page and for their eclipses, etc. see p. 52.

Saturn on the 15th is in R.A. 18h 23m, Decl. $22^{\circ} 35'$ S, and transits at 10.46. It is a morning star, but too close to the sun for observation. It is in the constellation of Sagittarius.

Uranus on the 15th is in R.A. 0h 30m, Decl. $2^{\circ} 28'$ N, and transits at 16.51. Neptune on the 15th is in R.A. 10h 21m, Decl. $10^{\circ} 57'$ N, and transits at 2.45.

JANUARY

ASTRONOMICAL PHENOMENA

Minima of Algol Onfigurations of Jupiter's Satellites at 22,4,30m

(75th Meridian Civil Time)

				h	m	
	Wed.	1	9h 54m ♂ ♀ ④ , ♀ 3° 23′ N			1304*
	Thur.	2	$12h\sigma \varphi \sigma^{1}, \varphi O^{\circ} 33' N$			01234
	Fri.	3	$2h \circ \varphi \phi$, $\varphi 0^{\circ} 57' S$.; $7h \oplus in \dots$	13	40	12034
			Perihelion, 91,347,000 miles; 13ho o b, o 1° 28' S.			
	Sat.	4	••••••••••••••••			20134
	Sun.	5	19h & Greatest elong. E., 19° 15'			13024
	Mon.	6		10	20	30124
Ð	Tues.	7	2h 30mơ ô 🕻 ,ô 2° 14′ N.; 22h 10.8m			32104
			Moon F.Q.			
	Wed.	8	· · · · · · · · · · · · · · · · · · ·			d342O
	Thur.	9	20h & in Q	7	10	40132
	Frí.	10	······································			412O3
	Sat.	11	15h 8m of 21 (C, 24 3° 4' S			42013
	Sun.	12	11h & Stationary	4	00	41302
	Mon.	13				43012
C	Tues.	14	11h & in Perihelion; 17h 21.0m F.M			43210
	Wed.	15		0	50	43201
	Thur.	16	,			O432*
	Fri.	17	$4h 28m \checkmark \Psi \mathbb{Q}, \Psi 4^{\circ} 15' S$	$21 \cdot$	40	d1043
	Sat.	18	•••••••••••••••••••••••••••••••••••••••			20134
	Sun.	19				d1024
_	Mon.	20		18	30	30124
C	Tues.	21	11h 7.0m Moon L.Q.; 20h♂ ♀ ⊙, Inferior			32104
	Wed.	22	$23h_{0}$ $\& Q \ $, $\& 4^{\circ} 25' \ $ N			32014
	Thur.	23		15	20	O324*
	Fri.	24	18h Ø Greatest Hel. Lat. N			10243
	Sat.	25				24013
	Sun.	26	19h 53m $\sigma' p @, p 5^{\circ} 1' N \dots$	12	10	41032
	Mon.	27				43012
	Tues.	28	3h 33m O O' Q, O' 3° 57' N; 5h 0m O' Q Q, Q 8° 23' N;			10010
-	117.1	00	$10n\sigma \ Q\sigma', Q \ 4^{\circ} 22' \ N$	•	~~	43210
	wed.	29	$(n 29mO \neq 0, \forall 4^{\circ} 2' N; 14h 7.4m, N.M$	9	00	43201
	Thur.	30				41032
	Fri.	31	9h '4 Stationary			d4O23

Explanation of symbols and abbreviations on page 4

THE SKY FOR FEBRUARY, 1930

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During February the sun's R.A. increases from 20h 55m to 22h 45m and its Decl. changes from $17^{\circ} 22'$ S. to $7^{\circ} 56'$ S. The equation of time reaches a maximum value of 14m 23s on the 12th (see p. 6). For the change in the length of the day see p. 11. On the 19th the sun enters-the third winter zodiacal sign, Pisces.

The Moon—For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 20h 6m, Decl. 19° 54' S, and transits at 10.29. Ln the 15th it reaches its greatest elongation west. On this date it rises about 1 hour before the sun.

Venus on the 15th is in R.A. 22h 1m, Decl. 13° 37' S, and transits at 12.25. It is in superior conjunction with the sun on the 6th, and is not in good position for observation all month.

Mars on the 15th is in R.A. 20h 36m, Decl. 19° 40' S, and transits at 10.59. On that date it rises about 50 minutes before the sun, and is in the constellation of Capricornus.

Jupiter on the 15th is in R.A. 4h 20m, Decl. 20° 56' N, and transits at 18.39. Though its magnitude is decreasing, it is still a bright object in the sky, visible all night in the constellation of Taurus. On the 26th it is in quadrature with the sun. For the configurations of its satellites see next page, and for their eclipses etc., see p. 52.

Saturn on the 15th is in R.A. 18h 37m, Decl. 22° 26' S, and transits at 8.58. It is in the constellation of Sagittarius and rises about $2\frac{1}{2}$ hours before the sun on the 15th.

Uranus on the 15th is in R.A. 0h 34m, Decl. 2° 55' N, and transits at 14.54. Neptune on the 15th is in R.A. 10h 18m, Decl. 11° 15' N, and transits at 0.41.

FEBRUARY

ASTRONOMICAL PHENOMENA

Minima of Algol Configurations of Jupiter's Satellites at

			~ ~ 4			<u>~</u>	m•• \	
- 1	·/ n	+ -	- 11/1	0 * 10	110 m	1 1 1 7 1 1	110001	
٠.	14	<i>i</i> u	111		nan	CIVII.	I IIIIC/	
							/	

			h m	
	Sat.	1		3*
	Sun.	2	7h \clubsuit Stationary; 9h \clubsuit in Aphelion	3*
	Mon.	3	10h 19mo 👌 🕻 , 👌 1° 54' N	24
	Tues.	4)4
	Wed.	5	320	14
Ð	Thur.	6	12ho Q O, Superior; 12h 25.8m Moon, F.Q 23 20 103	24
	Fri.	7	23h 17m of 24 (, 24 3° 10′ S 012	34
	Sat.	8	203	4*
	Sun.	9		34
	Mon.	10	304	12
	Tues.	11		20
	Wed.	12)1
E	Thur.	13	3h 38.6m F.M.; 14h $43m\sigma' \Psi \oplus \psi \oplus$)2
	Fri.	14	4012	23
	Sat.	15	4h & Greatest elong. W., 26° 14' 13 50 4210)3
	Sun.	16)3
	Mon.	17	$5h \notin in \heartsuit$	12
	Tues.	18		0
	Wed.	19		14
C	Thur.	20	3h 44.4m Moon L.Q 13O2	24
	Fri.	21	$8h_{\mathcal{O}}^{\mathcal{O}} \Psi \odot \dots 7 30 O123$	34
	Sat.	22		34
	Sun.	23	7h 20mo b 🕼 , b 5° 19' N d2O3	34
	Mon.	24	17h Q Greatest Hel. Lat. S 4 20 3024	4*
	Tues.	25		24
	Wed.	26	1h 30mơ 🛱 🕻 , 🛱 3° 58′ N.; 6h 25mơ ở 🕻 ,ở 4° 6′ N.;	
			$15h \square 2 \odot \dots 3201$	14
	Thur.	27	11h \$\overline{2}\$ in Aphelion 1 10 1340)*
	Fri.	28	8h 32.7m N.M.; 17h 56m $\sigma' \heartsuit (\bigcirc 2^{\circ} 40' \text{ N} \dots)$ 4013	32

Explanation of symbols and abbreviations on page 4

THE SKY FOR MARCH, 1930

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During March the sun's R.A. increases from 22h 45m to 0h 39m. and its Decl. changes from 7° 56' S to 4° 10' N. The equation of time decreases from 12m 40s to 4m 14s (see p. 6). For changes in the length of the day see p. 12. On the 21st at 8h 30m (G.C.T.) the sun enters the first spring sign of the zodiac, Aries and Spring begins.

The Moon-For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 22h 43m, Decl. $10^{\circ} 32'$ S, and transits at 11.17. It is a morning star, and rises about $1\frac{1}{4}$ hours after the sun. By the end of the month it is too close to the sun for observation.

Venus on the 15th is in R.A. 0h 11m, Decl. 0° 9' S, and transits at 12.44. It is now an evening star, setting about 50 minutes after the sun, on the 15th.

Mars on the 15th is in R.A. 22h 3m, Decl. 13° 10' S, and transits at 10.35. About the middle of the month it enters the constellation of Aquarius. It is still a morning star, though not well placed for observation.

Jupiter on the 15th is in R.A. 4h 30m, Decl. 21° 25' N, and transits at 17.00. It is in Taurus, and on the 15th sets about 5 hours after the sun. Its stellar magnitude drops to -1.7 at the end of the month. For the configurations of its satellites see next page, and for their eclipses etc., see p. 52.

Saturn on the 15th is in R.A. 18h 46m, Decl. 22° 17' S, and transits at 7.17. It is in Sagittarius, and at sunrise on the 15th it is about 20° above the southern horizon.

Uranus on the 15th is in R.A. 0h 39m, Decl. 3° 29' N, and transits at 13.10. Neptune on the 15th is in R.A. 10h 16m, Decl. 11° 31' N and transits at 22.44.

MARCH

Minima of Algol Onfigurations of Jupiter's Satellites at

ASTRONOMICAL PHENOMENA

(75th Meridian Civil Time)

				h	m	
	Sat.	1	17hơ ਊơ ¹ , ਊ 0° 31' S	21	50	42103
	Sun.	2	18h 35m♂ ô €, ô 1° 37′ N			42013
	Mon.	3				d402*
	Tues.	4		18	40	43102
	Wed.	5				43201
	Thur.	6				4310*
Ð	Fri.	7	9h 4mơ 24 🕼 , 24 3° 27' S.; 23h 0.3m Moon, F.Q	15	30	40312
	Sat.	8				12043
	Sun.	9				20134
	Mon.	10		12	20	10324
	Tues.	11				d3O24
	Wed.	12				32014
	Thur.	13	0h 10mơ Ψ @, Ψ 4° 13′ S	9	10	31204
E	Fri.	14	13h 58.4m F.M			0124*
	Sat.	15				12043
	Sun.	16		6	00	24013
	Mon.	17				41032
	Tues.	18				43012
	Wed.	19	19h & Greatest Hel. Lat. S	2	50	4320*
	Thur.	20				43210
Ø	Fri.	21	3h 30m ⊙ enters Ŷ, Spring commences; 4h ♂ ♀ ô,			
			♀ 0° 32′ S.; 22h 12.6m Moon L.Q	23	40	4012*
	Sat.	22	18h 6m♂ ♭ €, ♭ 5° 34′ N			d41O3
	Sun.	23	·····			24013
	Mon.	24	·····	20	30	10423
	Tues.	25	•••••••••••••••••••••••••••••••••••••••			30124
	Wed.	26	•••••••••••••••••••••••••••••••••••••••			3204*
	Thur.	27	11h 1mơ ơ 🕻 ,ơ 3° 24′ N	17	10	32104
	Fri.	28	13ho ⁴ Greatest Hel. Lat. S			30124
	Sat.	29	18h 25m 🗸 🖞 🕻 , 🖇 1° 6′ N			10234
C	Sun.	30	0h 46.4m N.M.; 4h 15mơ ô 🕻 , ô 1° 27' N	14	00	20134
	Mon.	31	3h 6mơ ♀ €,♀ 0° 4′ N	•		1034*

Explanation of symbols and abbreviations on page 4

THE SKY FOR APRIL, 1930

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During April the sun's R.A. increases from 0h 39m to 2h 30m, and its Decl. from 4° 10' N to 14° 47' N. The equation of time changes from +4m14s to -2m 51s (see p. 6). For changes in the length of the day see p. 13. On the 20th the sun enters Taurus, the second spring zodiacal sign. On the 28th there is a central eclipse of the sun, visible here as a partial eclipse.

The Moon—For its phases and conjunctions with the planets, see opp. page. On the 13th there is a partial eclipse of the moon, visible in North America.

Mercury on the 15th is in R.A. 2h 22m, Decl. $15^{\circ} 32'$ N, and transits at 12.55. On the 1st it is in superior conjunction with the sun. It reaches its greatest elongation east on the 27th, and is then about 20° above the horizon at sunset. It is in good position for observation in the N.W., settling about 2 hours after the sun.

Venus on the 15th is in R.A. 2h 34m, Decl. 14° 50' N, and transits at 13.05. The planet is well in view all month, as an evening star. Its magnitude drops from -3.4 to -3.3. On the 15th it may be seen 15° above the western horizon at sunset.

Mars on the 15th is in R.A. 23h 34m, Decl. 4° 5' S, and transits at 10.04. About the middle of the month it enters the constellation of Pisces. It may be seen in the south east shortly before sunrise.

Jupiter on the 15th is in R.A. 4h 51m, Decl. 22° 10' N, and transits at 15.19. At sunset on the 15th, it is about 40° above the western horizon. It is in the constellation of Taurus. For the configurations of its satellites see next page, and for their eclipses etc., see p. 52.

Saturn on the 15th is in R.A. 18h 51m, Decl. 22° 11' S, and transits at 5.20. It is a morning star in Sagittarius, and rises about $3\frac{1}{4}$ hours before the sun on the 15th. It is in quadrature with the sun on the 2nd.

Uranus on the 15th is in R.A. 0h 45m, Decl. 4° 11' N, and transits at 11.13. Neptune on the 15th is in R.A. 10h 13m, Decl. 11° 45' N and transits at 20.40.
APRIL

ASTRONOMICAL PHENOMENA

Minima of Algol onfigurations of Jupiter's Satellites 20h 45m

	(75th Meridian Civil Time)	•		ပိုိ
		h	m	
Tues. 1	8h ♂ ♥ ⊙, Superior; 9h ♂ ♥ ô, ♥ 0° 26' S.; 14h			
	$\sigma \diamond \odot; 20h \Box \flat \odot \dots \dots$			30412
Wed. 2	•••••••••••••••••••••••••••••••••••••••	10	50	34210
Thur. 3	21h 11mo 2 C, 2 3° 46' S			d432O
Fri. 4	· · · · · · · · · · · · · · · · · · ·			4302*
Sat. 5	•••••••••••••••••••••••••••••••••••••••	7	40	41023
DSun. 6	6h 24.9m Moon F.Q			42013
Mon. 7	20h ♀ in Ω			4103*
Tues. 8		4	30	43012
Wed. 9	7h 25mσ Ψ 🕻 , Ψ 4° 19' S			34120
Thur. 10				32014
Fri. 11		1	20	3024*
@Sat. 12	10h & in Perihelion	22	10	20134
Sun. 13	0h 48.5m F.M.: Par. ecl. of Ø .visible at Toronto (see			
	p. 26)			10234
Mon. 14	F			12034
Tues. 15				03124
Wed. 16		19	00	31204
Thur. 17				32014
Fri. 18				34012
Sat. 19	$3h 36m\sigma' b \oplus 5^{\circ} 41' N$	15	50	d4032
@ Sun. 20	17h 8.5m Moon L.O.			42013
Mon. 21	10h b Stationary			41203
Tues. 22	$0h Q$ in Q : $4h q' Q Q$, $\theta' Q^{\circ} 27' N$. $8h q^{\circ}$ in Perihelion:			
	17h 8 Greatest Hel Lat. N	12	40	40312
Wed. 23				d4310
Thur, 24				43201
Fri. 25	16h 29m ഗ്രീ (0. ഗ് 1° 51′ N	9	20	43102
Sat. 26	15h 20m (& 1° 19' N	0		4012*
Sun. 27	$3h \propto 8Q$ 8 2° 34' N · 15h 8 Greatest elong F			1012
Sum 21	20° 33'			2043*
Mon. 28	14h 8.4m N.M.: Cent. ecl of \odot visible as par at			-010
-	Toronto (see p. 26)	6	10	21043
Tues, 29	1 of one (oce p. 20)	Ű	10	01324
Wed. 30	4h 14m \checkmark 8 6 \therefore 8 0° 22' N \cdot 6h 5m \checkmark 9 6 \circ 2° 8' S			31024
	······································			01024
	Explanations of symbols and abbreviations on page	4		

THE SKY FOR MAY, 1930

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During May the sun's R.A. increases from 2h 30m to 4h 32m, and its Decl. from $14^{\circ} 47'$ N to $21^{\circ} 56'$ N. The equation of time increases from 2m 51s to a maximum of 3m 49s on the 15th, and then decreases to 2m 32s at the end of the month (see p. 6). For changes in the times of sunrise and sunset see p. 14. The sun enters Gemini, the third sign of the zodiac, on the 21st.

The Moon—For its phases and conjunctions with the planets, see opp. page. Mercury on the 15th is in R.A. 3h 56m, Decl. 20° 47' N, and transits at 12.24.

It is still an evening star at the beginning of the month, but is approaching the sun. On the 20th it is in inferior conjunction with the sun and not in a favourable position for observation during the latter part of the month.

Venus on the 15th is in R.A. 5h 6m, Decl. 23° 51' N, and transits at 13.39. The planet is a brilliant object in the evening sky. On the 15th it sets about 2 hours after the sun.

Mars on the 15th is in R.A. 0h 59m, Decl. 5° 7' N, and transits at 9.30. It is in Pisces, and at sunrise on the 15th is about 15° above the eastern horizon.

Jupiter on the 15th is in R.A. 5h 18m, Decl. $22^{\circ} 49'$ N, and transits at 13.48. It is in Taurus. The planet is approaching the sun, and on the 15th, sets about $2\frac{14}{14}$ hours after it. For the configurations of its satellites see next page, and for their eclipses etc., see p. 52.

Saturn on the 15th is in R.A. 18h 49m, Decl. 22° 14' S, and transits at 3.20. At sunrise on the 15th it is about 20° above the southern horizon, in the constellation of Sagittarius.

Uranus on the 15th is in R.A. 0h 51m, Decl. 4° 47' N and transits at 9.21. Neptune on the 15th is in R.A. 10h 12m, Decl. 11° 49' N and transits at 18.41.

MAY

Minima of Algol Configurations of Jupiter's Satellites at 2004 15m

ASTRONOMICAL PHENOMENA (75th Meridian Civil Time)

				h	m	
	Thur.	1	12h 12mo 24 (C, 24 4° 3' S	3	00	32014
	Fri.	2				3104*
	Sat.	3	· · · · · · · · · · · · · · · · · · ·	23	50	30124
	Sun.	4				2043*
Ð	Mon.	5	11h 53.1m Moon F.Q			21043
	Tues.	6	12h 55m $\checkmark \Psi$ (, Ψ 4° 20' S	20	40	40123
	Wed.	7				413O2
	Thur.	8				43201
	Fri.	9	5h $\$ Stationary	17	30	43120
	Sat.	10				43012
	Sun.	11	$20h\sigma'\sigma^{3}$ $\sigma' 0^{\circ} 29' S.; 10h \Psi$ Stationary			42103
E	Mon.	12	12h 29.3m F.M	14	20	d42O3
	Tues.	13				40123
	Wed.	14				13042
	Thur.	15	······································	11	10	32014
	Fri.	16	4h \emptyset in \mathfrak{G} ; 11h 1m \mathfrak{G} \flat \mathfrak{G} , \flat 5° 37' N			31204
	Sat.	17	$13\sigma' \bigcirc 21, \bigcirc 1^{\circ} 21' \text{ N}$			30124
	Sun.	18		8	00	d1034
	Mon.	19				20134
¢	Tues.	20	0hơ \mathfrak{G} \mathfrak{O} , Inferior; 11h 21.6m Moon L.Q			0234*
	Wed.	21		4	40	d1024
	Thur.	22	$11h \square \Psi \bigcirc \dots \dots$			32401
	Fri.	23				34120
	Sat.	24	2h 58m♂ ô €, ô 1° 7′ N.; 20h 58m♂ ♂ €, ♂ 0° 12′ S.	1	30	43012
	Sun.	25	16h in Perihelion			41023
	Mon.	26	10h & in Aphelion	22	20	42013
	Tues.	27	7h 16mơ 🖞 🕼 , 🖞 5° 11′ S			41023
C	Wed.	28	0h 36.6m N.M			41032
	Thur.	29	6h 0m of 24 🕼 , 24 4° 18' S	19	10	
	Fri.	30	2h 22mơ ♀ ⓓ ,♀ 3° 9′ S			
	Sat.	31				

THE SKY FOR JUNE, 1930

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During June the sun's R.A. increases from 4h 32m to 6h 37m, and its Decl. from 21° 56' N to its maximum value of 23° 27' N on the 21st, and then drops to 23° 11' N at the end of the month. On the 22nd, the sun reaches summer solstice and enters Cancer, the first summer zodiacal sign, and Summer begins. The duration of daylight is now at its longest and does not change appreciably for some days, see p. 15. For changes in the equation of time see p. 6. The increase in this quantity at the end of the month, taken with the shortening of daylight causes the local mean time of sunset to appear almost constant for several days at the end of June and the beginning of July.

The Moon—For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 3h 55 m, Decl. 16° 44' N, and transits at 10.25. On the 14th it reaches its greatest elongation west, and is not favourably situated for observation during the month.

Venus on the 15th is in R.A. 7h 49m, Decl. 22° 56' N, and transits at 14.20. During the month it is well situated for observation. On the 1st, it is about 20° above the western horizon and sets about $2\frac{1}{4}$ hours after the sun.

Mars on the 15th is in R.A. 2h 27m, Decl. 13° 26' N, and transits at 8.56. On that date it rises $2\frac{1}{4}$ hours before the sun. The planet is in the constellation of Aries.

Jupiter on the 15th is in R.A. 5h 48m, Decl. 23° 12' N, and transits at 12.16. The planet is too close to the sun for observation during the month. It is in conjunction with that body on the 20th, after which time it becomes a morning star.

Saturn on the 15th is in R.A. 18h 42m, Decl. $22^{\circ} 23'$ S, and transits at 1.11. It rises about 1 hour after sunset on the 15th and is visible in the southern sky all night. On the 30th the planet is in opposition with the sun.

Uranus on the 15th is in R.A. 0h 56m, Decl. 5° 14' N, and transits at 7.24. Neptune on the 15th is in R.A. 10h 13m, Decl. 11° 41' N, and transits at 16.40.

JUNE

ASTRONOMICAL PHENOMENA

(75th Meridian Civil Time)

				h	m	
	Sun.	1	5h & Stationary	16	00	
	Mon.	2	18h 38m (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			0
Ð	Tues.	3	16h 56.3m Moon F.Q			the
	Wed.	4	~	12	50	of
	Thur.	5				sue
	Fri.	6	· · · · · · · · · · · · · · · · · · ·			2.
	Sat.	7		9	40	ura / 1
	Sun.	8				uly
	Mon.	9				no L
	Tues.	10		6	30	to c
1	Wed.	11	1h 11.7m F.M			23 th
-	Thur.	12	15h 54m (b (b 5° 27' N			y
	Fri.	13	,	3	20	a Se
	Sat.	14	21h & Greatest elong. W., 23° 16'] th
	Sun.	15	19h & Greatest Hel. Lat. S.			on 'to
	Mon.	16	12h 9 Greatest Hel.Lat. N	0	00	fr fr
	Tues.	17				en li
	Wed.	18		20	50	f J1 giv
đ	Thur.	19	4h 0.4m Moon L.O			t o
-	Fri.	20	$11h\sigma 2! \odot : 13h 44m\sigma \land @ . \land 0° 51' N$			nc.
	Sat.	21	$22h 54m \odot$ enters \textcircled{G} . Summer commences	17	40	re Kin
	Sun.	22	$22h 27m \sigma \sigma^2 \oplus \sigma^2 2^\circ 9' S$			ro; a
	Mon.	23				e p tes
	Tues.	24	22h 35m (8 (. 8 5° 25' S	14	30	th
	Wed	25		-		of sat
M	Thur	26	1h 43m ~ 9 6 9 4° 32' S · 8h 46 7m N M			uos s
•	Fri	27		11	20	eas
	Sat	28	$19h 16m \propto Q \oplus Q = 3^{\circ} 16' S$			уr
	Sun	29	101 10110 + 4,+ 0 10 5			В
	Mon	30	$2h 27m \alpha' \Psi \oplus \Psi 4^{\circ} 0' S \cdot 22h \oplus b \odot$	8	10	
		50		0	10	

THE SKY FOR JULY, 1930

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During July the sun's R.A. increases from 6h 37m to 8h 42m, and its Decl. decreases from 23° 11' N to 18° 16' N. The equation of time increases from 3m 26s on the 1st to 6m 22s on the 27th, and then falls to 6m 15s at the end of the month. On the 23rd, the sun enters Leo, the second summer sign of the zodiac. For changes in the length of the day, see p. 16. The earth is in aphelion on the 2nd.

The Moon-For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 7h 33m, Decl. 23° 13' N, and transits at 12.08. On the 1st, Mercury rises about 1 hour before the sun, at a point 30° north of east. It is in superior conjunction with the sun on the 15th.

Venus on the 15th is in R.A. 10h 12m, Decl. 12° 45' N, and transits at 14.44. Its magnitude increases from -3.4 on the 1st to -3.6 on the 31st. It is still to be seen as an evening star, setting about 2 hours after the sun on the 15th.

Mars on the 15th is in R.A. 3h 53m, Decl. 19° 41' N, and transits at 8.24. It is in Taurus and on the 15th rises about $3\frac{3}{4}$ hours before the sun. Its stellar magnitude is then +1.3.

Jupiter on the 15th is in R.A. 6h 18m, Decl. 23° 13' N, and transits at 10.48. It is a morning star in the constellation of Gemini and on the 15th rises about $1\frac{1}{2}$ hours before the sun. For the configurations of its satellites see next page, and for their eclipses etc., see p. . 52

Saturn on the 15th is in R.A. 18h 33m, Decl. $22^{\circ} 34'$ S, and transits at 23.00. It is in the constellation of Sagittarius. At sunset on the 15th it is about 5° above the south-eastern horizon.

Uranus on the 15th is in R.A. 0h 58m, Decl. 5° 25' N, and transits at 5.28. Neptune on the 15th is in R.A. 10h 16m, Decl. 11° 26' N, and transits at 14.45.

JULY

ASTRONOMICAL PHENOMENA (75th Meridian Civil Time) Algol onfiguration of Jupiter's Satellites at 4h 15m

Minima of

h m Tues. Wed. 2 19h in Aphelion, 94,448,000 miles; 23h 3.1m Thur. 3 5 00 Fri. 4 19h 🖞 inQ..... 5 18hơ ਊ 24, ਊ 0° 22' N..... Sat. Sim. 1 50 Mon. 7 Tues. Wed. 9 10h & in Perihelion: 18h 48m (b (b 5° 20' N..... Thur. 10 15h 1.1m F.M..... Fri. Sat. 12 13 Sun. 34021Tues. 15 5h \Im \heartsuit \odot . Superior: 19h \circ \heartsuit Ψ , \heartsuit 0° 52' N 42031 Wed. 16 41203Thur. 17 22h 23m 🗸 🕲 , 👌 0° 31′ N...... 13 00 4O123 18 18h 29.2m Moon L.O.... C Fri. 4102319 16h & Greatest Hel. Lat. N. Sat. d432O Sun. 9 50 34021 Mon. 21 16h ô Stationary; 19h 51mơơ ♂ € ,♂ 3° 35' S..... 31042 Tues. 22 20314Wed. 23 21h 56m 2 4 4° 48' S.... 6 40 21034 Thur. 24 01234 fri. 25 15h 41.9m N.M..... 10234 26 10h 22mo 🛱 🕻 , 🛱 3° 15′ S..... Sat. 3 30 23014 Sun. 27 12h 56m♂ 𝒯 𝔅 , 𝖞 3° 48′ S..... 3014* Mon. 28 11h 44m of ♀ € ,♀ 2° 42′ S..... 31024Tues. 29 0 20 2041* Wed. 30 42103

THE SKY FOR AUGUST, 1930

The time of transits are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During August the sun's R.A. increases from 8h 42m to 10h 38m and its Decl. decreases from $18^{\circ} 16'$ N to $8^{\circ} 38'$ N. The equation of time decreases from 6m 15s to 0m 17s. The sun enters Virgo, the third summer sign of the zodiac on the 23rd. See p. 17 for changes in the length of day.

The Moon—For its phases and conjunctions with the planets, see opp. page. Mercury on the 15th is in R.A. 11h 9m, Decl. 5° 0' N, and transits at 13.39.
It reaches its greatest elongation east on the 26th, and at that time sets about 1 hour after the sun, almost due west.

Venus on the 15th is in R.A. 12h 20m, Decl. 2° 24' S, and transits at 14.49. It is still increasing in brightness, and by the end of the month its magnitude is -3.8. On the 1st it sets $1\frac{3}{4}$ hours after the sun, about 10° north of west, and on the 31st it sets about $1\frac{1}{4}$ hours after the sun, 10° south of west.

Mars on the 15th is in R.A. 5h 22m, Decl. $23^{\circ} 2'$ N, and transits at 7.51. It rises 5 hours before the sun on the 15th. Its magnitude increases to +1.1 at the end of the month. The planet is still in the constellation of Taurus.

Jupiter on the 15th is in R.A. 6h 46m, Decl. 22° 54' N, and transits at 9.14. It is now a prominent object in the constellation of Gemini, and rises about $3\frac{1}{2}$ hours before the sun on the 15th. For the configurations of its satellites see next page, and for their eclipses etc., see p. 52.

Saturn on the 15th is in R.A. 18h 25m, Decl. $22^{\circ} 43'$ S, and transits at 20.50. At sunset on the 15th the planet is about 20° above the southern horizon, in Sagittarius. It may be observed throughout the night, though it is rather low in the sky.

Uranus on the 15th is in R.A. 0h 57m, Decl. 5° 19' N, and transits at 3.25. Neptune on the 15th is in R.A. 10h 20m, Decl. 11° 4' N, and transits at 12.47.

AUGUST

ASTRONOMICAL PHENOMENA

Minima of Algol Configurations of Jupiter's Satellites at

(75th Meridian Civil Time)

				h	m	
Ð	Fri.	1	7h 26.4m Moon F.Q			41023
	Sat.	2				42301
	Sun.	3	•••••••••••••••••••••••••••••••••••••••	18	00	4320*
	Mon.	4				43102
	Tues.	5	9hơ 🖞 Ψ, Ϩ 0° 15 N.; 21h 21mơ 🖢 🕻, 🖢 5° 19' N			d4301
	Wed.	6		14	50	214O3
	Thur.	. 7	· · · · · · · · · · · · · · · · · · ·			O2413
	Fri.	8				10234
E	Sat.	9	5h 57.6m F.M	11	30	23014
	Sun.	10				32104
	Mon.	11	$13h \varphi$ in \mathfrak{V}			d3O24
	Tues.	12	3h \$\U03c6 in \$\v03c6	10	20	30214
	Wed.	13				21034
	Thur.	14	4h 28mo ô C ,ô 0° 16′ N			O2143
	Fri.	15		5	10	14023
	Sat.	16				d42O1
C	Sun.	17	6h 30.6m Moon L.Q			43210
	Mon.	18		2	00	43012
	Tues.	19	$12h \ 56m \ o' \ o'' \ 0'' \ 3'' \ 5$			4302*
	Wed.	20	16h 54m σ' 24 $($, 24 5° 4' S	22	50	42103
	Thur.	21				4013*
	Fri.	22	9h \notin in Aphelion; 21h σ in Ω			41023
đ	Sat.	23	22h 36.9m N.M	19	40	24031
	Sun.	24	1h 10mơ Ψ €, Ψ 3° 41′ S			32104
	Mon.	25	$17h 32m\sigma' \notin \mathbb{Q}, \notin 4^{\circ} 56' S$			30124
	Tues.	26	0h & Greatest elong. E., 27° 20′	16	30	3024*
	Wed.	27	$3h\sigma' \Psi \odot$; $3h 47m\sigma' \varphi \oplus \varphi \circ 2^{\circ} 2' S$			d2O34
	Thur.	28	•••••••••••••••••••••••••••••••••••••••			0134*
_	Fri.	29		13	20	10234
Ð	Sat.	30	18h 56.7m Moon F.Q			20314
	Sun.	31				32104

THE SKY FOR SEPTEMBER, 1930

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During September the sun's R.A. increases from 10h 38m to 12h 26m, and its Decl. changes from 8° 38' N to 2° 49' S. At the beginning of the month, the equation of time is 0m 17s, it becomes zero on the 1st, and then increases to 9m 58s. For changes in the length of the day, see p. 19. On the 23rd the sun crosses the equator going south, and enters Libra, the first autumn zodiacal sign.

The Moon-For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 12h 10m, Decl. 5° 36' S, and transits at 12.33. On the 21st it is in inferior conjunction with the sun. Toward the end of the month it becomes a morning star. On the 30th it is about 14° above the eastern horizon at sunrise.

Venus on the 15th is in R.A. 14h 17m, Decl. 16° 56' S, and transits at 14.44. During the month, the planet increases in brightness from -3.8 to -4.2. On the 13th it reaches its greatest elongation east, but is rather far south. On that date it sets about 1¼ hours after the sun, at a point 20° south of west. At sunset it is 10° above the horizon.

Mars on the 15th is in R.A. 6h 47m, Decl. 23° 25' N, and transits at 7.13. On the 15th it rises about 11.30 in the evening, and is well in view in Gemini during the early morning hours. It is becoming brighter and at the end of the month, its magnitude is +0.9.

Jupiter on the 15th is in R.A. 7h 10m, Decl $22^{\circ} 24'$ N, and transits at 7.35. It is in the constellation of Gemini, and rises about $5\frac{1}{2}$ hours before the sun on the 15th. During the month its magnitude increases from -1.6 to -1.8. For the configurations of its satellites see next page, and for their eclipses etc., see p. 52.

Saturn on the 15th is in R.A. 18h 23m, Decl. 22° 48' S, and transits at 18.46. It is a 1st magnitude star in Sagittarius. On the 15th it is on the meridian about 30 minutes after sunset. On the 29th it is in quadrature with the sun.

Uranus on the 15th is in R.A. 0h 53m, Decl. 4° 58' N, and transits at 1.20. Neptune on the 15th is in R.A. 10h 25m, Decl. 10° 38' N, and transits at 10.50.

SEPTEMBER

ASTRONOMICAL PHENOMENA

Minima of Algol onfigurations of Jupiter's Satellites at 3h 0m

(75th Meridian Civil Time)

				h	m	
	Mon.	1		10	10	34012
	Tues.	2	1h 37mơ þ 🕻 , þ 5° 25′ N			43102
	Wed.	3	•••••••••••••••••••••••••••••••••••••••			4201*
	Thur.	4	•••••••••••••••••••••••••••••••••••••••	6	50	42O3*
	Fri.	5				41023
	Sat.	6				d4013
C	Sun.	7	21h 47.8m F.M	3	40	42310
	Mon.	8	3h & Stationary			34021
	Tues.	9	18h b Stationary			31402
	Wed.	10	8h 45mơ ô 🕻 ,ô 0° 11′ N	0	30	23014
	Thur.	11	18h & Greatest Hel. Lat. S			2034*
	Fri.	12		21	20	10234
đ	Sat.	13	6h Q Greatest elong. E., 46° 22'			O2134
	Sun.	14				21304
	Mon.	15	2h Q in Aphelion; 16h 12.7m Moon L.Q	18	10	30214
	Tues.	16				31024
	Wed.	17	1h 40mơơ 🖉 , 🗗 4° 40′ S.; 8h 48mơ 2l 🖉 , 2l 5° 17′ S.			23014
	Thur.	18		15	00	24103
	Fri.	19				d4O23
	Sat.	20	$13h \ 20mo' \ \Psi \ \mathbb{G} \ , \ \Psi \ 3^{\circ} \ 39' \ S \dots \dots \dots \dots \dots \dots \dots \dots \dots$			40123
	Sun.	21	15h♂ § ⊙, Inferior	11	50	42130
٠	Mon.	22	1h 17m 🗸 🖗 , 🖗 5° 46' S.; 6h 41.6m N.M			4301*
	Tues.	23	$13h 37m \odot$ enters \Rightarrow , Autumn commences			43102
	Wed.	24		8	40	43201
	Thur.	25	15h 30mơ ♀ €,♀ 2° 3′ S			42103
	Fri.	26	20hơơ 24,ở 0° 43' N			0123*
	Sat.	27		5	30	O243*
	Sun.	28				21034
D	Mon.	29	6h □ b ☉; 9h 11m ♂ b €, b 5° 30' N.; 9h 57.8m,			
			Moon F.Q			3014*
	Tues.	30	0h & Stationary; 18h & in Q	2	10	31024

THE SKY FOR OCTOBER, 1930

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During October the sun's R.A. increases from 12h 26m to 14h 22m, and its Decl. from 2° 49' S to 14° 8' S. On the 24th the sun enters Scorpio, the second autumnal sign of the zodiac. The equation of time increases from 9m 58s to 16m 18s (see p. 7). For changes in the length of the day see p. 20. On the 21st there is a total eclipse of the sun, but it is not visible in the northern hemisphere.

The Moon—For its phases and conjunctions with the planets, see opp. page. On the 7th there is a partial eclipse of the moon, not visible in Canada.

Mercury on the 15th is in R.A. 12h 24m, Decl. 0° 24' S, and transits at 10.54. On the 7th it reaches its greatest elongation west, and is then visible about 16° above the eastern horizon at sunrise.

Venus on the 15th is in R.A. 15h 54m, Decl. 25° 55' S, and transits at 14.21. Although it attains greatest brilliancy, -4.3, on the 18th, it is not very favourably situated for observation. On the 18th it is only about 8° above the horizon and sets about 1 hour after the sun.

Mars on the 15th is in R.A. 7h 58m, Decl. $21^{\circ} 45'$ N, and transits at 6.26. About the middle of the month it enters the constellation of Cancer. It is in quadrature with the sun on the 27th and at that time rises about 11.00 o'clock in the evening. Its magnitude increases to +0.6 at the end of the month.

Jupiter on the 15th is in R.A. 7h 25m, Decl. 21° 59' N, and transits at 5.52. On that date it rises about 11.00 o'clock at night, and may be seen in the constellation of Gemini. On the 13th it is in quadrature with the sun. For the configurations of its satellites see next page, and for their eclipses etc., see p. 53.

Saturn on the 15th is in R.A. 18h 27m, Decl. $22^{\circ} 49'$ S, and transits at 16.53. It sets about 4 hours after the sun on the 15th, but is not well placed for observation.

Uranus on the 15th is in R.A. 0h 49m, Decl. 4° 30' N, and transits at 23.14. Neptune on the 15th is in R.A. 10h 28m, Decl. 10° 19' N, and transits at 8.55.

OCTOBER

ASTRONOMICAL PHENOMENA (75th Meridian Civil Time) Minima of Algol onfigurations of Jupiter's

h m Wed. 1 32014 Thur. 2 23 00 21034 Fri. 01243 Sat. 0423* Sun. Mon. 43201 Tues. 7 4h c⁰ ô ⊙; 6h g Greatest elong, W., 17° 58'; 10h Q Greatest Hel. Lat. S.; 12h 56m 🗸 🗟 , 👌 0° 16' N.; 13h 55.6m F.M., Par. ecl. visible at Toronto 43102 (see p. 27) Wed. 8 Thur. 9 42103 Fri. 10 40213 Sat. 11 13 30 41023 Sun. 12 d42O3 Mon. 13 8h □ 21 ⊙ 32014 Tues. 14 20h 13mo 2 0 . 2 5° 21' S. 10 20 31024 € Wed. 15 0h 11.9m Moon L.O.; 9h 43m ♂♂€, ♂ 4° 18' S.; 16h & Greatest Hel. Lat. N..... 30214Thur. 16 2104* 17 $23h 34m\sigma \Psi \oplus 3^{\circ} 38' S$ Fri. 7 10 02134 18 13h Q Greatest brilliancy..... Sat. 10234 19 Sun. 20134 Mon. 20 21h 17mo 🛱 🕻 , 🛱 1° 11' N..... 4 00 2304* ● Tues. 21 16h 47.6m N.M.; Tot. ecl. of ⊙ (see p. 27) 31042Wed. 22 34021 Thur. 23 0 50 4210* 24 10h 23mo 9 🕻 , 9 2° 23′ S..... Fri. 4013* Sat. 25 21 40 41023 26 20h 16m (b (b 5° 31' N.... Sun. 42013 Mon. 27 0h □♂⊙..... 4230* Tues. 28 **)** Wed. 29 4h 22.1m Moon F.O..... 3012* Thur. 30 7h 24 in Ω 21304Fri. 31

THE SKY FOR NOVEMBER, 1930

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During November the sun's R.A. increases from 14h 22m to 16h 25m and its Decl. from 14° 8′ S to 21° 40′ S. The sun enters Sagittarius, the third autumn sign of the zodiac, on the 23rd. The equation of time rises from 16m 18s to a maximum value of 16m 22s on the 4th, and then drops to 11m 16s at the end of the month (see p. 7). For changes in the length of day see p. 20.

The Moon—For its phases and conjunctions with the planets, see opp. page.
 Mercury on the 15th is in R.A. 15h 36m, Decl. 20° 5' S, and transits at 12.04.
 On the 7th it is in superior conjunction with the sun. It is too close to the sun

to be seen this month.

Venus on the 15th is in R.A. 16h 5m, Decl. 25° 11' S, and transits at 12.28. The planet decreases in magnitude from -4.2 to -3.2. It is not in good position for observation. On the 22nd, the planet is in inferior conjunction with the sun, after which it becomes a morning star.

Mars on the 15th is in R.A. 8h 54m, Decl. 19° 27' N, and transits at 5.20. It is in Cancer, and rises about 10.00 o'clock in the evening, on the 15th. It attains a magnitude of +0.1 at the end of the month, and can easily be recognized by its ruddy colour.

Jupiter on the 15th is in R.A. 7h 28m, Decl. 21° 56' N, and transits at 3.54. It rises about 9.00 o'clock at night on the 15th, and is a brilliant object in Gemini. Its magnitude increases to -2.2 at the end of the month. For the configurations of its satellites see next page, and for their eclipses etc., see p. 53.

Saturn on the 15th is in R.A. 18h 37m, Decl. 22° 45' S, and transits at 15.01. It is in Sagittarius and sets about 2 hours after the sun on the 15th. It is not in good position for observation during November.

Uranus on the 15th is in R.A. 0h 45m, Decl. 4° 6' N, and transits at 21.08. Neptune on the 15th is in R.A. 10h 31m, Decl. 10° 5' N, and transits at 6.56.

NOVEMBER

ASTRONOMICAL PHENOMENA

(75th Meridian Civil Time)

Minima of Algol Configurations of Jupiter's Satellites at 1h 45m

				h	m	
	Sat.	1				10234
	Sun.	2	4h Q Stationary			20134
	Mon.	3	18h 27mර රී 🕻 ,රී 0° 23′ N	12	00	d2104
	Tues.	4				30124
	Wed.	5				3024*
E	Thur.	6	5h 28.1m F.M.; $22h\sigma \notin \odot$, Superior	8	50	23104
	Fri.	7				24013
	Sat.	8	0h 24 Stationary; 2h \emptyset in \heartsuit			41023
	Sun.	9		5	40	d4013
	Mon.	10				42103
	Tues.	11	3h 8mo 2 C, 2 5° 15′ S			43012
_	Wed.	12	11h 49m♂♂℃,♂ 3° 19′ S	2	30	4302*
Ø	Thur.	13	7h 27.3m Moon L.Q			43210
	Fri.	14	$7h \ 0mo' \Psi \mathbb{C}, \Psi 3^{\circ} 31' S$	23	20	42013
	Sat.	15				14023
	Sun.	16	•••••••••••••••••••••••••••••••••••••••			02143
	Mon.	17		20	10	21034
	Tues.	18	4ho $\&$ $\&$ $\&$ $\&$ $2^{\circ}35'$ N.; 9h $\&$ in Aphelion			30214
_	Wed.	19				31024
	Thur.	20	5h 21.2m N.M.; 11h 47mo Q (, Q 0° 5' N.; 21h 28m			
			ơ ⊈ Q, ᡛ 2°14′ N	17	00	d32O4
	Fri.	21				20314
	Sat.	22	$13h\sigma^{\circ} \varphi^{\circ}$, Inferior			10234
	Sun.	23	9h 44m $\sigma' \not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	13	40	02413
	Mon.	24	•••••			21403
	Tues.	25				4301*
	Wed.	26		10	30	43102
•	Thur.	27				43201
ø	Fri.	28	1h 17.6m Moon F.Q.; 12h $\Box \Psi \odot$			4201*
	Sat.	29	•••••••••••••••••••••••••••••••••••••••	7	20	41023
	Sun.	30	•••••••••••••••••••••••••••••••••••••••			40213

THE SKY FOR DECEMBER, 1930

The times of transit are given in Local Mean Time; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During December the sun's R.A. increases from 16h 25m, to 18h 42m. On the 22nd the Decl. is at its maximum value of 23° 27' S. It is then at winter solstice, the sun enters Capricornus and Winter begins. From this date on the sun moves slowly northward. The length of daylight is at its minimum and changes very slightly for several days (see p. 21). The equation of time is 11m 16s at the first of the month and drops to zero on the 25th (see p. 7).

The Moon-For its phases and conjunctions with the planets, see opp. page.

Mercury on the 15th is in R.A. 18h 50m, Decl. 25° 6' S, and transits at 13.20. On the 20th it is at its greatest elongation east and sets about $1\frac{1}{2}$ hours after the sun.

Venus on the 15th is in R.A. 15h 21m, Decl. 15° 54' S, and transits at 9.48. The planet reaches its greatest brilliancy of -4.4 on the 28th. It is a bright object in the morning sky. On the 15th it rises 234 hours before the sun, and is about 22° above the horizon at sunrise.

Mars on the 15th is in R.A. 9h 21m, Decl. 18° 45' N, and transits at 3.48. The planet enters the constellation of Leo about the middle of the month. On the 15th it rises about 8.30 o'clock in the evening and is well in view all night. Its stellar magnitude increases during the month from +0.1 to -0.6.

Jupiter on the 15th is in R.A. 7h 20m, Decl. 22° 18' N, and transits at 1.47. It rises about 2 hours after sunset on the 15th and is in good position for observation throughout the month. It is in the constellation of Gemini. For the configurations of its satellites see next page, and for their eclipses etc., see p. 53.

Salurn on the 15th is in R.A. 18h 51m, Decl. $22^{\circ} 33'$ S, and transits at 13.17. It is approaching the sun and on the 15th sets about $1\frac{1}{2}$ hours after it.

Uranus on the 15th is in R.A. 0h 43m, Decl. 3° 55' N, and transits at 19.08. Neptune on the 15th is in R.A. 10h 31m, Decl. 10° 3' N, and transits at 4.58.

DECEMBER

ASTRONOMICAL PHENOMENA (75th Meridian Civil Time) Minima of Algol Configurations of Jupiter's Satallites at 14 0m

			h	m		
	Mon.	1	1h 49mơ ô € ,ô 0° 22′ N			42103
	Tues.	2	$16h \varphi in \Omega \dots$	4	10	32041
	Wed.	3				31024
	Thur.	4				32014
@	Fri.	5	19h 39.9m F.M	1	00	204**
	Sat.	6				10234
	Sun.	7		21	50	O1234
	Mon.	8	7h 21mơ 24 €, 24 5° 2′ S.; 17h & Greatest Hel. Lat.			
			S.; 23h Ψ Stationary			21034
	Tues.	9	•••••••••••••••••••••••••••••••••••••••			32014
	Wed.	10	5h 16mơơ đ 🕻 ,ở 1° 53′ S	18	40	31042
_	Thur.	11	12h 46mơ Ψ @, Ψ 3° 17′ S.; 22h ♀ Stationary			d34O1
Œ	Fri.	12	15h 6.6m Moon L.Q			42310
	Sat.	13		15	30	d4O23
	Sun.	14	$19h_{0}' \notin b$, $\notin 2^{\circ} 33' S$			40123
	Mon.	15	•••••••••••••••••••••••••••••••••••••••			42103
	Tues.	16		12	20	42301
	Wed.	17	6h 46mơ ♀ €,♀ 5° 43′ N			43102
-	Thur.	18	•••••••••••••••••••••••••••••••••••••••			34021
9	Fri.	19	10ho ⁷ Stationary; 20h 23.7m N.M	9	00	23104
	Sat.	20	0h & Greatest elong. E., 20° 11'; 23h 48m ♂ b €,			
			▶ 5° 21′ N			01234
	Sun.	21	12h 42mơ 𝔅 𝔅 , 𝔅 3° 39' N.; 13h ♂ Stationary			O234*
	Mon.	22	8h 40m \odot enters \mathcal{T} , Winter commences	5	50	21034
	Tues.	23	· · · · · · · · · · · · · · · · · · ·			d2O14
	Wed.	24				31024
	Thur.	25		2	40	30214
_	Fri.	26				23104
3	Sat.	27	13h & Stationary; 18h & inQ; 22h 58.7m Moon F.Q.	23	30	4013*
	Sun.	28	10h 24m $\mathcal{O} \otimes \mathbb{C}$, $\mathcal{O} \otimes \mathcal{O} \otimes \mathcal{O}$, 11h \mathcal{Q} Greatest brilliancy.			4023*
	Mon.	29	•••••••••••••••••••••••••••••••••••••••	_		42103
	Tues.	30		20	20	42031
	Wed.	31	•••••••••••••••••••••••••••••••••••••••			43102

PHENOMENA OF JUPITER'S SATELLITES, 1930

E — clipse, O—occultation, T—transit, S—shadow, D—disappearance, R—reappearance I—ingress, e—egress. The Roman numerals denote the satellites. 75th Meridian Civil Time.

An and the second s						
JANUARY	MARCH					
d h m Sat. Phen. d h m Sat. Phen. 0 22 36 I OD 16 0 20 I SI 1 1 29 5 I ER 1 32 I Te 19 48 I TI 2 02 II OD 20 30 I SI 2 30 I Se	d h m Sat. Phen. d h m Sat. Phen. 2 23 31 I TI 15 19 51 II Te 3 20 44 III TI 19 56 II SI 20 50 I OD 22 26 II Se 23 13 III Te 18 21 54 I TI					
21 23 11 OD 20 37 1 OD 21 28 I Te 23 49.5 I ER 22 41 I SE 17 17 49 I TI 2 1 02 III OD 18 49 I SI 1 13.2 II ER 19 59 I Te 3 17 UR OR 20 51 IU TI	4 0 21.5 1 ER 23 08 1 S1 19 17 I SI 19 19 14 I OD 20 10 I Te 22 41.7 I ER 21 28 I Se 20 19 48 I Se 5 18 50.5 I ER 21 19 0 III OD 6 19 33 U OD 21 35 III OR					
3 52.6 ÎIÎ ED 20 50 1 Se 19 58.3 I ER 22 54 II SI 3 17 38 II SI 23 16 II Te 18 30 II Te 18 1 22 II Se 20 05 U Se 18 18 4 I ER	22 01 II OR 22 20 0.5 II TI 22 09.3 II ED 22 33 II SI 8 19 49 II Se 22 34 II Te 10 22 46 I OD 24 19 12.9 II ER 11 19 56 I TI26 11 I OD					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 13 I SI 27 19 32 I SI 22 07 I Te 20 32 I Te 23 24 I Se 21 44 I Se 12 20 46.1 I ER 28 19 05.9 I ER 13 22 12 11 OD 29 22 49 I Te					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 19 59.3 III ED 31 21 50.2 II ER 22 37.3 III ER					
23 44 I Te 19 38 I TI	APRIL					
9 0 35 1 Se 20 44 1 SI 3 48.9 II ER 21 48 I Te 18 48 I OD 22 54 I Se 21 53.9 I ER 23 17 II TI 10 18 11 I Te 25 1 32 II SI 18 28 U TI 1 42 U Te	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 19 43 11 OD 21 02 1 16 8 20 20 III Te 21 59 I Se 22 05 III S1 20 19 20.6 I ER 9 19 37 II Se 23 20 30 II TI 10 22 20 I TI 26 20 02.3 III ED 11 10 41 U OD 20 51 I TI					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 20 04 I Se 27 21 15.7 I ER MAY					
<u>23 22 1 11 24 49 1 Se</u>	3 20 27 III OD 9 20 19 II OD 0 19 00 00 I SI					
FEBRUARY 1 0 49 I Sel15 1 13 I TI 0 49 J Sel15 0 0 0 0 0	4 20 13 1 OD 12 20 02 1 SI 5 19 35 I Te 21 20 08 III TI 5 20 19 I Se					
1 45 11 11 22 30 1 0D 18 45 I 0D 16 19 41 I TI 22 9.8 I ER 20 58 I SI	JULY					
2 18 06 I Te 21 53 I Te 19 18 I Se 23 08 I SI 20 03 U OD 17 1 04 U OD	19 4 27 I Se 27 4 11 I OD 26 4 08 I SI					
3 0 55.1 II ER 20 30.1 I ER 4 10 57 U Se 20 32 UI Se	AUGUST					
6 18 56 III OD 18 20 07 II TI	3 14 25 I ED 18 4 19 I SI					
23 56 0 111 OK 23 56 0 111 OK 7 23 20 I TI 19 1 13 II Se 8 0 34 I SI 20 19 26 4 II ER 1 30 I Te 23 0 25 I OD	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 351 II TI 358 I Te 15 3 19 IV Te 28 2 15.8 II ED 16 4 45 III Te Te Te					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SEPTEMBER					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
14 1 13 III OR	6 Î 52 ÎÎ Se 12 Î 13 Î Se					

		SE	ерте	MBER-	-Cont	inuea	ı		NOVEMBER—Coutinue	d
d 13 15 17 18 19 20	h 2 1 4 4 1 3 3 0 2 3 4 1 4	m 23 47 06 26 58 46.6 32.2 53 06 06 20 30 21	Sat. I II II II II II I I I I I	Phen. d Te 21 SI 22 TI 25 Se 26 OR ED ED ED SI 27 Te OR SI 29 OCTOBI	h r 2 1 4 3 5 2 1 5 2 4 4 0 4 1 5 0 3 2 4 1 5 0 3 2 4 1 5 0 3 2 4 1 5 0 3 2 4 1 5 0 1 5 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5	n S 9 5.6 7 1 2 1 7 1 5 1 5 1 5 1 7.7	at. F III I I I I I I I I I I I I I I I I I	hen. Te OR ED OSI TI OR Se OR Te Se TI ED	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sat. Phen.IIORIEDITeISIITeITeIEDIIIERIIIORIIIORITeITeITeITeITeITeITeITeITeITeITeITeITe
$\frac{1}{3}$	1 4	$\frac{28}{41}$	II I	Te 17 SI 18	$\frac{1}{5}$ $\frac{5}{3}$	$ \begin{array}{ccc} 0 & 1 \\ 4.1 & 1 \end{array} $	I	OR ED	24 5 46 111 S1 30 6 07 22 37.0 II ED	II SI
4	0	$\frac{03}{26}$	IV IV	SI 19 Se	$ \begin{array}{c} 2 & 5 \\ 4 & 1 \end{array} $	6 1 3 1		SI TI	DECEMBER	
5 5	1501 125	47.8 21 26 22 57 40 02		ED OR 20 TI Se SI 21 Te				Se ED OR Se Te TI	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	II Se II Te I ED II ED II OR I SI I TI
6 8	$23 \\ 4 \\ 1 \\ 1 \\ 4$	49 33.1 20 27 05		OR ED 23 TI Se Te 24	$ \begin{array}{c} 3 \\ 23 \\ 2 \\ 24 \\ 23 \\ 0 \\ 4 \\ 23 \\ 4 \\ 2 \end{array} $	$ \begin{bmatrix} 9 & 4 \\ 9 & 4 \\ 0 & 7 \\ 9 & 1 \\ 0 & 8 \\ 2 & 1 \end{bmatrix} $		ED ER OD ED	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I Se I Te I ED I OR I SI
$9 \\ 11 \\ 12$		$15 \\ 40.7 \\ 03 \\ 20 \\ 16$		OR 26 ED 27 SI TI Se 28	$ \begin{array}{c} 4 & 5 \\ 1 & 5 \\ 2 & 2 \\ 2 & 1 \\ 0 & 3 \end{array} $	0 6.0 8 8 3		SI ED OR SI TI	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I TI I Se I Te I OR III SI
13 15	4 1 3 4	$34 \\ 43 \\ 20 \\ 55 \\ 02 \\ 02 \\ 02 \\ 02 \\ 03 \\ 02 \\ 03 \\ 03$	I I II II II	Te OR SI TI 29 Se	$ \begin{array}{cccc} 1 & 3 \\ 2 & 4 \\ 23 & 5 \\ 2 & 0 \\ 3 & 5 \\ \end{array} $	$\begin{bmatrix} 2 & 1 \\ 7 & 1 \\ 6 & 1 \\ 6.8 & 1 \\ 8.8 & 1 \end{bmatrix}$		Se Te OR ED ER	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	III TI III Se III Te II SI II TI
16	0 4	55 14		OD 30 OR 31	$ \begin{array}{c} 3 & 3 \\ 1 & 3 \end{array} $	7.41 5.71		ED ED	9 3 45 9 11 ED 6 00 23 40 IV SI 6 38	II Se II Te
			1	NOVEME	BER				10 2 12 1V Se 26 6 03 9 5 40 IV TI 20 03	IV TI
1 2 3	$22 \\ 22 \\ 0 \\ 22 \\ 22 \\ 2$	$13 \\ 30 \\ 59 \\ 44 \\ 02$	II II II III III III	TI Se Te TI Te Te	5 4 5 4 22 3 3 0 4 1	3.01 51 21 51 31		ED Te OR SI TI	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IV Se II ED IV Te II OR I SI I TI
4	$ \begin{array}{c} 3 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	49.5 12 23 25 38		ED SI 12 TI Se Te	$5 19 \\ 0 1 \\ 3 30 \\ 21 3 \\ 22 40 $	9 I 1.4 I 6 I 8 I 0 I		Se ED OR SI TI	12 2 15.4 I ED 5 38 3 29.4 III ED 5 54 5 09 I OR 28 0 32.5 21 02 II OR 3 03 23 36 I SI 19 19	I Se I Te I ED I OR II Se
5 6 7	$ \begin{array}{c} 22 \\ 1 \\ 23 \\ 22 \\ 1 \end{array} $	17.8 46 05 33 22	S I I IV IV	ED OR 13 Te TI 14 Te 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 I 4 I 3 I 3.5 I 1 I	V	Se Te OR ER OD	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	II Te I SI I TI I Se I Te
8 9	$ \begin{array}{c} 4 \\ 22 \\ 0 \\ 1 \\ 3 \\ 3 \end{array} $	10.4 21 41 05 27		ED 16 SI TI Se Te 17	$\begin{array}{c} 0 & 5 \\ 3 & 0 \\ 3 & 4 \\ 5 & 5 \\ 1 & 4 \end{array}$	5 1 3 1 1 1 3 1 7 1		SI TI Se Te SI	14 20 19 I Se 19 01.1 20 53 I Te 21 29 15 19 49 III Ti 30 1 38 20 57 III Se 30 2 24 23 09 III Te 4 57	I ED I OR III SI III TI III Se
10	21 1 2	49 00 25		SI Se TI 18	5 0 6 0 0 5			Se TI OR	16 6 20.3 II ED 5 43 18 0 36 II SI 18 35 1 34 II TI 18 46	III Te I Se I Te

METEORS AND SHOOTING STARS

On almost any clear night any one observing the sky for a few minutes will see one or more shooting stars. They are particularly numerous during the autumn months and on account of the rotation of the earth are better seen during the early morning hours than in the evening.

At certain times there are striking displays, located in particular portions of the sky. These are considered to be due to *meteor swarms*. The principal ones are given in the following table.

Name of Shower	Duration	Greatest Display	R R.	adiant A.	Point De	cl.
			h	m		5
Quadrantids	Dec. 28-Jan. 9	Jan. 3	15	20	+	53
Aurigids	Feb. 7-23	Feb. 10	5	0	+	4 I
Lyrids	April 16-22	April 21	18	4	+	33
η Aquarids	April 29-May 8	May 4.6	22	32	-	2
Herculids	May 13-29	May 24	16	36	+	30
Scorpiids	May-June July	June 4	16	48	-	2 I
Sagittids	June-July	July 28	20	12	+	24
Capricornids	July-Aug.	July 22	20	20	-	I 2
8 Águarids	July 18-Aug. 12	July 28-31	22	36	-	II
a B Perseids	July-AugSept.	Aug. 16	3	12	+	43
Perseids	July 8-Aug. 25	Aug. 11-12	3	4	+	57
Draconis	Aug. 18-25	Aug. 23	19	24	+	61
e Perseids	AugSept.	Sept. 15	4	8	+	35
	(AugSept. Oct.	Sept. 21	2	4	+	19
Arietids	SeptOct.	Oct. 15	2	4	+	9
Orionids	Oct. 0-20	Oct. 19	6	8	+	15
u Ursids Mai.	OctNovDec.	Nov. 16-25	10	16	+ +	4 Ĭ
Taurids	November	Nov. 21	4	12	+	23
Leonids	Nov. 9 20	Nov. 14-15	io	о	+	23
Andromedes	Nov. 20-30	Nov. 20-23	I	40	+	43
Geminids	Dec. 1-14	Dec. 11	7	12	+	33

Of these the chief ones are the Perseids, the Leonids and the Andromedes.

The Perseids furnish an annual display of considerable strength, and are perhaps the best known of all. The swarm appears to have an orbit identical with that of the great Comet 1862 III., the period of which is 120 years.

The Leonids follow in the orbit of Tempel's Comet of 1866, of period 33 years.

The Andromedes are thought to be remnants of Biela's Comet. They were especially numerous in 1872, 1885, 1898, but in recent years have not been so prominent.

The above table was prepared for the HANDBOOK by Mr. W. F. Denning, F.R.A.S., of Bristol, England; and for further interesting information regarding this subject (and almost any other subject in which the amateur is interested) reference may be made to his *Telescopic Work for Starlight Evenings*.

					and the same of th				
	Mean from	Distance Sun	Sidereal	Period	Mean	Mass	Density	Volume	
Name	⊕ =1	Millions of Miles	Mean Solar Days	Years	Diame- ter Miles	⊕ =1	Water =1	⊕ = 1	Axial Rotation
§ Mercury	0.387	36.0	87.97	0.24	3009	0.0556	4.7(?)	0.055	88d
q Venus	0.723	67.2	224.70	0.62	7575	0.817	4.94	0.88	225d
⊕ Earth	1.000	92.9	365.26	1.00	7917.8	1.000	5.55	1.000	23h 56m 4s
o ⁷ Mars	1.524	141.5	686.97	1.88	4216	0.108	3.92	0.151	24h 37m 23s
24 Jupiter	5.203	483.3	4332.58	11.86	86728	318.4	1.32	1314	9h 55m ±
b Saturn	9.539	886.1	10759.2	29.46	72430	95.2	0.72	765	10h 14m ±
ô Uranus	19.191	1782.8	30685.9	84.02	30878	14.6	1.22	59	10h 45m ±
Ψ Neptune	30.071	2793.4	60187.6	¥64.79	32932	16.9	1.11	72	~
• Sun	•	•	:	:	864392	333400	1.39	1301100	25d 7h 48m±
G Moon	From \oplus) 238,857 mls.	27.32	0.075	2160	0.0123	3.39	0.020	27d 7h 43m 11.5s

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

SATELLITES OF THE SOLAR SYSTEM

-					_			
	NAME	STFLLAR MAGNITUDE.	Mean Distance in Miles	Sideri Perio	CAL DD	DISCOVERER	Dati	2
				/ d. 11. 11				
			TH	IE EAR	TH			
	The Mannel		010 010	197 7 4	2 11			
	Ine Moon	••	238,840	21 1 4	9 IÎ	1		
				MARS		C .		
1	Phobos	14	5 850	73	9 15	Asanh Hall	Aug. 17	1877
· · ·	Deimog	12	14,650	1 6 1	7 54	Asaph Hall	Aug. 11	1877
4.	Dennos	19	14,000	1 0 1	1 04	Asapii Itan	Aug. II,	1011
			_					
			J	UPITER	K,			
5	(Nameless)	13	112 500	11 5	7 23	Barnard	Sept. 9	1892
1	(Maineless).	61	261,000	1 18 2	7 33	Galileo	Jan 7	1610
1.	10 Funana	61	415,000	2 12 1	2 12	Galileo	Ion 8	1610
4.	Company	6	415,000	7 2 4	0 12		Jan 7	1610
ు. 4	Ganymede.	2	1 167 000	16 16 2	2 00 9 11		Jan. 7,	1610
4.	Callisto		1,167,000	10 10 3	2.11	Gameo	Jan. 7,	1010
6.	(Nameless).	14	7,372,000	266.00) d.	Perrine	Dec.	1904
7.	(Nameless).	16	7,567,900	276.67	′ d.	Perrine	Jan.	1905
8.	(Nameless).	17	15,600,000	789	d.	Melotte	Jan.	1908
9.	(Nameless).	19	18,900,000	3 yea	rs	Nicholson	July	1914
-				CATID	N			
				SATUR				
1.	Mimas	15	117,000	22 3	76	W. Herschel	July 18,	1789
2.	Enceladus.	14	157,000	1 8 5	3 7	W. Herschel	Auz. 29,	1789
3.	Tethys	11	186,000	1 21 1	8 26	J. D. Cassini	Mar. 21,	1684
4	Dione	11	238.000	2 17 4	19	J. D. Cassini	Mar. 21,	1684
5	Rhea	10	332,000	4 12 2	$5 \ 12$	J. D. Cassini	Dec. 23.	1672
6	Titan	ğ	771,000	15 22 4	1 23	Huvgens	Mar. 25.	1655
7	Hyperion	16	934,000	21 6 3	$9 \ \overline{27}$	G. P. Bond	Sept. 16.	1848
8	Ignetus	11	2 225 000	79 7 5	4 17	J. D. Cassini	Oct. 25.	1671
0.	Phoebo	17	8,000,000	546	5 d	W H Pickering	1898	201-
10	Thomic	17	006,000	20 20 2	4 0	W H Pickering	1905	ŝ
10.	1 nenns	11	300,000	20 20 2	1 0	W.III.I Iokering	1000	·
				TIDANT	c			
				URANU	5			
1.	Ariel	15	120,000	2 12 2	9 21	Lassell	Oct. 24,	1851
2.	Umbriel	16	167,000	4 3 2	7 37	Lassell	Oct 24,	1851
3	Titania	13	273,000	8 16 5	6 29	W. Herschel	Jan 11,	1787
4	Oberon	14	365,000	13 11	76	W. Herschel	Jan. 11,	1787
	C.2010	1	,		- 1			
			1	NEPTUN	Έ			
1	Triton	12	991 500	5 21 2	441	Lassell	Oct 10	1846
<u>.</u>	111001	10	441,000	0 21 2	11		1000. 10,	1010

DOUBLE STARS

Close scrutiny of the sky reveals the fact that many of the stars are composed of two or more components, that is, they are *double* or *multiple* stars. Over 15,000 such objects have been discovered.

A star may appear double in two ways. First, one may just happen to be nearly in line with the other as seen from the earth. Second, the two bodies may be physically connected, each revolving about their common centre of gravity. The former are called *optical doubles*, the latter *binary stars*. In the course of time the binaries exhibit a change in the distance between the components and also in the direction of the line joining them, that is, in the position angle.

While the close pairs require a large instrument for their detection, there are many within the range of small instruments. Such observations also allow one to determine the quality of the instrument employed. It has been found that a telescope having an objective 1 inch in diameter should be able to distinguish two stars 4''.56 apart, and the resolving power is inversely proportional to the diameter of the objective. Thus a telescope of 3-inch aperture should separate stars 1/3 of 4''.56, or 1''.52 apart; for one of aperture 10 inches, stars 1/10 of 4''.56, or 0''.45 apart should be seen separate; and so on. With the Yerkes refractor, of aperture 40 inches, a double star with distance 0''.11 can be detected.

In choosing a double star for testing a telescope care should be taken not to select a binary, with varying distance between its components.

The stars in the following short lists can be identified from almost any star atlas, and observation of them will prove of great interest to the amateur.

Star	Mags.	Dist.	Star	Mags.	Dist.
Mizar Castor γ Virginis . γ Arietis ζ Aquarii	$\begin{array}{c} 2.4, 4.0\\ 2.5, 3.0\\ 3.0, 3.2\\ 4.2, 4.5\\ 3.5, 4.4 \end{array}$	$14.5 \\ 5.6 \\ 5.0 \\ 8.9 \\ 3.5$	$\begin{array}{c} \gamma \text{ Leonis} \\ \beta \text{ Scorpii} \\ \theta \text{ Serpentis.} \\ 44i \text{ Boötis} \\ \pi \text{ Boötis} \end{array}$	$\begin{array}{c} 2.5, 4.0\\ 2.5, 5.5\\ 4.4, 6.0\\ 5.0, 6.0\\ 4.3, 6.0\end{array}$	3.0 13.0 21.0 4.8 6.0

I. THE MOST LUMINOUS PAIRS

Star	Magnitudes	Distance	Colors
γ Andromedæ.	2.2, 5.5	10	Orange, Green.
a CanumVenat	3.2, 5.7	20	Golden, Lilac.
β Cygni	3.3, 5.5	34	Golden, Sapphire.
ε Boötis	2.4, 6.5	2.9	Golden, Sapphire.
95 Herculis	5.5, 5.8	6	Golden, Azure.
a Herculis	4, 5.5	4.7	Ruby, Emerald.
γ Delphini	3.4, 5	11	Golden, Bluish Green.
32 Eridani	4.7, 7	6.7	Topaz, Bright Green.
ε Hydræ	3.5, 7.5	3.5	Yellow, Blue.
ζ Lyræ	4.5, 5.5	44	Yellow, Green.
i Cancri	4.5, 5	30	Pale Orange, Blue.
o Cygni	4.3,7.5,5.5	337.8, 106.8	Yellow, Blue.
24 Coma Beren.	5.6, 7	21	Orange, Lilac.
o Cephei	5.4, 8	2.5	Golden, Azure.
94 Aquarii	5.5, 7.5	11	Rose, Greenish.
39 Ophiuchi	5.7, 7.5	12	Yellow, Blue.
41 Aquarii	5.8, 8.5	4.8	Yellow Topaz, Blue.
2 Canum Venat	6, 9	11	Golden, Azure
52 Cygni	4.6, 9	7	Orange, Blue.
55 Piscium	6, 9	6	Orange, Blue.
K Geminorum.	3.8, 9	9	Grange, Blue.
ρ Orionis	5.1, 9	6.8	Orange, Blue.
54 Hydræ	5.2, 8	9	Yellow, Violet.
η Persei	4.2, 8.5	28	Yellow, Blue.
Ø Draconis	4.8, 6	31	Yellow, Lilac.
o Draconis	4.7, 8.5	32	Golden, Lilac.
η Cassiopeiæ	4.7, 7	5.7	Golden, Purple.
23 Orionis	5.4, 7	32	White, Blue.
δ Herculis	3.6, 8	18	White, Violet.
• Capricorni	6.3, 7	22	Bluish.
17 Virginis	6.5, 7	20	Rose.
ة Boötis	4.5, 6.5	4.2	Reddish Yellow.

II, THE FINEST COLORED PAIRS

The colors given above are according to Flammarion. For slight variations and also for a much longer list consult Webb's "Celestial Objects."

VARIABLE STARS

The study of variable stars is especially suited to amateur observers. In it they can make observations of permanent scientific value, since all the brighter and more interesting objects are within the range of modest instruments. An ordinary field glass or a small telescope is all that is required.

In recent years there has been organized the American Association of Variable Star Observers, with a working membership of about 70, and reports of observations are published monthly in *Popular Astronomy*. The recording secretary is Leon Campbell, Harvard Observatory, Cambridge, Mass., and additional observers are desired.

The novae or "new" stars comprise one class of variables, and all the recent brighter objects of this sort have been discovered by amateurs. The longperiod variable Omicron Ceti, or *Mira*, was discovered by Fabricius in 1596, while Algol, the best-known variable of short-period, was discovered by Goodricke, a deaf mute, in 1783.

Several attempts have been made to classify the variable stars; but a scientific system of classification, in harmony with the chief deductions of theory as well as the facts of observation, is still wanting. The best known system is that formulated by Professor E. C. Pickering in 1880, and reproduced (with slight additions) in his "Provisional Catalogue of Variable Stars" (1903). This includes five classes, two of which are subdivided, as follows:---

	EXAMPLES
I. New or temporary stars	Nova, 1572
II. Variables of long period:	
a. Ordinary stars of this class	Ceti
b. Stars subject to "occasional sudden and irregular out-	
bursts of light which gradually diminishes"	U Geminorum
III. "Variables of small range or irregular variation, according	
to laws as yet unknown"a	Orionis
IV. Variables of short period:	
a. "Ordinary" cases δ	Cephei
b. Stars with "minima successively bright and faint" β	Lyræ
V. Stars of the Algol type β	Persei

	IAGS.	OD CLA	ss Discoverer
U Cephei 7.0 o Ceti. 1 ρ Persei 3.4 β Persei (Algol) 2. λ Tauri. 3.4 β Persei (Algol) 2. λ Tauri. 3.4 W Eridani. 8.1 R Leporis. 3.4 W Tauri. 3.4 RW Tauri. 3.4 RW Tauri. 3.4 W Eridani. 8.1 T Monocerotis. 5.7 γ Geminorum. 3.3 T Monocerotis. 5.7 ζ Geminorum. 6.1 R Geminorum. 6.1 S Caneri. 8.0 S Caneri. 8.0 S Caneri. 4.1 χ Uverse 3.2 δ Libræ. 5.1 α Herculis. 3.2 α Hydræ. 3.3 λ <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{m.}\\ 49.6 & \text{V.}\\ \text{II}\\ \text{H}\\ \text{V}\\ 48.9 & \text{V}\\ 52.2 & \text{V.}\\ 111\\ 27.2 & \text{V}\\ 111\\ 27.2 & \text{V}\\ 111\\ 127.2 & \text{V}\\ 111\\ 111\\ 111\\ 111\\ 111\\ 111\\ 111\\ 1$	W. Ceraski. 1880 Fabricius. 1576 Schmidt. 1854 Blajko. 1904 Montanari 1669 Baxendell. 1848 Fleming. 1905 Schmidt. 1855 J. Herschel. 1840 Gore. 1885 Schmidt. 1855 Gould. 1871 Schmidt. 1847 Hind. 1848 Paul. 1848 Qord. 1795 Gould. 1871 Schmidt. 1859 W. Herschel. 1795 Goodricke. 1784 Kirch. 1686 Pigott. 1784 Gore. 1885

THE DISTANCES OF THE STARS

The measurement of the distances of the stars is one of the most important problems in astronomy. Without such information it is impossible to form any idea as to the magnitude of our universe or the distribution of the various bodies in it.

The parallax of a star is the apparent change of position in the sky which the star would exhibit as one would pass from the sun to the earth at a time when the line joining earth to sun is at right angles to the line drawn to the star; or, more accurately, it is the angle subtended by the semi-major axis of the earth's orbit when viewed perpendicularly from the star. Knowing the parallax, the distance can be deduced at once.

For many years attempts were made to measure stellar parallaxes, but without success. The angle to be measured is so exceedingly small that it was lost in the unavoidable instrumental and other errors of observation. The first satisfactory results were obtained by Bessel, who in 1838, by means of a heliometer, succeeded in determining the parallax of 61 Cygni, a 6th magnitude star with a proper motion of 5'' a year. On account of this large motion the star was thought to be comparatively near to us, and such proved to be the case. At about the same time Henderson, at the Cape of Good Hope, from meridian-circle obervations, deduced the parallax of Alpha Centauri to be 0".75. For a long time this was considered to be the nearest of all the stars in the sky, but in 1913 Innes, director of the Union Observatory, Johannesburg, South Africa, discovered a small 11th mag. star, 2° 13' from Alpha Centauri, with a large proper motion and to which, from his measurements, he assigned a parallax of 0".78. Its brightness is only 1/20,000 that of Alpha Centauri. In 1916 Barnard discovered an 11th mag, star in Ophiuchus with a proper motion of 10" per year, the greatest on record, and its parallax is about 0''.53. It is believed to be next to Alpha Centauri in distance from us.

The distances of the stars are so enormous that a very large unit has to be chosen to express them. The one generally used is the light-year, that is, the distance travelled by light in a year, or $186,000x60x24x365\frac{1}{2}$ miles. A star whose parallax is 1" is distant 3.26 light years; if the parallax is 0".1, the distance is 32.6 l.-y.; if the parallax is 0".27 the distance is $3.26 \div .27 = 12$ l.-y. In other words, the distance is inversely proportional to the parallax. In recent years the word *parsec* has been introduced to express the distances of the stars. A star whose distance is 1 parsec is such that its *par*-allax is 1 *sec*-ond. Thus 1 parsec is equivalent to 3.26 l.-y., 10 parsecs = 32.6 l.-y., etc.

In later times much attention has been given to the determination of parallaxes, chiefly by means of photography, and now several hundred are known with tolerable accuracy.

THE SUN'S NEIGHBOURS-STARS NEARER THAN FIVE PARSECS

This table includes all stars known to be nearer than five Parsecs = 16.3 1-y. The apparent magnitudes m, and type are taken from Luyten's Study of the Nearby Stars, H.A. 85, 73. The parallaxes, π , and proper motions, μ , are taken from Schlesinger's Catalogue of Parallaxes. M is the absolute magnitude and L the luminosity, the Sun being taken as unity. Sirius A, Procyon A and Altair are the only giant stars, the remainder being dwarfs. Wolf 359, the fifth star nearest the Sun, is intrinsically the faintest star known. It is also noteworthy that fifty per cent. of the stars are members of binary systems.

		1				1	1	1		1
Name	(19)00)a	(1900))δ	m	Туре	π	μ	М	L
	h		0	,			"	11		
Sun	11				96 7	Co			18	1 00
Prov. Con	11	99 0	62	15	-20.1	MO	0 765	3 76	15.6	1,000
a Con A	14	22.0	-02	- 10	11.4		758	2 68	10.0	1 10
$\alpha Cen P$	14	22.0	-00	20	0.3	122	760	2.69	6 1	0.20
Derpord	14	52.0	-00	20	1.7	Mb	528	10 30	12 2	0.50
Walf 250	10	51 6	+ 4	20	9.7	MAG	.000	10.00	16.5	.0004
WOIL 509	10	51.0	+ 1	20	10.0	ML	209	4 70	10.0	.00002
$L1 21180 \dots$	10	37.9	+30	- 00 95	1.0		. 392	4.10	10.0	.000
Sirius A	0	40.7	-10	30	-1.0	AU E	.0/1	1.04	11 9	20.
Sirius $B_1 \dots B_n$	10	40.7	-10	30	8.4	F	.3/1		11.2	.0028
B.D 12.4523	10	24.8	-12	24	9.0	MD	.349	9 60	12.2	.001
Innes	11	12.0	-57	02	12	170	.340	2.09	14.7	.0001
C.Z 5h243	5	1.1	-44	- 59	9.2	KZ	.317	8.70	11.1	.002
τ Cet	Ţ	39.4	-16	28	3.0	K0	.315	1.92	0.1	.30
Procyon A	1	34.1	+ 5	- 29	0.5	FЭ	.312	1.24	3.0	0.2
Procyon B	1	.34.1	+ 5	29	12.5	170	.312		15.0	.00008
εEri	3	28.2	- 9	48	3.8	KU	.310	.97	0.3	.25
61 Cyg. A	21	02.4	+38	15	5.6	K7	.300	5.20	8.0	.052
61 Cyg. B	21	02.4	+38	15	6.3	K8	.300	5.20	8.7	.028
Lac 9352	22	59.4	-36	26	7.1	Ma	.292	6.90	9.4	.014
Bu 8798A	18	41.7	+59	-29	9.3	Mb	.287	2.31	11.0	.002
Bu 8798B	18	41.7	59	29	10.0	Mb	.287		12.3	.001
Grmb 34A	0	12.7	+43	27	8.1	Ma	.282	2.89	10.3	.006
Grmb 34B	0	12.7	+43	27	10.7	Mb	.282	· · · · · · ·	12.9	.0006
ϵ Indi	21	55.7	-57	12	4.7	K5	.281	4.70	6.9	.14
Kruger 60A	22	24.4	+57	12	9.6	Mb	.257	.87	11.6	.002
Kruger 60B	22	24.4	+57	12	11.3				13.3	.0004
van Maanen	0	43.9	+4	55	12.3	Fo	.255	3.01	14.3	.0002
Lac 8760	21	11.4	-39	15	6.6	Ma	.253	3.53	8.6	.030
Anon	2	50.3	+52	05	9.2		.239	0.49	11.1	.003
Gould 32416	23	59.5	-37	15	8.2	Ma	.220	6.11	9.9	.009
Oe. Arg. 17415	17	37.0	+68	26	9.1	Mb	.213	1.33	10.7	.004
+20.2465	10	14.2	+20	22	9.2	Ma	. 207	.49	10.8	.004
Altair	19	45.9	+8	- 36	0.9	A5	. 204	. 66	2.4	9.1
o²Eri A	4	10.7	- 7	49	4.5	G5	. 203	4.08	6.0	.33
o ² Eri B	4	10.7	-7	49	9.7	Ao	. 203	4.08	11.2	.003
o²Eri C	4	10.7	- 7	49	10.8	Mb	. 203	4.08	12.3	.001

THE BRIGHTEST STARS

Their Magnitudes, Types, Proper Motions, Distances and Radial Velocities

Prepared by W. E. HARPER

The accompanying table contains the chief known facts regarding 260 stars brighter than apparent magnitude 3.51 as listed in *Harvard Annals*, Volume 50. The position of the star for 1900 is given in the second and third columns. The fourth and fifth columns give the apparent visual magnitude and type taken from the same publication. In a few cases the type is changed to conform with a later determination.

The parallaxes are taken from Schlesinger's Advance Copy of Catalogue of Parallaxes, 1924 Edition, and for such stars the proper motions are copied from the same source. The remaining proper motions were computed using the abbreviated μ_a and μ_b as they appeared in the HANDBOOK for 1915, where this table first appeared, and are not necessarily correct to the third decimal place. Three or four spectroscopic parallaxes have been added to those given in Schlesinger's catalogue. The small letter s following the parallax indicates a spectroscopic determination has also been made. The distance is also given in light years in the eighth column as to the lay mind that seems a fitting unit. The real parallax of a star cannot be a negative quantity, but in some cases the result of the calculation gives a negative quantity. In each such case the distance in light vears is computed on the assumption that the parallax is positive and equal to ".001. The sign (:) after it indicates that the value is uncertain. The absolute magnitude or the magnitude the star would appear to have if it were at a distance of 32.6 light years is given in the ninth column. At that distance the sun would appear as a star of magnitude 5.5. The radial velocity, taken from Voûte's list supplemented from our observatory card catalogue, is given in the last column. Those starred indicate that the star is a spectroscopic binary for which the velocity of the system is given. Where only the whole number appears the velocity may be regarded as approximate. There are 74 starred out of 235 radial velocities set down or one in three of the bright stars is a spectroscopic binary. The sign || denotes a visual double and the combined magnitude is given.

The 20 first magnitude stars are printed in black face type.

NOTE.—Some of the parallaxes in this table differ slightly from those given in the previous table. The reader should be not surprised at this, and it has not been thought worth while to harmonize the two tables.—EDITOR.

							-						
	Star	D A 1000	DOGT WW	Decl. 1900		Mag.		Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
		h	m	۰ ۱	,	 I					1	1	k m./sec
~	Andromodoo	0	2111	1.98	20	2 2 2	,	400	207				_13 0*
R	Cassionaiaa	U U	ں ۸	1.58	26	2.2		F5	.207	071 6	46	1 7	± 12.0
р х	Decesioperae		4	+ 14	00 90	2.4		г 0 D 0	.001	.0715	40	1.1	1 ± 12.0
R	regasi Undui		0 20	77	00 40	2.8	,		2 242	141		2 6	1 ± 22.2
p	Dhoonioin		20	-11	49	2.8	,		4.240	.141	20	0.0	175 8*
a s	Andrementer	ŀ	21	-44	10	2.4	t r	KU 1Z9	1.440	026 a	195	0.6	+15.0
0	Andromedae		34	+30	19	0.0) \	K4	.107	.020 s	120		- 0.
a D	Cassiopeiae		30 00	+00	- 0 9	2.2-2	2.8	KU IZO	0.002	.010 s	204	-1.0	- 3.0
р П.	Ceti		39	-18	32	2.2	5	KU DO	.230	.042 s	18	0.3	+13.5
$\Pi\gamma$	Cassiopeiae		51	+60	11	2.2	5	вор	.031	.030	91	0.0	- 4.7
Q			0	47				170					0.0
p	Phoenicis	1	2	-47	15	3.4	t	KU	.042				- 0.0
p	Andromedae		4	+35	5	2.4	ł	MO	.219	.045 s	12	0.7	- 2.
0	Cassiopeiae		19	+59	43	2.8	3	A5	.306				+ 9.
a	Ursae Minoris		23	+88	46	2.1		F8	.043	.007 s	466	-3.7	-14.8*
γ	Phoenicis		24	-43	50	3.4	e	K5	.222				+26.
a	Eridani		34	-57	44	0.6	5	B5	. 093	.049 s	67	-1.0	
e	Cassiopeiae		47	+63	11	3.4	Ł	B3	.043	.001 s	3260	-6.6	- 7.4
β	Arietis		49	+20	19	2.7	'	A5	.150	.064 s	51	1.7	- 0.6*
a	Hydri		56	-62	3	3.0)	F0	.256				- 5.
llγ	Andromedae		58	+41	51	2.3	:	K0	.073	.007 s	466	-3.5	-10.9
a	Arietis	2	2	+22	59	2.2		K2	.242	.033 s	99	-0.2	-14.3
β	Trianguli		4	+34	31	3.1		A5	.161	.014	262	-1.2	•••••
0	Ceti		14	- 3	26	1.7–9).6	M6e	.239	.062	53	0.7	+63.9
0	Eridani		54	-40	42	3.4		A2	.071	•••••			+20.
a	Ceti		57	+ 3	42	2.8	;	M1	.080	.011 s	296	-2.0	-25.8
Y	Persei		5 8	+53	7	3.1		Gp	.012	.012 s	272	-1.5	+ 2. *
ρ	Persei		59	+38	27	3.4-4	2	M6	.176	.038 s	86	1.3	+28.6
											1		
β	Persei	3	2	+40	34	2.1 - 3	.2	B8	.011				+ 5. *
a	Persei		17	+49	30	1.9		F5	.041	.015 s	217	-2.2	-2.4
δ	Persei		36	+47	28	3.1	.	B 5	.047	.005 s	652	-3.4	+ 0.7
117	Tauri		41	+23	4 8	3.0)	B5p	. 053	.007 s	466	-2.8	+15.
5	Persei		48	+31	55	2.9		B1	. 023	003 s	3260 :	-7.1	+21.2
Y	Hydri		49	-74	33	3.2		Ma	.128				+16.8
e	Persei		51	+39	43	3.0		B1	.041	012 s	3260 :	-7.0	• • • •
γ	Eridani		53	-13	47	3.2		K5	.133	.018 s	181	-0.5	+62.2
λ	Tauri		55	+12	12	3.3-4	.2	B3	.015	008	3260 :	-6.7	+13.6*
	1.												
a	Reticuli	4	13	-62	43	3.4		G5	.069			l	+35.4

	Star	0001 0 0	V.A. 1900	Decl. 1900		Mag.	r	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
a_{1} a π^{3}	Tauri Doradus Orionis Auricae	h 4	m 30 32 44 50	+16 -55 + 6 + 33	/ 18 15 47	$ \begin{array}{c} 1.1 \\ 3.5 \\ 3.3 \\ 2.0 \end{array} $		K5 A0p F8 K2	.205 .003 .474 030	.057 s .136 s	57 24 181	-0.1 4.0	km./sec. +54.5 +26. +24.7
έ	Aurigae		55	+43	41	3.4-4	. 1	F5p	.015	.010 s .002 s	1630	-5.0	- 9. *
η ε β	Aurigae Leporis Eridani	5	0 1 3	$^{+41}_{-22}$ - 5	6 30 13	3.3 3.3 2.9		B3 K5 A3	.082 .074 .117	.014 s .022 s .052 s	233 148 63	$ \begin{array}{c c} -1.0 \\ 0.0 \\ 1.5 \end{array} $	+ 3.0 + 1.1 - 8.
μ a β	Leporis Aurigae Orionis		8 9 10	-16 + 45 - 8	19 54 19	3.3 0.2 0.3		A0p G0 B8p	.053 .439 .005	.075 s .006	 43 543	-0.4 -5.8	+28.0 + 30.2* + 22.6*
$ \eta\rangle$ γ β	Orionis Orionis Tauri		19 20 20	-2 + 6 + 28	29 16 31	3.4 1.7 1.8		B1 B2 B8	.000 .019 .180	. 019 s . 024 s	 172 136	-1.9 -1.3	+35.5* +19. +11.
β δ α	Leporis Orionis Leporis		24 27 28	-20 - 0 - 17	50 22 54	3.0 2.4 2.7		G0 B0 F0	.095 .006 .006	. 004 s . 009 s . 014 s	815 362 233	-4.0 -2.8 -1.6	-13.7 +17.6* +24.6
ו נ פ ל	Orionis Orionis Tauri		31 31 32	-5 - 1 + 21	59 16 5	2.9 1.8 3.0		Oe5 B0 B3p	.000 .004 .028	.005 s 001 s	 65 2 3260 :	-3.7 -7.2	+21.3* +26.3 +16.4*
Ц5 а к	Orionis Columbae Orionis		36 36 43	$-2 \\ -34 \\ -9$	0 8 42	1.8 2.8 2.2		B0 B5p B0	.012 .040 .009	019 s .029 s	3260 : 112	-8.2 2.5	+17.9 +19.
β α β	Columbae Orionis Aurigae		47 50 52	-35 + 7 + 44	48 23 56	3.2 1.0–1. 2.1	.4	K0 M1 A0p	.397 .032 .046	.017 s .034 s	 192 96	-2.8 -0.2	+89.2 +21.3* -19. *
θ η	Aurigae Geminorum	6	53 9	+37 +22	12 32	2.7 3.2-4.	.2	А0р M2	.106 .062	. 016 s . 014 s	204 233	-1.3	+28.5 +20. *
μ β α	Geminorum Can. Majoris Carinae		17 18 2 2	$+22 \\ -17 \\ -52$	34 54 38	$3.2 \\ 2.0 \\ -0.9$		M3 B1 F0	.129 .003 .022	. 016 s . 012 s . 005 s	204 272 652	-0.8 -2.6 -7.4	+55.2 +33. * +20.2
γ ν ε	Geminorum Puppis Geminorum		32 35 38	$^{+16}_{-43}_{+25}$	29 6 14	1.9 3.2 3.2		A0 B8 G5	.066 .020 .020	. 043 s . 007 s	76 466	0.1 -2.6	-12.3* +26.0* + 9.5
ξ a	Geminorum Can. Majoris Pictoris		40 41 47	+13 -16 -61	0 35 50	3.4 - 1.6		F5 A0 A5	.230 1.315 .271	. 048 s . 371 s	68 9	1.8 1.2	+26.7 - 7.4*
τ	Puppis		47	-50	30	2.8		K0	.094			l	+37. *

Star	R.A. 1900	Decl. 1900		Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
€ Can. Majoris	h m 6 55	-28	, 50	1.6	B1	.000			 	km./sec +28.2
ζ Geminorum	58	20	43	3.7 - 4.3	G0p	.007	. 005 s	652	-2.8	+ 6.8*
0º Call. Majoris	09	-20	41	0.1	Dop	.000	•••••		• • • • •	
δ Can, Majoris	7 4	-26	14	2.0	G2p	.005	. 010	326	-2.9	+34. *
L ² Puppis	10	-44	29	3.4-6.2	Md	.334		•••••		+52.6
π Puppis	14	-36	55	2.7	K5	.012				+16.3
β Can. Minoris	22	+ 8	29	3.1	88	.063	.020 s	163	-0.4	
σ Puppis	26	-43	6	3.3	K5	.192				+87.3
a ₂ Geminorum	28	+32	6	2.0	AO	.201	.077 s	42	1.4	$+ 6.2^{*}$
a ₁ Geminorum	28	+32	6	2.8	AO	.209				- 1.0*
a Can. Minoris	34	+ 5	29	0.5	F5	1.242	.312 s	10	3.0	- 4.3
ρ Geminorum	39	+28	10	1.2	KO	.623	.101 s	32	1.2	+ 3.6
ξ Puppis	45	-24	37	3.5	Gop	.007	.003 s	1087	-4.2	+ 4.2
ζ Puppis	8 0	-39	4 3	2.3	Od	.036				
ρ Puppis	3	-24	1	2.9	F5	.097	.028 s	116	0.1	+46.
$ \gamma$ Velorum	6	-47	3	2.2	Oap	.000				
€ Carinae	8 20	-59	11	1.7	K0	.032			[+11.7
o Urs. Majoris	22	+61	3	3.5	G0	.166	– . 004 s	3260 :	-6.5	+20.3
∥ € Hydrae	41	+ 6	47	3.5	F8	.193	.015 s	217	-0.6	+37.2*
δ Velorum	42	-54	20	2.0	A0	.093				
ζ Hydrae	50	+ 6	20	3.3	K0	.101	.014 s	233	-1.0	+23.0
ι Urs. Majoris	52	+48	26	3.1	A5	. 500	.070 s	47	2.3	+ 8.
λ Velorum	94	-43	2	2.2	K5	.022				+18.8
β Carinae	12	-69	18	1.8	A0	.192				-16.0
ι Carinae	14	-58	51	2.2	F0	.023				+13.1
a Lyncis	15	+34	4 9	3.3	K5	.214	.002 s	1630	-5.1	+38.5
κ Velorum	19	-54	35	2.6	B3	.017				+21.9*
a Hydrae	23	- 8	14	2.2	K2	.036	.006 s	543	-3.9	- 4.0
θ Urs. Majoris	26	+52	8	3.3	F8p	1.096	.056 s	58	2.0	+15.8
N Velorum	28	-56	36	3.0	K5	.041	• • • • • •			-13.9
€ Leoni ^s	40	+24	14	3.1	G0p	.045	— . 001 s	3260 :	-6.9	+ 5.1
Iv Carinae	45	-64	36	3.1	F0	. 062	•••••			+13.2
a Leonis	10 3	+12	27	13	B8	244	058 s	56	0.1	
a Carinae	14	-60	50	3 4	K5	045		30	J.1	+92
llγ Leonis	14	+20	21	23	KO	347	.004 s	815	-4.7	-36
μ Urs. Majoris	16	+42	0	3.2	K5	.082	.034 s	96	0.9	-22.

	Star	D A 1000	N.A. LOUD	Decl. 1900		Mag.	-	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
	· ·	h	m	0	'				"	11		1	km./sec.
θ	Carinae	10	39	-63	52	3.0		B0	. 063			•••••	+16.
η	Carinae		41	-59	10	1.0-7	.4	Pec	.000				· · • • • • •
μ	Velorum		42	-48	54	2.8		G5	.084				+7.1
v	Hydrae		45	-15	40	3.3		$\mathbf{K0}$.214	.035 s	93	1.0	- 0.7
β	Urs. Majoris		56	+56	55	2.4		A0	. 089	.047 s	69	0.8	-10.9*
a	Urs. Majoris		58	+62	17	2.0		G5	.137	.074 s	44	1.4	- 8.
ψ	Urs. Majoris	11	4	+45	2	3.2		K0	. 067	.049 s	67	1.6	- 3.4
δ	Leonis		9	+21	4	2.6		A3	.208	.078 s	42	2.1	-18.
θ	Leonis		9	+15	59	3.4		A0	.103	.019 s	172	-0.2	+ 6.8
λ	Centauri		31	-62	28	3.3		B9	.046				+11.
β	Leonis		44	+15	8	2.2		A2	. 507	.101 s	32	2.2	+ 1.3
γ	Urs. Majoris		4 9	+54	15	2.5		A0	. 095	.004 s	815	-4.5	-10.0
δ	Centauri	12	3	-50	10	2.9		B3p	.044	· · · · · · · · ·			
e	Corvi		5	-22	4	3.2		K0	.063	.025 s	130	0.2	+ 5.2
δ	Crucis		10	-58	12	3.1		B3	.051				+25.
δ	Urs. Majoris		10	+57	35	3.4		A2	.113	.045 s	72	1.7	-10.7
γ	Corvi		11	-16	59	2.8		B8	.159	• • • • • •			- 7. *
a	Crucis		21	-62	33	1.0		B1	.048	. 030	109	-1.6	+19.
δ	Corvi		25	-15	58	3.1		A0	.249	.010 s	326	-1.9	-53.5
γ	Crucis		26	-56	33	1.5		M6	.270				+21.5
β	Corvi		29	-22	51	2.8		G5	.061	.028	116	0.0	- 7.4
a	Muscae	*	31	-68	35	2.9		B3	.038				+13.5
γ	Centauri		36	-48	24	2.4		A0	.200				- 9.
$\dot{\gamma}$	Virginis		36	- 0	54	2.9		F0	. 561	.073 s	45	2.2	-20.0
Ġ	Muscae	.	40	-67	34	3.3		B3	.041				+35. *
ß	Crucis		42	-59	9	1.5		B1	.054	.008 s	408	-4.0	+13.
e	Urs. Majoris		50	+56	30	1.7		A0p	.117	.042	78	-0.2	-11.9*
llα	Can. Venat.		51	+38	51	2.8		A0p	.233	.015 s	217	-1.3	$+ 1.0^{*}$
έ	Virginis		57	+11	30	3.0		K0	.270	.048 s	68	1.4	-13.6
γ	Hydrae	13	13	-22	39	3.3		G5	.085	.017 s	192	-0.5	- 5.1
i	Centauri		15	-36	11	2.9		A2	.111				+ 2.0
115	Urs. Majoris		20	+55	27	2.4		A2p	.131	.038 s	86	0.3	- 9.6*
.,s a	Virginis	1	20	-10	38	1.2		B2	.051	.009 s	362	-4.0	+ 1.6*
5	Virginis		30	0	5	3.4		A2	.285	.038	86	1.3	
s F	Centauri		34	-52	57	26		B1	.091				+ 6
n	Urs. Majoris		44	+49	49	1.9		B3	.116	004 s	3260	-8.1	- 6.
μ	Centauri		44	-41	59	3.3		B2p	.030				+12.6

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Star	. 1900	. 1900	, si	e	. Proper ion	allax	ance in it Years	s. Mag.	. Vel.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		R.A	Decl	Mag	Typ	Ann Mot	Para	Dist	Abs	Rad
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		h m	0 /		1	"	1 "			km./sec.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ζ Centauri	13 49	-46 48	3.1	B2p	.079				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	η Boötis	50	+1854	2.8	G0	.370	.098 s	33	2.8	- 0.2*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β Centauri	57	-59 53	0.9	B1	.039	. 036	91	-1.3	+12.0*
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	π Hydrae	14 1	$-26\ 12$	3.5	K0	.165				+27.6
a Boötis 11 +19 42 0.2 K0 2.287 .080 s 41 -0.3 -5 .0 γ Boötis 28 +38 45 3.0 F0 .182 .058 s 56 1.8 -35 . γ Centauri 29 -41 43 2.6 B3p .052 0. $ a$ Centauri 33 -60 25 0.3 GO 3.682 .758 4 4.7 +22.2 a Circini 34 -64 32 3.4 F0 .312	θ Centauri	1	-35 53	2.3	K0	.748				+ 1.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a Boötis	11	+19 42	0.2	K0	2.287	.080 s	41	-0.3	-5.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	γ Boötis	28	+38 45	3.0	F0	.182	.058 s	56	1.8	-35.
a Centauri33-60250.3G03.682.75844.7+22.2a Circini34-64323.4F0.312+7.3a Lupi35-46582.9B2.036+8.* e Boötis41+27302.7K0.045.016 s204-1.3-16.4 a ² Librae45-15382.9K2.12917.** β Urs. Minoris51+74342.2K5.028.011 s296-2.6+17.0 β Lupi52-42442.8B2p.0660.* κ Centauri53-41423.4B3.03710.* σ Librae58-24533.4M6.094.029 s1120.7-4.2 γ T Australis10-68193.1A0.0649.2 γ T Australis10-68193.1A0.06438.* ι Draconis23+59193.5K0.010.034 s961.2-10.2 γ Lupi28-40503.0B3.0428 γ Lupi28-40503.0B3.0428. ι Draconis <td>η Centauri</td> <td>29</td> <td>-41 43</td> <td>2.6</td> <td>B3p</td> <td>.052</td> <td></td> <td></td> <td>1</td> <td>0.</td>	η Centauri	29	-41 43	2.6	B3p	.052			1	0.
a Circini $34 - 64 \ 32$ 3.4 F0 312 $+7.3$ a Lupi $35 - 46 \ 58$ 2.9 $B2$ 036 $+8.$ * e Boötis $41 + 27 \ 30$ 2.7 K0 045 $016 \ s$ $204 - 1.3 - 16.4$ a Librae $45 - 15 \ 38$ 2.9 K2 129 $-17.$ * β Urs. Minoris $51 + 74 \ 34$ 2.2 K5 028 $0011 \ s$ $296 - 2.6$ $+17.0$ β Lupi $52 - 424 \ 42.8$ $B2p$ 066 $0.*$ $-17. + 10.*$ σ Librae $58 - 24 \ 53$ 3.4 M6 094 $029 \ s$ 112 $0.7 - 4.2$ ζ Lupi $15 \ 5 -51 \ 43$ 3.5 K0 $.132$ -9.2 γ Taustralis $10 - 68 \ 19$ $3.1 \ A0$ $.064$ -9.2 γ Urs. Minoris $21 + 72 \ 11$ $3.1 \ A2$ 017 $-8.$ ι Draconis $23 + 59 \ 19$ $3.5 \ K0$ 010 034	la Centauri	33	$-60\ 25$	0.3	G0	3.682	.758	4	4.7	+22.2
a Lupi 35 -46 58 2.9 B2 .036 + 8.* e Boötis 41 +27 30 2.7 K0 .045 .016 s 204 -1.3 -16.4 a^{2} Librae 45 -15 38 2.9 K2 .129 -17.* β Urs. Minoris 52 -42 44 2.8 B2p .066 -17.* κ Centauri 53 -41 42 3.4 B3 .037 +10.* σ Librae 15 -51 43 3.5 K0 .132 -9.2 γ T Australis 10 -68 19 3.1 A0 .064 -9.2 γ Urs. Minoris 21 +72 11 3.1 A2 .017 -8. ι Draconis 23 +59 19 3.5 K0 .010 .034 s 96 1.2 -10.2 γ Lupi 28 -	a Circini	34	-64 32	3.4	F0	.312				+7.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a Lupi	35	-4658	2.9	B2	. 036				+ 8. *
$ \begin{array}{ $	e Boötis	41	+27 30	2.7	K0	. 045	.016 s	204	-1.3	-16.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a ² Librae	45	-15 38	2.9	K2	.129				-17. *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β Urs. Minoris	51	+74 34	2.2	K5	. 028	.011 s	296	-2.6	+17.0
κ Centauri 53 -41 42 3.4 B3 .037 +10. * σ Librae 58 -24 53 3.4 M6 .094 .029 s 112 0.7 - 4.2 ζ Lupi 15 5 -51 43 3.5 K0 .132 -9.2 γ T Australis 10 -68 19 3.1 A0 .064 -9.2 β Librae 12 9 1 2.7 B8 .108 -9.2 γ Urs. Minoris 21 +72 11 3.1 A2 .017 -8. ι Draconis 23 +59 19 3.5 K0 .010 .034 s 96 1.2 -10.2 γ Lupi 28 -40 50 3.0 B3 .042 -8. ι Draconis 23 +59 19 3.5 K0 .100 .033 s 62 0.9 0.44 α Serpentis 39 <td>β Lupi</td> <td>52</td> <td>-42 44</td> <td>2.8</td> <td>B2p</td> <td>.066</td> <td></td> <td></td> <td></td> <td>• 0. *</td>	β Lupi	52	-42 44	2.8	B2p	.066				• 0. *
$ \sigma \text{ Librae} $ $ \sigma \text{ Librae} $ $ s \text{ Lupi} $ $ \gamma \text{ TAustralis} $ $ s \text{ Lupi} $ $ \gamma \text{ TAustralis} $ $ s \text{ Lupi} $ $ \gamma \text{ TAustralis} $ $ s \text{ Lupi} $	κ Centauri	53	-41 42	3.4	B3	.037				+10. *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	σ Librae	58	-24 53	3.4	M6	.094	.029 s	112	0.7	- 4.2
γ T Australis 10 -68 19 3.1 A0 .064 -38. * δ Lupi 12 -9 1 2.7 B8 .108 -38. * γ Urs. Minoris 21 +72 11 3.1 A2 .032 -38. * γ Urs. Minoris 21 +72 11 3.1 A2 .017 -8. ι Draconis 23 +59 19 3.5 K0 .010 .034 s 96 1.2 -10.2 γ Lupi 28 -40 50 3.0 B3 .042 .	ζ Lupi	15 5	-51 43	3.5	K0	.132				- 9.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	γT Australis	10	-68 19	3.1	A0	.064				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β Librae	12	- 9 1	2.7	B8	.108				-38. *
γ Urs. Minoris $21 + 72 \ 11$ 3.1 $A2$ $.017$ $$ $$ -8 . ι Draconis $23 + 59 \ 19$ 3.5 $K0$ $.010$ $.034 \ s$ 96 $1.2 - 10.2$ γ Lupi $28 - 40 \ 50$ 3.0 $B3$ $.042$ $$ $$ $$ a Cor. Borealis $30 + 27$ $3 \ 2.3$ $A0$ $.160$ $.053 \ s$ 62 $0.9 + 0.4^*$ a Serpentis $39 + 6 \ 44$ 2.8 $K0$ $.142$ $.046 \ s$ $71 \ 1.1 + 3.3$ β T Australis $46 - 63 \ 7$ 3.0 $F0$ $.440$ $$ $$ $$ π Scorpii $53 - 25 \ 50$ 3.0 $B2p$ $.042$ $.$	δLupi	15	-40 17	3.4	B2	.032				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	γ Urs. Minoris	21	+72 11	3.1	A2	.017				- 8.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>i</i> Draconis	23	+59 19	3.5	K0	.010	.034 s	96	1.2	-10.2
a Cor. Borealis a Serpentis $30 + 27$ 3 2.3 $A0$ $.160$ $.053$ 62 $0.9 + 0.4^*$ a Serpentis $39 + 6$ 44 2.8 $K0$ $.142$ $.046$ 71 $1.1 + 3.3$ β T Australis $46 - 63$ 7 3.0 $F0$ $.440$ \dots \dots \dots π Scorpii $53 - 25$ 50 3.0 $B2p$ $.042$ \dots \dots \dots \dots δ Scorpii $54 - 22$ 2.5 $B0$ $.042$ \dots \dots -9.5^* δ Ophiuchi $9 - 3$ 26 3.0 $K8$ $.159$ $.040$ s 82 $1.0 - 19.0$ ϵ Ophiuchi $13 - 4$ 27 3.3 $K0$ $.088$ $.046$ s 71 $1.6 - 9.2$ $ \sigma$ Scorpii $15 - 25$ 13.1 $B1$ $.033$ \dots \dots $+2.0^*$ $ \sigma$ Scorpii $15 - 25$ 3.1 $B1$ $.033$ \dots \dots $+2.0^*$ $ \sigma$ Draconis $23 + 61$ 42	γ Lupi	28	-40 50	3.0	B3	.042				
a Serpentis $39 + 6$ 44 2.8 $K0$ $.142$ $.046$ s 71 $1.1 + 3.3$ β T Australis $46 - 63$ 7 3.0 $F0$ $.440$ $$ $$ $$ π Scorpii $53 - 25$ 50 3.0 $F0$ $.440$ $$ $$ $$ δ Scorpii $54 - 22$ 20 2.5 $B0$ $.042$ $$ <th< td=""><td>a Cor. Borealis</td><td>30</td><td>+27 3</td><td>2.3</td><td>A0</td><td>.160</td><td>.053 s</td><td>62</td><td>0.9</td><td>+ 0.4*</td></th<>	a Cor. Borealis	30	+27 3	2.3	A0	.160	.053 s	62	0.9	+ 0.4*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a Serpentis	39	+ 6 44	2.8	K0	.142	.046 s	71	1.1	+ 3.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β T Australis	46	-63 7	3.0	F0	.440				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	π Scorpii	53	-25 50	3.0	B2p	.042				*
$ \beta$ Scorpii 16 0 -19 32 2.8 B1 .041 + + + + + + + + + + + +	δ Scorpii	54	-22 20	2.5	B0	.042				*
δ Ophiuchi 9 -3 26 3.0 K8 .159 .040 s 82 1.0 -19.0 ϵ Ophiuchi 13 -4 27 3.3 K0 .088 .040 s 82 1.0 -19.0 $ \sigma$ Scorpii 13 -4 27 3.3 K0 .088 .046 s 71 1.6 -9.2 $ \sigma$ Scorpii 15 -25 21 3.1 B1 .033 +2.0* $ \eta$ Draconis 23 +61 44 2.9 G5 .062 .042 s 78 1.0 -13.9 13 -26 1.2 1.2 M20 .032 .006 s 126 -17.9 3.1*	IIB Scorpii	16 0	-10 32	28	B1	041				_ 9.5*
ϵ Ophiuchi 13 -4 27 3.3 K0 .088 .046 s 71 1.6 -9.2 $ \sigma$ Scorpii 15 -25 21 3.1 B1 .033 +2.0* $ \eta$ Draconis 23 +61 44 2.9 G5 .062 .042 s 78 1.0 -13.9 B Scorpii 23 -26 1.2 M20 .032 .006 s 126 -17 -3.1*	δ Onbiuchi		-326	3.0	K8	150	040 €	82	1 0	-19.0
$ \sigma $ Scorpii 15 -25 21 3.1 B1 .033 + 2.0* $ \eta $ Draconis 23 +61 44 2.9 G5 .062 .042 s 78 1.0 -13.9 B .033	e Ophiuchi	13	- 4 27	33	KO	088	046 -	71	1 6	- 9.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	llσ Scorpii	15	$-25\ 21$	3 1	BI	.033			1.0	+ 2.0*
$\ a $ Scorpii $23 - 26 12 1 2 M2p 032 026 s 126 - 17 - 3 1*$	In Draconis	23	+61 44	2.9	G5	.062	.042 s	78	10	-13.9
	la Scorpii	23	-26 12	$\frac{2}{12}$	M2n	032	026 \$	126	-1.7	- 3.1*
β Herculis 26 +21 42 2.8 K0 104 030 s 109 0 2 -25.5*	B Herculis	26	+21 42	2.8	KO	.104	.030 s	109	0.2	-25.5*
τ Scorpii 30 - 28 1 2.9 B0 .042	τ Scorpii	30	-28 1	2.9	BO	.042				+ 1.5

Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
 ζ Ophiuchi ζ Herculis a T Australis ϵ Scorpii μ¹ Scorpii ζ Arae 	h m 16 32 38 38 44 45 50	$^{\circ}$ / -10 22 +31 47 -68 51 -34 7 -37 53 -55 50	$2.7 \\ 3.0 \\ 1.9 \\ 2.4 \\ 3.1 \\ 3.1 \\ 2.4$	B0 G0 K2 K0 B3p Ma	" .024 .601 .034 .668 .032 .047	" .111 s	29	3.2	km./sec. -15.0 -70. * - 3.7 - 2.0 - 6.1
$ \begin{array}{l} \eta & \text{Ophiuchi} \\ \eta & \text{Scorpii} \\ \zeta & \text{Draconis} \\ \ a & \text{Herculis} \\ \delta & \text{Herculis} \\ \pi & \text{Herculis} \\ \theta & \text{Ophiuchi} \\ \theta & \text{Amage} \end{array} $	$ \begin{array}{r} 17 5 \\ 5 \\ 8 \\ 10 \\ 11 \\ 12 \\ 16 \\ 17 \\ \end{array} $	-15 36 -43 6 +65 50 +14 30 +24 57 +36 55 -24 54 55 26	2.6 3.4 3.2 3.1-3.9 3.2 3.4 3.4 2.8	A0 F2 B5 M7 A2 K2 B3 K2	.094 .291 .023 .030 - .164 .021 .030 .025	.019 s 002 s .029 s .019 s	172 3260 : 112 172	-0.4 -6.9 0.5 -0.2	$ \begin{array}{r} -1.1 \\ -28. \\ -14.6 \\ -32.4 \\ -42. \\ * \\ -25.1 \\ -0.9 \\ 1.0 \end{array} $
 β Arae ν Scorpii α Arae λ Scorpii β Draconis θ Scorpii α Ophiuchi κ Scorpii 	17 24 24 27 28 30 30 30	$\begin{array}{r} -35 & 26 \\ -37 & 13 \\ -49 & 48 \\ -37 & 2 \\ +52 & 23 \\ -42 & 56 \\ +12 & 38 \\ -38 & 58 \end{array}$	$2.8 \\ 2.8 \\ 3.0 \\ 1.7 \\ 3.0 \\ 2.0 \\ 2.1 \\ 2.5$	K2 B3 B3p B2 G0 F0 A5 B2	.035 .040 .085 .040 .012 .010 .264 .032		815 67	······ ····· ····· ····· 0.5	-1.0 -1.* -19.7 +5.
β Ophiuchi ι^1 Scorpii $ \mu$ Herculis G Scorpii ν Ophiuchi γ Draconis γ Sagittarii	39 41 43 43 54 54 59	$\begin{array}{r} + 4 \ 37 \\ -40 \ 5 \\ +27 \ 47 \\ -37 \ 1 \\ - 9 \ 46 \\ +51 \ 30 \\ -30 \ 26 \end{array}$	$2.9 \\ 3.1 \\ 3.5 \\ 3.2 \\ 3.5 \\ 2.4 \\ 3.1$	K0 F5p G5 K2 K0 K5 K0	.157 .000 .817 .062 .118 .026 .206	.024 s .111 s .026 s .017 s	136 29 126 192	-0.2 3.7 0.6 -1.4 	$\begin{array}{c} -11.5 \\ -27.8 \\ -15.7 \\ +24.7 \\ +12.6 \\ -27.0 \\ +22. \end{array}$
η Sagittarii δ Sagittarii η Serpentis ε Sagittarii λ Sagittarii a Lyrae φ Sagittarii β Lyrae	$ 18 11 \\ 15 \\ 16 \\ 18 \\ 22 \\ 34 \\ 39 \\ 46 $	$\begin{array}{rrrr} -36 & 48 \\ -29 & 52 \\ -2 & 55 \\ -34 & 26 \\ -25 & 29 \\ +38 & 41 \\ -27 & 6 \\ +33 & 15 \end{array}$	3.22.83.42.02.90.13.3 $3.4-4.1$	M6 K0 K0 A0 K0 A0 B8 B2p	.223 .042 .898 .139 .197 .348 .053 .011 -	.065 s .124 s 014 s	50 26 3260 :	$ \begin{array}{c} 2.5 \\ 2.5 \\ \\ 0.6 \\ \\ -6.6 \\ \end{array} $	$\begin{array}{r} 0.0 \\ -20.2 \\ + 9.5 \\ -11.0 \\ -43.2 \\ -13.8 \\ +26. \\ * \\ \end{array}$

=										1		
	Star	0001 0	100 T 1000	cd. 1900		ag.	'pe	nn. Proper otion	ırallax	stance in ght Years	bs. Mag.	ad. Vel.
		ρ	ż	a a		Z	E .	A A	Pa	EG	A	Ř
		l h	m	0	,	[- <u>i</u>		, ,,	I	1	km./sec
\sim	Ivrae	18	55	+32	33	33	AO	010				-20 *
118	Socittorii	10	56	-30	1	97	A2	026				+22
115	Sagittain		00	00	1	2.1	112	.020		• • • • •		,
τ	Sagittarii	19	1	-27	49	3.4	KO	.265				+42. *
۲	Aquilae		1	+13	43	3.0	AO	.103	.040 s	82	1.0	-38.6
3 π	Sagittarii		4	-21	11	3.0	F2	.041	.016 s	204	-1.0	-10.3
ĥ	Draconis		13	+67	29	3 2	KO	135	038 s	86	1.1	+25.1
δ	Aquilae		21	+ 2	55	3.4	FO	267	057 s	57	22	-32 *
цR	Cycri		27	± 27	45	3.2	KOD	010	.001 s	1087	-4 4	-23 *
up X	Aquilae		42	± 10	22	2.8	K2	018	018 s	181	-0.9	-21
112	Aquilae		42	1 1 1	52	2.0	40	.010	010 5	86	0.0	-37
110	Aguilag		42	1 9	26	0.0	45	.007	204 6	16	2 1	-33
a	Aquinae		40	T 0	30	0.9	10	.009	.2015	10	2.1	00.
A	Aquilae	20	6	- 1	7	34	AO	035	015 s	217	-0.7	-29.2*
ЦR	Capricorni	20	15	-15	6	3.2	G0n	.000	005 s	652	-3.3	-18.8*
np a	Payonia		18	- 57	3	21	B3	012	.0005	002	0.0	+2.0*
ů	Cuani	1	10	1 30	56	2.1	E8n	006	- 002 s	3260 ·	-77	- 5 6
Ŷ	Cygni		21	- 47	38	2.0	kop ko	072	.0023	0200.	• • •	- 0.8
a	Anani		20	-41	55	1.2	120	.012	005	652	-59	- 4
a	Count		19	1 99	26	1.0	IZD IZD	.001	041.0	80	0.2	-10 *
e	Cygni		42	+35	30	2.0	KU	. 400	.0415	00	0.1	-10.
٢	Cyani	21	9	+29	49	34	KO	.061	.024 s	136	0.3	+17. *
2	Cephei		16	+62	10	2 6	A5	.163	.083 s	39	2.2	-30.7
ß	Aquarii		26	- 6	1	3 1	GO	020	-003 s	3260 :	-6.9	+ 6.4
ß	Cenhei		27	± 70	7	33	B1	013	007 s	466	-25	-14 1*
p	Peresi		20		25	2.5	KO	028	002 s	1630	-5.9	+53
с Х	Capricorni		19	_16	25	2.0	45	305	.002 S	20	33	*
0	Capito		42	-10	50	3.0	40	108	.117.5	25	0.0	- 3
Ŷ	Gruis		40	-37	00	0.2	130	.100				0.
a	Aquarii	22	1	- 0	48	3 2	GO	009	.009 s	362	-2.0	+7.1
~	Gruis		2	-47	27	22	B5	200				
	Tucanae		12	60	45	2.0	K2	085				+41
R	Cruio		37	-47	71	2.5	M6	122				+12
р 	Demosi		20	1.20	42	2.2	CO	.122	- 001 c	3260 -	-6.9	$+ 4 3^*$
η	regasi D Amatrolia		50	729	42	1 2	42	267		94 94	2.0	+ 6.7
a P	r, Australis		50	-30	9 20	1.0	Ma	.307	.107	24		1 8 6
p	Pegasi		59	+21	04 40	2.0	1013	.200	.010 5	204	-1.4	T 0.0
a	Pegasi	1	99	+14	40	2.0	AU	.077	. USO S	00	0.0	Τ 4.
•	Caphai		25	1.77	. ,	24	K1	167	060 -	47	2.6	-41 6
γ	Cephei	22	ə ə	+11	4	0.4	IX1	.107	.0035	T	2.0	0.11
		143		1			1	1 1		1	1	
ASTRONOMICAL CONSTANTS

Solar Parallax, 8".80 Mass of the sun, 1.983×10^{33} grams = 332000 times the mass of the earth Temperature of the sun's surface, 5740° C. Solar Constant, 1.925 calories per sq. cm. per min. Obliquity of the ecliptic, $23^{\circ} 27' 8''.26 - 0.4684 (t - 1900)$ Mean Distance Earth to Sun, 149,504,201 km. = 92,897,416 statute miles Mean Distance Earth to Moon, 384,403 km, =238,857 statute miles Equatorial Horizontal Parallax of Moon, 57' 2".70 Gaussian constant of gravitation, $\kappa = .017202099$ Newtonian constant of gravitation, $\kappa = 6.658 \times 10^{-8}$ c.g.s. Acceleration in one second due to gravity, g = 9.8060 meters $-.0260 \cos 2\phi - \frac{2h}{Rg}g$ Reduction from geographic latitude ϕ to geocentric latitude ϕ' . $\phi' - \phi = -11' \ 35''.66 \ \sin 2\phi + 1''.17 \ \sin 4\phi.$ Dimensions of the earth: Equatorial radius. a = 6378.388 km. = 3963.34 statute miles Polar radius. b = 6356.909 km = 3949.99 statute milesMass of the earth, 5.974×10^{27} grams Density of the earth, 5.515 grams per cubic cm. Velocity of light, 299,796 km. or 186,285 miles per sec. Length of the year: (t - 1900)Length of the day: Length of the month: Synodical..... $29^{d}.530588 = 29^{d}12^{h}44^{m}2^{s}.8$

PA	GE
Abbreviations and Symbols	4
Algol, minima of	51
Andromedes (meteors)	54
Anniversaries for 1929	3
Astronomical Constants	71
Calendar for 1929cover, page	2
Distance of Stars	61
Double Stars	57
Eclipses in 1929	27
Ephemeris of the Sun	6
Festivals and Anniversaries for 1929	3
Greek Alphabet	4
Jupiter's Satellites, configurations of	51
Jupiter's Satellites, Phenomena of	52
Leonids (meteors)	54
Meteors and Shooting Stars	54
Moon, Phases of the	51
Moon, Occultations of Stars by	8
Moon, Eclipses of	27
Occultation of Stars by the Moon	8
Perseids (meteors)	54
Phenomena (conjunctions, etc.)	51
Planets for the Year	22
Preface	3
Satellites of Jupiter, Configurations of	51
Satellites of Jupiter, Phenomena of	52
Satellites of the Solar System	56
Sky for the Month	50
Solar System, Elements of	55
Solar System, Satellites of	56
Stars, information regarding the brightest	63
Stars, the Distance of the	61
Stars, Double	57
Stars, Variable	59
Sun, Ephemeris of the	6
Sun, Eclipses of	27
Sunrise and Sunset, Explanation of Tables	8
Sunrise and Sunset, Tables of	9
Time, Explanation of Solar and Sidereal	5
Variable Stars	59

INDEX

PATH OF MARS AMONG THE STARS FROM JUNE 7, 1930 TO JANUARY 75, 1931. Fig. 3.

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

The objects of the Society, incorporated in 1890, are:

- (a) "To study Astronomy, Astrophysics and such cognate subjects as shall be approved of by the Society and as shall, in its opinion, tend to the better consideration and elucidation of Astronomical and Astrophysical problems; and to diffuse theoretical and practical knowledge with respect to such subjects.
- (b) To publish from time to time the results of the work of the Society; and,
- (c) To acquire and maintain a Library, and such apparatus and real and personal property as may be necessary and convenient for the carrying into effect of the objects of the Society."

For many years the Toronto organization existed alone, but now the Society is national in extent, having active Centres in Montreal, P.Q.; Ottawa, Ont.; Toronto, Ont.; London, Ont.; Winnipeg, Man.; and Victoria, B.C. Among its 800 members are a number of the leading astronomers and scientists of the world, many amateurs, and in addition, many laymen who are interested in the culture of the science.

Membership in the Society is open to anyone interested in Astronomy. The annual dues are \$2.00; life membership \$25.00 (no further dues). The annual fee includes subscription to the publications.

The Society publishes a monthly JOURNAL containing about 500 pages of interesting articles, and the yearly HANDBOOK of 72 pages containing valuable information for the amateur observer. Single copies of the JOURNAL or HANDBOOK are 25 cents.

The Library and the Offices of the Society are at 198 College St., Toronto, Ont. Applications for membership, or for further information should be addressed to:

General Secretary-Dr. Lachlan Gilchrist, 198 College St., Toronto, Ont. Montreal Secretary-Dr. A. V. Douglas, Physics Building, McGill

University, Montreal, P.Q.

Ottawa Secretary-Miss M. S. Burland, Dominion Observatory, Ottawa, Ont.

Toronio Secretary—E. J. A. Kennedy, Esq., 198 College St., Toronto, Ont.

Lordon Secretary—Dr. H. S. Wismer, 253 Queen's Ave., London, Ont. Winnipeg Secretary—Mrs. J. Norris, 569 Sherburn St., Winnipeg, Man. Victoria Secretary—Prof. W. Gage, Victoria College, Victoria, B.C.