THE OBSERVER'S HANDBOOK FOR 1941

PUBLISHED BY

The Royal Astronomical Society of Canada

C. A. CHANT, EDITOR
F. S. HOGG, ASSISTANT EDITOR
DAVID DUNLAP OBSERVATORY

THIRTY-THIRD YEAR OF PUBLICATION

TORONTO
198 COLLEGE STREET
PRINTED FOR THE SOCIETY
BY THE UNIVERSITY OF TORONTO PRESS
1941

1941	CALENDAR		1941
JANUARY	FEBRUARY MAR	RCH	APRIL
Sun 5 12 19 26 Mon 6 13 20 27 Tues 7 14 21 28 Wed. 1 8 15 22 29 Thur. 2 9 16 23 30 Fri. 3 10 17 24 31 Sat 4 11 18 25	Sun. 2 9 18 23 Sun. 2 8 Mon. 3 10 17 24 Mon. 3 10 Tues. 4 11 18 25 Tues. 4 11 Wed. 5 12 19 26 Wed. 5 12 Thur. 6 13 20 27 Thur. 6 13 Fri. 7 14 21 28 Fri. 7 14 Sat 1 8 15 22 Fri. 7 14	17 24 31 1 18 25 2 19 26 3 20 27 4 21 28 1	Sun. 6 13 20 27 Mon. 7 14 21 28 Tues. 1 8 15 22 29 Wed. 2 9 16 23 30 Thur. 3 10 17 24 Fri. 4 11 18 25 Sat 5 12 19 26
MAY	JUNE JU	LY	AUGUST
Sun. 4 11 18 25 Mon. 5 12 19 26 Tues. 6 13 20 27 Wed. 7 14 21 28 Thur. 1 8 15 22 29 Fri. 2 9 16 23 30 Sat 3 10 17 24 31	Sun 1 8 15 22 29 Sun 6 Mon. 2 9 16 23 30 Mon. 7 Tues. 3 10 17 24 Tues. 1 8 Wed. 4 11 18 25 Wed. 2 9 Thur. 5 12 19 26 Thur. 3 10 Fri. 6 13 20 27 Fri. 4 11 Sat. 7 14 21 28 Sat. 5 12	7 14 21 28 1 8 15 22 29 2 9 16 23 30 1 1 17 24 31 1 1 18 25	Sun. 3 10 17 24 31 Mon. 4 11 18 25 Tues 5 12 19 26 Wed. 6 13 20 27 Thur. 7 14 21 28 Fri. 1 8 15 22 29 Sat. 2 9 16 23 30
SEPTEMBER	OCTOBER NOVE	MBER	DECEMBER
Sun. 7 14 21 28 Mon 1 8 15 22 29 Tues. 2 9 16 23 30 Wed. 3 10 17 24 Thur. 4 11 18 25 Fri. 5 12 19 26 Sat. 6 13 20 27	Sun. 5 12 19 26 Mon. 6 13 20 27 Mon. 3 10 Tues. 7 14 21 28 Tues. 4 11 18 15 22 29 Wed. 1 8 15 22 29 Wed. 5 12 Thur. 2 9 16 23 30 7 14 16 13 Fri. 3 10 17 24 31 7 7 14 Sat. 4 11 18 25 18 18 18	17 24	Sun. 7 14 21 28 Mon. 1 8 15 22 26 Tues. 2 9 16 23 36 Wed. 3 10 17 24 31 Thur. 4 11 18 25 Fri. 5 12 19 26 Sat 6 13 20 27

JULIAN DAY CALENDAR, 1941

J.D. 2,400,000 plus the following:

Jan.	129996	May	130116	Sept.	130239
Feb.	130027	June	130147	Oct.	130269
Mar.	130055	July	130177	Nov.	130300
Apr.	130086	Aug.	130208	Dec.	130330

The Julian Day commences at noon. Thus J.D. 2,429,996.0=Jan. 1.5 G.C.T.

THE OBSERVER'S HANDBOOK FOR 1941

PUBLISHED BY

The Royal Astronomical Society of Canada

C. A. CHANT, EDITOR
F. S. HOGG, ASSISTANT EDITOR
DAVID DUNLAP OBSERVATORY

THIRTY-THIRD YEAR OF PUBLICATION

TORONTO

198 COLLEGE STREET
PRINTED FOR THE SOCIETY
BY THE UNIVERSITY OF TORONTO PRESS

1941

CONTENTS

					PA	\GE
Preface	-	-	_	-	-	3
Anniversaries and Festivals	-	-	-	-	-	3
Symbols and Abbreviations	-	-	_	-	-	4
The Constellations	-	-	-	-	-	5
Miscellaneous Astronomical	Data	-	-	-	-	6
Ephemeris of the Sun	-	-	-	-	-	7
Solar and Sidereal Time	-	-	-	-	-	8
Map of Standard Time Zon	es	-	-	-	-	9
Times of Sunrise and Sunse		-	-	-	-	10
Times of Beginning and End		T wilight	-	-	-	17
The Planets for 1940	-	-	-	-	-	18
Eclipses, 1940 -	-	-	-	-	-	2 5
The Sky and Astronomical	Phenome	ena Moi	nth by N	Month	-	26
Phenomena of Jupiter's Sate		-	-	-	-	50
Phenomena of Saturn's Sate		-	-	-	-	52
Lunar Occultations -	-	-	-	-	-	52
Meteors or Shooting Stars	-	-	-	-	-	54
Principal Elements of the So	olar Syst	tem	-	-	-	56
Satellites of the Solar System		-	-	-	-	57
Double and Multiple Stars,	with a s	hort list	t	-	-	58
Variable Stars, with a short	list	-	-	-	-	60
Distances of the Stars, with		the Sun	's Neigh	bours	-	62
The Brightest Stars, their m	agnitud	es, types	s, proper	motion	s,	
distances and radial velo		-	-	-	-	64
Star Clusters and Nebulae,	with Me	essier's I	_ist	-	-	72
Four Circular Star Maps	-	-	-	-	-	7 5
List of Air Navigation Stars	5	-	-	-	-	79
Tables of Meteorological Da	ıta	-	•	-	-	80

PREFACE

The Handbook for 1941, which is the thirty-third issue, is arranged similarly to that of last year. The chief changes are: (1) The ephemerides of the bright asteroids have been omitted; (2) A list of stars used in air navigation has been added.

The small star maps at the back necessarily contain only a few objects. Four similar maps 9 inches in diameter are obtainable from the Director of University Extension, University of Toronto, for one cent each. Observers desiring fuller information are recommended to obtain Norton's Star Atlas and Reference Handbook (Gall and Inglis, price 12s 6d; supplied also by Eastern Science Supply Co., Boston, Mass.). The sixth edition contains late information.

For the preparation of the material in the volume Dr. F. S. Hogg. Assistant Editor, is largely responsible; but hearty thanks are due to all the staff of the David Dunlap Observatory for their assistance.

C. A. CHANT.

David Dunlap Observatory, Richmond Hill, Ont., December 1940.

ANNIVERSARIES AND FESTIVALS 1941

New Year's DayWed. Jan. 1 EpiphanyMon. Jan. 6	Dominion DayTue. Jul. 1 Birthday of Queen Elizabeth
Septuagesima SundayFeb. 9	(1900)
Quinquagesima (Shrove	Labour DayMon. Sep. 1
Sunday)Feb. 23	Hebrew New Year (Rosh
Ash Wednesday Feb. 26	Hashanah)Mon. Sep. 22
St. David Sat. Mar. 1	St. Michael (Michaelmas
St. Patrick	Day)
Palm Sunday	All Saints' Day Sat. Nov. 1
Good FridayApr. 11	Remembrance DayTue. Nov. 11
Easter Sunday	St. AndrewSun. Nov. 30
St. George	First Sunday in AdventNov. 30
Rogation Sunday May 18	Ascension of King George VI
Ascension DayThu. May 22	(1936)Thu. Dec. 11
Empire Day (Victoria	Birthday of King George VI
Day)Sat. May 24	(1895)Sun. Dec. 14
Birthday of the Queen Mother,	Christmas DayThu. Dec. 25
Mary (1867)Mon. May 26	C
Pentecost (Whit Sunday)Jun. 1	the state of the s
Trinity SundayJun. 8	
Corpus ChristiThu. Jun. 12	Thenkeriving Day date set by
St. John Baptist (Midsummer	Thanksgiving Day, date set by Proclamation
Day)Tue. Jun. 24	i i ocialilation

SYMBOLS AND ABBREVIATIONS

SIGNS OF THE ZODIAC

Υ Aries 0°	Ω Leo120°	₹ Sagittarius240°
∀ Taurus30°	mp Virgo 150°	る Capricornus 270°
A Gemini60°	⇒ Libra180°	= Aquarius 300°
@ Cancer90°	m Scorpio 210°	Ж Pisces330°

SUN, MOON AND PLANETS

 The Sun. New Moon. Full Moon. First Quarter 	© The Moon generally. © Mercury. © Venus.	24 Jupiter. b Saturn. or H Uranus. W Neptupe
First Quarter	⊕ Earth. ♂ Mars.	Ψ Neptune.
6 Last Quarter.	o mars.	P Pluto

ASPECTS AND ABBREVIATIONS

o' Conjunction, or having the same Longitude or Right Ascension
& Opposition, or differing 180° in Longitude or Right Ascension.
□ Quadrature, or differing 90° in Longitude or Right Ascension.
Ascending Node; & Descending Node.
a or A.R., Right Ascension; δ Declination.
h, m, s, Hours, Minutes, Seconds of Time.
", Degrees, Minutes, Seconds of Arc.

THE GREEK ALPHABET

A, a, Alpha.	Ι, ι,	Iota.	Ρ, ρ,	Rho.
$B, \beta, Beta.$	Κ, κ,	Kappa.	$\Sigma, \sigma, \varsigma,$	Sigma.
Γ, γ , Gamma.	Λ, λ,	Lambda.	Τ, τ,	Tau.
Δ, δ , Delta.	\mathbf{M}, μ	Mu.	Υ, υ,	Upsilon.
E, ε, Epsilon.	Ν, ν,	Nu.	Φ, φ,	Pĥi.
z, ζ, Zeta.	Ξ, ξ	Xi.	X, χ	Chi.
H, η, Eta.	0,0,	Omicron.	Ψ, ψ ,	Psi.
$\Theta, \theta, \vartheta$, Theta.	Π, π,	Pi.	Ω, ω,	Omega.

THE CONFIGURATIONS OF JUPITER'S SATELLITES

In the Configurations of Jupiter's Satellites (pages 27, 29, etc.), O represents the disc of the planet, d signifies that the satellite is on the disc, * signifies that the satellite is behind the disc or in the shadow. Configurations are for an inverting telescope.

THE CONSTELLATIONS

LATIN AND ENGLISH NAMES WITH ABBREVIATIONS

			_
Andromeda,		Leo, $Lion$ Leo	Leon
(Chained Maiden) And	Andr	Leo Minor, Lesser LionLMi	LMin
Antlia, Air PumpAnt	Antl	Lepus, HareLep	Leps
Apus, Bird of Paradise. Aps	Apus	Libra, ScalesLib	Liĥr
Aquarius, Water-bearer Aqr	Agar	Lupus, WolfLup	Lupi
Aquila, EagleAql	Aqil	Lynx, LynxLyn	Lync
Ara, AltarAra	Arae	Lyra, LyreLyr	Lyra
Aries, RamAri	Arie	Mensa, Table (Mountain) Men	Mens
			MEHS
Auriga, (Charioteer)Aur	Auri	Microscopium,	N/:
Bootes, (Herdsman)Boo	Boot	MicroscopeMic	Micr
Caelum, ChiselCae	Cael.	Monoceros, <i>Unicorn</i> Mon	Mono
Camelopardalis, Giraffe. Cam	Caml	Musca, FlyMus	Musc
Cancer, CrabCnc	Canc	Norma, SquareNor	Norm
Canes Venatici,		Octans, OctantOct	Octn
Hunting DogsCVn	CVen	Ophiuchus,	
Canis Major, Greater Dog.CMa	CMaj	Serpent-bearerOph	Ophi
Canis Minor, Lesser Dog. CMi	CMin	Orion, (Hunter)Ori	Orio
Capricornus, Sea-goatCap	Capr	Pavo, PeacockPav	Pavo
Carina, KeelCar	Cari	Pegasus, (Winged Horse) Peg	Pegs
Cassiopeia,		Perseus, (Champion)Per	Pers
(Lady in Chair)Cas	Cass	Phoenix, <i>Phoenix</i> Phe	Phoe
Centaurus, CentaurCen	Cent	Pictor, PainterPic	Pict
Cepheus, (King) Cep	Ceph	Pisces, FishesPsc	Pisc
Cetus, WhaleCet	Ceti	Piscis Australis.	
Chamaeleon, ChamaeleonCha	Cham	Southern FishPsA	PscA
Circinus, CompassesCir	Circ	Puppis, PoopPup	Pupp
Columba, DoveCol	Colm	Pyxis, CompassPyx	Pyxi
Coma Berenices,		Reticulum, NetRet	Reti
Berenice's HairCom	Coma	Sagitta, ArrowSge	Sgte
Corona Australis,	001114	Sagittarius, ArcherSgr	Sgtr
Southern CrownCrA	CorA	Scorpius, ScorpionScr	Scor
Corona Borealis,	00111	Sculptor, SculptorScl	Scul
Northern CrownCrB	CorB	Scutum, ShieldSct	Scut
Corvus, CrowCrv	Corv	Serpens, SerpentSer	Serp
Crater, CupCrt	Crat	Sextans, SextantSex	Sext
Crux, (Southern) CrossCru	Cruc	Taurus, BullTau	Taur
Cygnus, SwanCyg	Cygn	Telescopium, Telescope. Tel	Tele
Delphinus, Dolphin Del	Dlph	Triangulum, TriangleTri	Tria
Dorado, SwordfishDor	Dora	Triangulum Australe,	IIIa
	Drac		TrAu
Draco, <i>Dragon</i> Dra Equuleus, <i>Little Horse</i> Equ		Southern TriangleTrA	
	Equi	Tucana, ToucanTuc	Tucn
Eridanus, River Eridanus. Eri	Erid	Ursa Major, Greater Bear. UMa	UMaj
Fornax, FurnaceFor	Forn	Ursa Minor, Lesser Bear. UMi	UMin
Gemini, TwinsGem	Gemi	Vela, SailsVel	Velr
Grus, CraneGru	Grus	Virgo, VirginVir	Virg
Hercules,	TT	Volans, Flying FishVol	Voln
(Kneeling Giant) Her	Herc	Vulpecula, FoxVul	Vulp
Horologium, ClockHor	Horo	T1 41 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Hydra, Water-snakeHya	Hyda	The 4-letter abbreviations	
Hydrus, Sea-serpentHyi	Hydi	tended to be used in cases v	vhere a
Indus, IndianInd	Indi	maximum saving of space	is not
Lacerta, LizardLac	Lacr	necessary.	

MISCELLANEOUS ASTRONOMICAL DATA

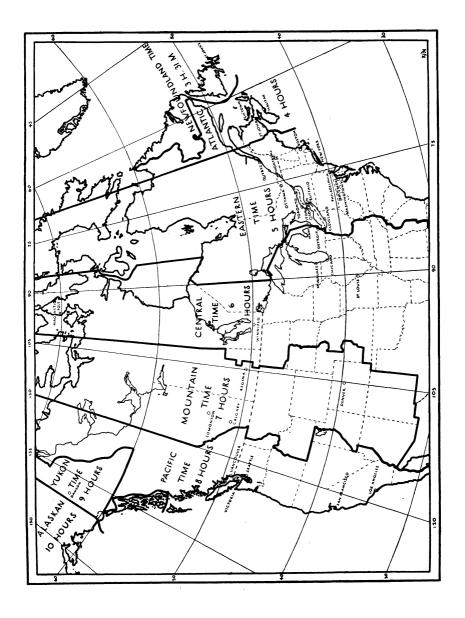
```
Units of Length
    1 Angstrom unit = 10-8 cm.
    1 micron
                        = 10-4 cm.
    1 meter
                        = 10^{2} cm. = 3.28084 feet
    1 kilometer
                       = 10^{5} cm. = 0.62137 miles
    1 mile
                         = 1.60935 \times 10^{5} cm, = 1.60935 km.
    1 astronomical unit = 1.49504 \times 10^{18} cm. = 92,897,416 miles
    1 light year = 9.463 \times 10^{17} cm. = 5.880 \times 10^{12} miles = 0.3069 parsecs
                       = 30.84 \times 10^{17} cm. = 19.16 \times 10^{12} miles = 3.259 l.y.
    1 parsec
    1 megaparsec
                       = 30.84 \times 10^{23} cm. = 19.16 \times 10^{18} miles = 3.259 \times 10^{8} l.y.
Units of Time
    Sidereal day
                     = 23h \ 56m \ 04.09s of mean solar time
    Mean solar day = 24h \ 03m \ 56.56s of sidereal time
    Synodical month = 29d \ 12h \ 44m; sidereal month = 27d \ 07h \ 43m
    Tropical year (ordinary) = 365d 05h 48m 46s
    Sidereal year
                             =365d \ 06h \ 09m \ 10s
                             =346d 14h 53m
    Eclipse year
THE EARTH
    Equatorial radius, a = 3963.35 miles; flattening, c = (a - b)/a = 1/297.0
    Polar radius, b = 3950.01 miles
    1° of latitude = 69.057 - 0.349 \cos 2\phi miles (at latitude \phi)
    1° of longitude = 69.232 cos \phi - 0.0584 cos 3\phi miles
    Mass of earth = 6.6 \times 10^{21} tons; velocity of escape from \bigoplus =6.94 miles/sec.
EARTH'S ORBITAL MOTION
    Solar parallax = 8."80; constant of aberration = 20."47
    Annual general precession = 50."26; obliquity of ecliptic = 23° 26′ 50" (1939)
    Orbital velocity = 18.5 miles/sec.; parabolic velocity at \bigoplus = 26.2 miles/sec.
SOLAR MOTION
    Solar apex, R.A. 18h 04m; Dec. + 31°
    Solar velocity = 12.2 miles/sec.
THE GALACTIC SYSTEM
    North pole of galactic plane R.A. 12h 40m, Dec. +28^{\circ} (1900)
    Centre, 325° galactic longitude, = R.A. 17h 24m, Dec. -30°
    Distance to centre = 10,000 parsecs; diameter = 30,000 parsecs.
    Rotational velocity (at sun) = 262 km./sec.
    Rotational period (at sun) = 2.2 ×108 years
    Mass = 2 \times 10^{11} solar masses
EXTRAGALACTIC NEBULAE
    Red shift =+530 km./sec./megaparsec=+101 miles /sec./million l.y.
RADIATION CONSTANTS
     Velocity of light = 299,774 km./sec. = 186,271 miles/sec.
    Solar constant = 1.93 gram calories/square cm./minute
    Light ratio for one magnitude = 2.512; log ratio = 0.4000
     Radiation from a star of zero apparent magnitude = 3 × 10-6 meter candles
     Total energy emitted by a star of zero absolute magnitude = 5 \times 10^{25} horsepower
MISCELLANEOUS
     Constant of gravitation, G = 6.670 \times 10^{-8} c.g.s. units
     Mass of the electron, m = 9.035 \times 10^{-28} gm.; mass of the proton = 1.662 \times 10^{-24} gm.
     Planck's constant, h = 6.55 \times 10^{-27} erg. sec.
     Loschmidt's number = 2.705 × 1019 molecules/cu. cm. of gas at N.T.P.
     Absolute temperature = T^{\circ} K = T^{\circ}C +273° = 5/9 (T^{\circ} F +459°)
     1 \text{ radian} = 57^{\circ}.2958
                                      \pi = 3.141,592,653,6
               = 3437'.75
                                      No. of square degrees in the sky
               = 206,265''
                                                          =41.253
```

1941 EPHEMERIS OF THE SUN AT 0h GREENWICH CIVIL TIME

Date	Apparent R.A	Corr. to Sundial	Apparent Dec.	Date	Apparent R.A.	Corr. to Sundial	Apparent Dec.
Jan 1 4 7 7 10 11 16 11 11 11 11 11 11 11 11 11 11 11	h m s 18 44 22 18 57 36 19 10 46 19 23 52 19 36 53 19 49 48 20 02 37 20 15 19 20 27 55 20 40 24 20 52 46	m s +03 21 +04 46 +06 06 +07 22 +08 33 +09 39 +10 38 +11 31 +12 17 +12 56 +13 28	-23 03.1 -22 47.0 -22 26.9 -22 02.7 -21 34.7 -21 02.9 -20 27.5 -19 48.6 -19 06.4 -18 21.1 -17 32.7	July 3 6 9 12 15 18 21 24 27 30	h m s 06 46 25 06 58 47 07 11 05 07 23 21 07 35 32 07 47 39 07 59 41 08 11 38 08 23 30 08 35 17	m s +03 55 +04 27 +04 56 +05 21 +05 43 +06 00 +06 13 +06 20 +06 23 +06 20	+23 00.9 +222 45.4 +222 45.3 +22 03.8 +21 37.8 +21 08.5 +20 00.3 +19 21.6 +18 40.1
Feb. 3 6 6 9 12 15 18 12 21 22 27	21 05 00 21 17 06 21 29 05 21 40 57 21 52 42 22 04 21 22 15 54 22 27 20 22 38 42	+13 53 +14 10 +14 19 +14 21 +14 17 +14 06 +13 48 +13 26 +12 57	-16 41.6 -15 47.9 -14 51.7 -13 53.3 -12 52.8 -11 50.5 -10 46.4 -09 40.9 -08 34.0	Aug. 2 " 5 " 8 ' 11 " 14 " 17 " 20 " 23 " 26 " 29	08 46 58 08 58 33 09 10 03 09 21 28 09 32 48 09 44 03 09 55 13 10 06 19 10 17 21 10 28 20	+06 11 +05 57 +05 37 +05 12 +04 42 +04 07 +03 28 +02 45 +01 57 +01 06	+17 55.8 +17 08.9 +16 19.5 +15 27.7 +14 33.7 +13 37.6 +12 39.6 +11 39.7 +10 38.2 +09 35.1
Mar. 2 " 5 " 8 " 11 " 14 " 17 " 20 " 23 " 26 " 29	22 49 58 23 01 10 23 12 18 23 23 22 23 34 23 23 45 21 23 56 18 00 07 14 00 18 09 00 29 04	+12 24 +11 46 +11 04 +10 19 +09 30 +08 39 +07 46 +06 52 +05 58 +05 03	-07 26.0 -06 17.0 -05 07.3 -03 56.9 -02 46.2 -01 35.2 -00 24.0 +00 47.0 +01 57.9 +03 08.4	Sept. 1 4 7 10 13 16 19 22 25 28	10 39 15 10 50 07 11 00 57 11 11 44 11 22 31 11 33 17 11 44 03 11 54 50 12 05 37 12 16 25	+00 11 -00 46 -01 46 -02 48 -03 51 -04 55 -05 58 -07 02 -08 04 -09 05	+08 30.7 +07 25.1 +06 18.4 +05 10.7 +04 02.3 +02 53.2 +01 43.6 +00 33.6 -00 36.5 -01 46.7
Apr. 1 " 4 " 7 " 10 " 13 " 16 " 19 " 222 " 25 " 28	00 39 59 00 50 55 01 01 53 01 12 52 01 23 53 01 34 57 01 46 05 01 57 16 02 08 31 02 19 51	$\begin{array}{c} +04 & 09 \\ +03 & 15 \\ +02 & 23 \\ +01 & 32 \\ +00 & 44 \\ -00 & 02 \\ -00 & 44 \\ -01 & 22 \\ -01 & 57 \\ -02 & 27 \\ \end{array}$	+04 18.3 +05 27.5 +06 35.9 +07 43.2 +08 49.3 +09 54.2 +10 57.5 +11 59.3 +12 59.3 +13 57.3	Oct. 1 " 4 " 7 " 10 " 13 " 16 " 19 " 22 " 25 " 28 " 31	12 27 15 12 38 08 12 49 03 13 00 02 13 11 05 13 22 13 13 33 27 13 44 46 13 56 10 14 07 42 14 19 19	-10 05 -11 02 -11 56 -12 47 -13 33 -14 51 -15 22 -15 47 -16 05 -16 17	-02 56.7 -04 06.5 -05 15.8 -06 24.5 -07 32.4 -08 39.5 -09 45.4 -10 50.1 -11 53.3 -12 54.7
May 1	02 31 15 03 42 44 02 54 18 03 05 56 03 17 40 03 29 29 03 41 23 03 53 23 04 05 27 04 17 36 04 29 49	-02 52 -03 13 -03 29 -03 46 -03 46 -03 42 -03 32 -03 18 -02 58 -02 35	+14 53.3 +15 47.1 +16 38.5 +17 27.5 +18 13.8 +18 57.3 +19 38.0 +20 15.6 +20 50.2 +21 21.6 +21 49.6	Nov 3 " 6 " 9 " 12 " 15 " 18 " 21 " 24 " 27 ' 30	14 31 04 14 42 56 14 54 55 15 07 02 15 19 17 15 31 39 15 44 10 15 56 47 16 09 31 16 22 22	-16 23 -16 20 -16 11 -15 53 -15 28 -14 55 -14 15 -13 27 -12 33 -11 32	-14 52.4 -15 48.0 -16 41.2 -17 31.9 -18 19.9 -19 05.0 -19 47.0 -20 25.7 -21 01.1 -21 32.9
June 3 " 6 " 9 " 12 " 15 " 18 " 21 " 24 " 27 30	04 42 05 04 54 25 05 06 48 05 19 13 05 31 40 05 44 08 05 56 37 06 09 05 06 21 34 06 34 00	$\begin{array}{c} -02 & 08 \\ -01 & 38 \\ -01 & 05 \\ -00 & 30 \\ +00 & 07 \\ +00 & 46 \\ +01 & 25 \\ +02 & 04 \\ +02 & 43 \\ +03 & 20 \\ \end{array}$	+22 14.2 +22 35.3 +22 52.9 +23 06.8 +23 17.1 +23 23.6 +23 26.5 +23 25.7 +23 21.1 +23 12.8	Dec. 3	16 35 18 16 48 20 17 01 27 17 14 38 17 27 53 17 41 11 17 54 30 18 07 49 18 21 08 18 34 26	$\begin{array}{c} -10 & 25 \\ -09 & 12 \\ -07 & 55 \\ -06 & 34 \\ -05 & 08 \\ -03 & 41 \\ -02 & 11 \\ -00 & 41 \\ +00 & 48 \\ +02 & 16 \\ \end{array}$	-22 01.1 -22 25.4 -22 45.7 -23 02.1 -23 14.3 -23 22.4 -23 26.3 -23 25.9 -23 21.3 -23 12.5

To obtain local mean time, apply corr. to sundial to apparent or sundial time.

SOLAR AND SIDEREAL TIME


In practical astronomy three different kinds of time are used, while in ordinary life we use a fourth.

- 1. Apparent Time—By apparent noon is meant the moment when the sun is on the meridian, and apparent time is measured by the distance in degrees that the sun is east or west of the meridian. Apparent time is given by the sun-dial.
- 2. Mean Time—The interval between apparent noon on two successive days is not constant, and a clock cannot be constructed to keep apparent time. For this reason mean time is used. The length of a mean day is the average of all the apparent days throughout the year. The real sun moves about the ecliptic in one year; an imaginary mean sun is considered as moving uniformly around the celestial equator in one year. The difference between the times that the real sun and the mean sun cross the meridian is the equation of time. Or, in general, Apparent Time—Mean Time = Equation of Time. This is the same as Correction to Sundial on page 7, with the sign reversed.
- 3. Sidereal Time—This is time as determined from the stars. It is sidereal noon when the Vernal Equinox or First of Aries is on the meridian. In accurate time-keeping the moment when a star is on the meridian is observed and the corresponding mean time is then computed with the assistance of the Nautical Almanac. When a telescope is mounted equatorially the position of a body in the sky is located by means of the sidereal time.
- 4. Standard Time—In everyday life we use still another kind of time. A moment's thought will show that in general two places will not have the same mean time; indeed, difference in longitude between two places is determined from their difference in time. But in travelling it is very inconvenient to have the time varying from station to station. For the purpose of facilitating transportation the system of Standard Time was introduced in 1883. Within a certain belt approximately 15° wide, all the clocks show the same time, and in passing from one belt to the next the hands of the clock are moved forward or backward one hour.

In Canada we have six standard time belts, as follows;—60th meridian or Atlantic Time, 4h. slower than Greenwich; 75th meridian or Eastern Time, 5h.; 90th meridian or Central Time, 6h.; 105th meridian or Mountain Time, 7h.; 120th meridian or Pacific Time, 8h.; and 135th meridian or Yukon Time, 9h. slower than Greenwich.

The boundaries of the time belts are shown on the map on page 9.

MAP OF STANDARD TIME ZONES

TIMES OF SUNRISE AND SUNSET

In the tables on pages 11 to 16 are given the times of sunrise and sunset for places in latitudes 36°, 40°, 44°, 46°, 48°, 50° and 52°. The times are given in Local Mean Time, and in the table below are given corrections to change from Local Mean to Standard Time for the cities and towns named.

How the Tables are Constructed

The time of sunrise and sunset at a given place, in local mean time, varies from day to day, and depends principally upon the declination of the sun. Variations in the equation of time, the apparent diameter of the sun and atmospheric refraction at the points of sunrise and sunset also affect the final result. These quantities, as well as the solar declination, do not have precisely the same values on corresponding days from year to year, and so the table gives only approximately average values. The times are for the rising and setting of the upper limb of the sun, and are corrected for refraction. It must also be remembered that these times are computed for the sea horizon, which is only approximately realised on land surfaces, and is generally widely departed from in hilly and mountainous localities. The greater or less elevation of the point of view above the ground must also be considered, to get exact results.

The Standard Times for Any Station

In order to find the time of sunrise and sunset for any place on any day, first from the list below find the approximate latitude of the place and the correction, in minutes, which follows the name. Then find in the monthly table the local time of sunrise and sunset for the proper latitude, on the desired day, and apply the correction to get the Standard Time.

34°	min.	44°	min.	46°	min.	50°	m r.
Los Angeles	- 7	Brantford	+21	Glace Bay	0	Brandon	+40
000		Guelph	+21	Moncton	+19	Kenora	+18
38°		Halifax	+14	Montreal	- 6	Medicine Hat	+22
St. Louis	+1	Hamilton	+20	New Glasgow	+11	Moose Jaw	+ 2
San Francisco	+10	Kingston	+6	North Bay	+18	Port. la Prairie	
Washington	+ 8	Kitchener	+22	Ottawa	+3	Regina	- 2
400		Milwaukee	- 8	Parry Sound	+20	Trail	- 9
40°		Minneapolis	+13	Quebec	-15	Vancouver	+12
Baltimore	+ 6	Orillia	+18	St. John, N.B.	+24	Winnipeg	+28
New York	- 4	Oshawa	+15	Sault St. Marie			
Philadelphia	+ 1	Owen Sound	+24	Sherbrooke	-12	52°	
Pittsburgh	+20	Peterborough	+13	Sudbury	+24	Calgary	+36
42°		St. Catharines	+17	Sydney	+1	Saskatoon	+ 6
Boston	10	Stratford	+24	Three Rivers	-10	F40	
Buffalo	-16	Toronto	+18	400		54°	
Chicago	+15	Woodstock,Ont		48°		Edmonton	+34
Clicago	-10	Yarmouth	+24	Port Arthur	+57	Prince Albert	+1
Detroit	+26	46°		St. John's, Nfd.	0	Prince Rupert	+41
London, Ont.	-28		110	Seattle	+9	600	
Windsor	+25	Charlottetown	+13	Timmins	+26	60°	1.10
WILLIAM	+32	Fredericton	+26	Victoria	+13	Dawson	+18

Example.—Find the time of sunrise at Owen Sound, also at Regina, on February 12.

In the above list Owen Sound is under " 44° ", and the correction is +24 min. On page 11 the time of sunrise on February 12 for latitude 44° is 7.05; add 24 min. and we get 7.29 (Eastern Standard Time). Regina is under " 50° ", and the correction is -2 min. From the table the time is 7.17 and subtracting 2 min. we get the time of sunrise 7.15 (Mountain Standard Time).

	3,	Latituc Sunrise	Latitude 36° Sunrise Sunset	Latitude Sunrise Su	id e 40 ° Sunset	Latitude 44 ° Sunrise Sunset	le 44 ° Sunset	Latitu Sunrise	Latitude 46° Sunrise Sunset	Latitude Sunrise Su	l e 48° Sunset	Latitude 50 ° Sunrise Sunset	Latitude 52 ° strinise Sunset	n se
January	0400	7 111 7 111 7 112 7 111	h h h 4 57 4 57 5 00 5 02 5 04	7 7 7 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 45 4 4 47 4 49 4 50 4 52	7 35 7 35 7 35 7 35 35 7 35 35 7 35 35 35 35 35 35 35 35 35 35 35 35 35	4 4 4 3 3 3 4 4 4 3 3 4 4 4 4 9 8 4 4 0 4 4 0	h H 7 42 7 42 7 42 7 42 7 41	h H 25 4 26 4 29 4 31 4 33	h m 7 50 7 50 7 50 7 49 7 49	h m 4 17 4 19 4 22 4 23 4 26	h m h m 7 59 4 08 7 59 4 10 7 58 4 13 7 58 4 15 7 57 4 18	8 08 8 08 8 08 8 07 8 06 8 06 8 06	$0.00 \sim 0.00$
	113	7 111 7 111 7 10 7 10 7 09	5 06 5 05 5 10 5 12 5 14	7 22 7 21 7 20 7 20 7 19	44 44 54 55 00 00 00 00 00 00 00 00 00 00 00 00	7 34 7 33 7 32 7 30 7 29	4444444444450 450 530	7 40 7 39 7 38 7 37 7 35	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 48 7 44 7 44 7 44 7 42	4 28 4 31 4 37 4 39	7 56 4 23 7 55 4 23 7 54 4 26 7 52 4 26 7 50 4 32	8 05 8 03 8 01 7 59 7 57	7 to to
44	222 232 234 234 234 234 234 234 234 234	7 08 7 07 7 06 7 05 7 04	5 15 5 17 5 19 5 21 5 23	7 115 7 115 7 112 7 112	5 05 05 05 10 13 15 15	7 28 7 26 7 26 7 24 7 22	4 55 4 57 5 00 5 02 5 05	7 34 7 32 7 31 7 29 7 27	4 4 48 4 51 5 4 57 5 00	7 40 7 39 7 37 7 35 7 33	44 44 45 44 45 44 51 54 51	7 48 4 35 7 46 4 38 7 44 4 41 7 42 4 45 7 39 4 48	77777	55 54 51 48 46
? February	£2498	7 02 7 00 6 59 6 57 6 55	5 25 27 25 29 32 34	7 10 7 08 7 06 7 04 7 02	5 20 20 25 25 27 27 27 27 27 27 27 27 27 27 27 27 27	7 19 7 17 7 15 7 13 7 10	5 08 5 11 5 13 5 16 5 16	7 24 7 22 7 20 7 18 7 15	5 03 5 06 5 09 5 11 5 14	7 30 7 27 7 25 7 22 7 20	5 00 5 00 5 04 5 07 5 10	7 36 4 51 7 33 4 55 7 30 4 58 7 27 5 02 7 24 5 05	~~~~	43 35 35 29
neder.	0248	6 53 6 51 6 49 6 47 6 45	5 36 5 48 5 42 5 44	7 00 6 59 6 55 6 53 6 53	5 29 5 31 5 36 5 39	7 08 7 05 7 03 7 00 6 57	5 22 5 24 5 27 5 30 5 33	7 13 7 09 7 06 7 02 6 59	5 17 5 20 5 23 5 26 5 29	7 17 7 14 7 10 7 06 7 03	5 13 5 16 5 19 5 23 5 26	7 21 5 08 7 17 5 12 7 14 5 15 7 10 5 19 7 07 5 22	44444	$\frac{25}{21}$
51 51 51 51 54	88 22 28 88 22 28	6 43 6 40 6 38 6 35 6 33	5 46 5 48 5 50 5 52 5 54	6 48 6 45 6 42 6 39 6 36	5 4 43 5 45 5 45 5 47	6 54 6 50 6 47 6 44 6 40	5 35 5 38 5 40 5 43 5 46	6 56 6 53 6 49 6 46 6 43	5 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 59 6 56 6 52 6 49 6 45	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 03 5 26 6 59 5 29 6 55 5 32 6 51 5 36 6 47 5 39	7 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	07 02 53 49

2 6 7 5 4 6 7 5 4 6 7 5 7 6 8 6 7 5 7 6 8 7 6 4 7 7 6 4 6 7 6 4 6 7 6 7 6 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 6 7 6 7 6 8 9 6 6 9 9 7 6 8 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			Latit	ude 36°		de 40 °		Latituc	e 46°	Latitude 48°	Latitude	le 50°	Latitude	de 52 °
2 6 30 6 55 6 30 5 40 6 41 6 52 5 54 6 22 6 29 5 54 6 22 5 57 6 20 6	DATE		Sunris	Sunset	t Sunrise	Sunset	Sunrise Suns	Sunrise	Sunset	Sunrise Sur	unrise	Sunset	Sunrise	Sunset
4 6 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 6 7 7 6 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 6 7 6 7 6 1 6 7 6 1 6 7 6 1 6 7 6 1 6 7 6 1 6 7 6 1 6 7 6 1 6 7 6 1 6 7 6 1 6 7 6 1 6 7 7 7 8 6 1 6 7 9 9 9 9	Moroh	,		'nα	ч		27 P	р 6 30		#14 473	а 8		₽94 194	2 4 T
6 6 24 5 59 6 27 5 5 7 6 30 5 54 6 32 5 51 6 30 5 54 6 32 5 51 6 30 5 54 6 32 5 51 6 30 5 54 6 31 5 53 6 32 5 51 6 30 5 54 6 31 5 53 6 32 5 51 6 30 5 54 6 31 5 53 6 32 5 51 6 30 5 54 6 31 5 53 6 32 5 54 6 31 5 53 6 32 5 54 6 31 5 53 6 32 5 54 6 32 5 54 6 31 5 53 6 32 5 54 6 32 5 54 6 32 5 54 6 31 5 53 6 32 5 54 6 32	Maicii	4 4		ייי כ	ဗ	-	34.55	98 9		37 5	39		41	5.4
8 6 22 6 0 6 1 6 24 5 6 25 5 6 29 5 6 20 6 1 6 <th></th> <th>•</th> <th></th> <th>က</th> <th>9</th> <th></th> <th>30 5</th> <th>6 32</th> <th></th> <th>33</th> <th>35</th> <th></th> <th>37</th> <th>5 47</th>		•		က	9		30 5	6 32		33	35		37	5 47
12 6 17 6 04 6 18 6 02 6 19 6 02 6 11 6 07 6 18 6 03 6 11 6 07 6 12 6 07 6 18 6 07 6 18 6 07 6 18 6 07 6 18 6 07 6 18 6 07 6 18 6 07 6 18 6 07 6 18 6 07 6 18 6 07 6 18 6 09 6 09 6 09 6 19 6 09 6 11 6 05 6 11 6 08 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6 10 6 09 6		8 <u>0</u>		9	9		26 23 5	6 28 6 24		25 25 25 26	31 26		88	5 51 5 55
14 6 14 6 06 6 15 6 05 6 15 6 04 6 16 6 03 6 17 6 03 6 18 6 02 6 19 6 10 6 17 6 03 6 18 6 02 6 11 6 05 6 11 6 05 6 11 6 05 6 11 6 05 6 11 6 05 6 12 6 07 6 11 6 05 6 11 6 05 6 12 6 07 6 11 6 05 6 12 6 05 6 11 6 05 6 12 6 05 6 11 6 05 6 12 6 05 6 11 6 05 6 12 6 05 6 11 6 05 6 12 6 05 6 11 6 05 6 12 6 05 6 11 6 05 6 12 6 05 6 11 6 05 6 12 6 05 6 11 6 05 6 11 6 05 6 11 6 05 6 11 6 05 6 11 6 05 6 11 6 05 6 11 6 05 6 11 6 05 6 11 6 05 6 12 6 05 6 11 6 05 6 11 6		12		9	9	-	19 6	6 20	_	21 6	-	-		
18 6 08 6 10 6 08 6 09 6 09 6 09 6 09 6 09 6 10 6		47		မှ မ	9		15 6	6 16 6 13		17 6				
24 6 03 6 13 6 02 6 14 6 14 6 14 6 14 6 14 6 14 6 14 6 14 6		282	-	၁၀၀	ာ ့ စ	-	05 05 05 05 05 05 05 05 05 05 05 05 05 0	6 09 6 05 9 05	_	020		_		6 09 6 12
24 6 00 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 56 6 10 5 57 6 10 5 57 6 10 5 57 6 10 5 57 6 20 5 57 6 21 5 57 6 21 5 57 6 21 5 57 6 21 5 57 6 21 5 57 6 21 5 57 6 51 6 25 5 57 6 51 6 52 5 57 6 51 5 57 6 51 5 57 6 51 6 52 5 52 6 51 5 57 6 51 6 52 5 52 6 52 5 52 6 52 5 52 6 52 5 52 6 52 5 52 6 52 5 52 6 52 5 52 6 52 5 52 6 52 5 52 6 52 5 52 6 52 5 52 6 52 5 52 6 52 5 52 6 52 <		22		9	0 n		02 6	6 02		01 6	_		_	
30 5 51 6 19 5 49 6 21 5 46 6 24 5 45 6 25 5 43 6 27 5 41 6 28 5 39 6 30 5 37 6 31 5 36 6 33 5 36 6 33 5 37 6 31 5 36 6 33 5 37 6 31 5 36 6 33 5 37 6 31 5 36 6 33 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 5 37 6 31 6 33 5 27 6 33 5 27 6 33 5 27 6 33 5 27 6 33 5 27 6 32 6 37 5 26 6 40 5 28 6 37 5 26 6 40 5 27 6 38 5 27 6 38 5 24 6 40 5 21 6 43 5 16 6 46 5 17 6 48 5 18 6 49 <		4 % %		၀	ט אט אנ		25.50 000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		453 66 69				6 22 6 26 6 26
1 5 48 6 21 5 46 6 23 5 44 6 28 5 38 6 29 5 37 6 31 5 35 6 33 5 35 6 33 5 37 6 31 5 5 42 6 22 5 43 6 25 5 40 6 28 5 38 6 29 5 37 6 31 5 35 6 33 5 32 6 34 5 30 6 36 5 32 6 34 5 30 6 36 5 28 6 39 5 37 6 38 5 28 6 37 6 34 5 30 6 36 5 28 6 30 6 36 6 30 6 36 6 30 6 36 6 40 5 28 6 30 6 32 6 34 6 30 6 36 6 40 5 28 6 30 6 37 6 30 6 36 6 40 5 28 6 40 5 27 6 38 5 27 6 38 5 27 6 38 5 27 6 38 5 29 6 40 5 10 6 40 5 11 6 40 5 11 6 44 5 11 6 44 5 11 6 44 5 11 6 44 5 11 6 48 5 10 6 48 5 10 6 48 5 10 6 48 5		30		9	, ro		48 6	5 46		45 6				
5 42 6 24 5 40 6 27 5 37 6 30 5 35 6 34 5 30 6 36 5 28 6 37 5 26 6 40 5 28 6 37 5 26 6 40 5 28 6 37 5 26 6 40 5 23 6 38 5 24 6 40 5 21 6 40 5 23 6 40 5 28 6 37 5 26 6 40 5 23 6 40 5 21 6 43 5 11 6 43 5 11 6 43 5 11 6 43 5 11 6 43 5 11 6 44 5 13 6 43 5 11 6 44 5 13 6 44 5 13 6 43 5 11 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 5 13 6 44 <th< th=""><th>April</th><th>₩ 65</th><th></th><th>9</th><th>ກວ ກວ</th><th></th><th>44 40 6</th><th>5 42 5 38</th><th></th><th>41 6 37 6</th><th></th><th></th><th></th><th>6 32 6 36</th></th<>	April	₩ 65		9	ກວ ກວ		44 40 6	5 42 5 38		41 6 37 6				6 32 6 36
5 40 6 26 5 36 6 35 6 31 6 35 6 31 6 35 6 37 6 38 6 27 6 38 6 24 6 40 6 20 6 43 6 17 6 48 6 17 6 48 6 17 6 48 6 11 6 48 6 11 6 48 6 11 6 46 6 11 6 46 6 11 6 48 6 11 6 48 6 11 6 48 6 11 6 49 6 11 6 48 6 11 6 49 6 11 6 49 6 11 6 49 6 11 6 49 6 11 6 49 6 11 6 49 6 11 6 49 6 11 6 49 6 11 6 49 6 11 6 49 6 11 6 49 6 11 6 49 6 11 6 49 6 10 6 6		ו סיו	-	စ်	101		37 6	35.		37.00				
5 34 6 29 5 30 6 33 5 25 6 38 5 23 6 40 5 20 6 43 5 17 6 46 5 14 6 45 5 14 6 46 5 13 6 49 5 10 6 45 5 11 6 46 5 11 6 47 5 11 6 48 5 11 6 47 5 11 6 48 5 11 6 47 5 11 6 48 5 11 6 47 5 11 6 48 5 11 6 47 5 11 6 48 <t< th=""><th></th><th>6</th><td></td><td>9</td><td>က</td><td></td><td>23 23 6</td><td>5 27</td><td></td><td>24 6 9</td><td></td><td></td><td></td><td></td></t<>		6		9	က		23 23 6	5 27		24 6 9				
5 32 6 31 5 27 6 34 5 13 6 45 5 13 6 45 5 13 6 45 5 13 6 45 5 10 6 45 5 10 6 45 5 10 6 45 5 10 6 45 5 10 6 52 5 05 6 55 5 01 6 50 5 5 01 6 50 5 5 01 6 50 5 5 01 6 50 6 5 01 6 50 5 5 01 6 50 6 5 01 6 50 5 5 01 6 50 6 5 01 6 50 5 5 01 6 50 6 5 01 6 50 5 5 01 6 50 6 5 01 6 50		11		9	TÜ I		25 6	5 23		20 6		-		-
5 26 6 35 5 21 6 40 5 15 6 48 5 09 6 52 5 05 6 56 5 01 6 50 5 24 6 37 5 18 6 42 5 12 6 48 5 09 6 51 5 05 6 55 5 01 6 59 4 50 6 50 6 50 6 54 5 01 6 58 4 57 7 02 4 56 7 02 4 56 7 02 5 07 6 6 53 5 02 6 56 4 58 7 01 4 53 7 02 4 48 7 7 5 18 6 40 5 12 6 46 5 06 6 53 5 02 6 56 4 58 7 01 4 53 7 05 4 48 7 7 5 16 6 41 5 09 6 48 5 02 6 56 4 58 7 01 4 53 7 08 4 44 7 7 5 13 6 43 5 07 6 50 4 59 6 57 4 56 7 01 4 51 7 06 4 44 7 08 4 44 7 07 4 44 7 08 4 44 7 07 4 44 7 08 4 45 7 11 4 40 7 08 4 45		5 2		9	က က		22 19 6	5 19 5 16		13 6	_			
5 21 6 38 5 15 6 44 5 09 6 50 5 05 6 54 5 01 6 58 4 57 7 02 4 52 7 7 02 5 18 6 40 5 12 6 46 5 06 6 53 5 02 6 56 4 58 7 01 4 53 7 05 4 48 7 7 7 02 4 48 7 7 7 02 4 48 7 7 7 02 4 48 7 7 7 02 4 44 7 7 7 03 4 4 9 7 7 03 4 4 44 7 7 7 03 4 4 9 7 7 03 4 4 4 4 7 7 7 03 4 4 4 9 7 7 7 03 4 4 4 7 7 7 03 4 4 5 7 7 11 4 4 0 7 7 7 03 4 4 5 7 7 11 4 4 0 7 7 7 03 4 4 5 7 7 11 4 4 0 7 7 7 03 4 4 5 7 7 14 4 4 0 7 7 7 03 4 4 5 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 14 4 3 0 7 7 7 7 14 4 3 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		17		မ မ	າປ າປ		15 12 6	5 12 5 09		09 05 0	_			6 7 02
5 21 6 38 5 15 6 44 5 09 6 50 5 08 6 30 6 64 5 08 4 58 7 01 4 53 7 02 6 48 7 08 4 48 7 05 5 16 6 41 5 09 6 48 5 02 6 55 4 58 7 01 4 54 7 03 4 49 7 08 4 48 7 7 5 13 6 43 5 07 6 50 4 59 6 57 4 56 7 01 4 51 7 06 4 49 7 08 4 49 7 07 5 11 6 44 5 07 6 50 4 56 7 00 4 52 7 04 4 47 7 08 4 42 7 14 4 36 7 7		1		•) 1		1 6) 1						
5 16 6 41 5 09 6 48 5 02 6 55 4 58 6 59 4 54 7 03 4 49 7 08 4 44 7 5 13 6 43 5 07 6 50 4 59 6 57 4 55 7 01 4 51 7 06 4 45 7 11 4 40 7 5 11 6 44 5 04 6 52 4 56 7 00 4 52 7 04 4 47 7 08 4 42 7 14 4 36 7		23.		တ် ဇ	ເດ ນເ		9 9 9 9	ა ი 0 0 0		01 58 7				260 4.
5 13 6 43 5 07 6 50 4 59 6 57 4 50 7 04 4 47 7 08 4 42 7 14 4 36 7 7		121		ဖ်	ıO ı		020	4 58		54 7		_		
		2 22		9	က က		56 7	4 52 4 52		o1 7 47 7				

May 1 5 00 6 48 6 0 8 4 44 7 11 4 38 7 70 4 48 7 10 4 44 7 11 4 38 7 70 4 8 7 10 4 44 7 11 4 38 7 70 4 8 7 10 4 44 7 11 4 38 7 70 4 8 7 10 4 44 7 11 4 38 7 70 4 8 7 70 4 48 7 10 4 44 7 11 4 38 7 70 4 48 7 10 4 44 7 11 4 38 7 70 4 40 7 10 4 44 7 10 4 48 7 10 4 44 7 10 4 44 7 10 4 44 7 10 4 44 7 10 4 44 7 10 4 44 7 10 4 44 7 10 4 44 7 10 4 44 7 10 4												
1 6 m h m	DATE		Latitu	ude 36°	0,	ude 40°	Latitud Sunrise S	le 44° Sunset	Latitude 46° Sunrise Sunset	01	Latitude 50° Sunrise Sunset	Latitude 52° Sunrise Sunset
11 4 59 6 54 4 49 7 04 4 39 7 14 4 34 7 19 4 28 7 25 4 25 7 28 4 15 7 35 4 15 7 35 4 15 7 35 4 15 7 38 4 15 7 38 4 15 7 38 4 15 7 38 4 15 7 38 4 15 7 38 4 15 7 38 4 15 7 38 4 15 7 38 4 15 7 38 4 15 7 38 4 15 7 38 4 10 7 43 4 15 7 38 4 10 7 43 4 15 7 38 4 10 7 43 4 13 7 40 4 13 7 20 4 26 7 28 4 20 7 28 4 26 7 28 4 18 7 35 4 11 7 43 4 03 7 46 3 3 4 03 7 46 4 03 7 46 4 03 7 48 3 3 4 18 7 38 4 11 7 43 4 03 7 46 4 03 7 46 4 03 7 46 4 03 7 49 4 03 7 51 4 03 4 0	May	167070	I			1	553 44 42 42		m h 49 7 46 7 43 7 40 7 37 7	H 44 7 40 7 37 7 34 7 31 7	38 7 34 7 27 27 7 24 7	
23 4 40 7 13 4 29 7 24 4 22 7 31 4 15 7 38 4 07 7 46 3 23 4 49 7 04 4 39 7 15 4 27 7 26 4 20 7 33 4 13 7 40 4 05 7 48 3 25 4 48 7 05 4 36 7 18 4 22 7 30 4 16 7 35 4 13 7 40 4 05 7 45 3 03 7 53 29 4 46 7 08 4 35 7 20 4 22 7 30 4 16 7 37 4 16 7 37 4 10 7 45 3 60 7 56 3 4 16 7 47 4 09 7 45 3 60 7 56 3 4 16 7 30 4 16 7 7 4 17 4 18 7 43 4 06 7 45 4 03 7 56 8 00 3 50 8 00 3 50 8 00 3 50 8 00 3 50 8 00 3 50 8 00 3 50 8 00 3 50 8 00 3 50 <td></td> <td>113 15 17 19</td> <td></td> <td></td> <td></td> <td></td> <td>33 33 31</td> <td></td> <td>34 7 31 7 28 7 26 7 24 7</td> <td>28 7 25 7 22 7 20 7 17 7</td> <td>21 7 18 7 15 7 13 7 10 7</td> <td></td>		113 15 17 19					33 33 31		34 7 31 7 28 7 26 7 24 7	28 7 25 7 22 7 20 7 17 7	21 7 18 7 15 7 13 7 10 7	
31 4 45 7 10 4 34 7 21 4 21 7 34 4 14 7 41 4 06 7 49 3 57 7 58 3 2 4 45 7 11 4 33 7 24 4 19 7 37 4 12 7 43 4 05 7 51 3 56 8 00 3 6 4 44 7 12 4 33 7 24 4 19 7 37 4 11 7 46 4 05 7 51 3 56 8 00 3 10 4 44 7 14 4 31 7 26 4 17 7 40 4 10 7 47 4 02 7 56 3 50 8 05 3 11 4 43 7 14 4 31 7 26 4 17 7 41 4 09 7 50 4 01 7 58 3 50 8 05 3 14 4 43 7 17 4 17 7 42 4 09 7 50 4 01 7 59 3 50 8 05 3 3 50 8 09 3 3 50 8 09 3 3 50 8 09 <td></td> <td>23 25 25 25 29 29 29 29 29 29 29 29 29 29 29 29 29</td> <td></td> <td></td> <td></td> <td></td> <td>25 25 25 25 25</td> <td></td> <td>22 7 20 7 18 7 16 7 15 7</td> <td>15 7 113 7 111 7 009 7</td> <td>07 7 05 7 03 7 01 7 59 7</td> <td></td>		23 25 25 25 29 29 29 29 29 29 29 29 29 29 29 29 29					25 25 25 25 25		22 7 20 7 18 7 16 7 15 7	15 7 113 7 111 7 009 7	07 7 05 7 03 7 01 7 59 7	
4 43 7 16 4 31 7 27 4 17 7 41 4 09 7 49 4 01 7 57 3 51 8 07 3 4 43 7 16 4 31 7 28 4 17 7 42 4 09 7 50 4 01 7 58 3 51 8 08 3 4 43 7 17 4 31 7 29 4 17 7 43 4 08 7 51 4 00 7 59 3 50 8 09 3 4 43 7 18 4 31 7 31 4 17 7 45 4 08 7 53 4 00 8 01 3 50 8 11 3 4 43 7 19 4 31 7 31 4 17 7 45 4 08 7 54 4 00 8 02 3 50 8 11 3 4 44 7 20 4 31 7 32 4 17 7 46 4 08 7 55 4 01 8 03 3 50 8 13 3 4 44 7 20 4 31 7 32 4 18 7 46 4 08 7 55 4 01 8 03 3 50 8 13 3 4 44 7 20 4 32 7 32 4 1	June	31 24 8	य य य य य				21 20 19 18 17		14 7 13 7 12 7 11 7	06 7 05 7 04 7 02 7	57 7 56 8 55 8 53 8	
4 43 7 19 4 31 7 31 4 17 7 45 4 08 7 54 4 00 8 02 3 50 8 13 3 50 8 13 3 50		10 10 10 10 10 10 10 10 10 10 10 10 10 1					177		09 7 09 7 08 7 08 7 08 7	01 7 01 7 00 7 00 8 00 8	51 8 51 8 50 8 50 8	
4 46 7 21 4 34 7 33 4 20 7 47 4 12 7 55 4 04 8 03 3 54 8 13 3		82228 88					17 18 18 19		08 7 08 7 09 7 110 7	00 00 00 00 00 00 00 00 00 00 00 00 00	50 8 50 8 51 8 52 8 53 8	
		30	- 1	7		- 1	20		12 7	04 8	54 8	

DATE		Latitude 36°	ude 36°	36°	Latitude 40°	ude 40°	10°	Latitude 44°	tude	le 44° Sunset	Latituc	tude se Si	Latitude 46° Sunrise Sunset	Latituc		le 48° Sunset	Latituc Sunrise	Latitude 50° Sunrise Sunset	50° 1set	Latitude Sunrise Su	Je Si	le 52° Sunset
July	440×	44444444950		120 20 119 119	4 4 4 3 4 4 4 4 3 4 3 4 4 4 3 8 4 3 8 4 3 8 8 8 8		33333 33333 31133333	44444 4222 2223	147777	45 45 45 45	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	427777	#55 52 1	4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	1000001 1000001	000 000 001 001 001	488892 50089	-4 × × × × ×	112 112 100 110 100	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-E 00 00 00 00	182223g
	2 2 4 5 8 8 8 8			188 171 15			26883 2883											$\infty \infty \infty \infty \infty$	00 00 00 00 00			17 15 13 11 09
	24,288	4 59 50 50 00 00 00 00 00 00 00 00 00 00 00	~~~~	113 112 009 07	4 4 4 4 4 4 5 5 2 5 2 5 5 5 5 5 5 5 5 5	~~~~	23 20 17 17	44 44 44 44 44 44 44 44 44 44 44 44 44	77777	36 32 32 30 27	44 32 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 2 4 7 6 7 7 7 7 7	442 442 388 338	4 4 4 4 4 4 4 4 3 2 4 3 2 4 3 2 6 8 4 4 4 4 8 8 6 8 6 8 8 8 8 8 8 8 8 8	77777	50 448 40 40	44 14 17 4 19 4 19 4 19 5 5 5 5 5 5 6 7 6 9 1 6 9 1 6 9 1 6 9 9 9 9 9 9 9 9 9 9	~~~~	55 55 50 47	4 06 4 08 4 11 4 14 4 17	~~~~	07 04 01 58
August	9723	5 06 5 08 5 09 5 11 5 12	01111	002 002 003 003	4 57 4 59 5 01 5 02 5 04	^	115 01 06 06	44 44 48 44 45 44 45 55 44 55 55 4	77777	25 22 20 17 15	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7777	31 28 20 20 20 20	44444 442 45	7777	38 35 25 25	44 28 44 33 44 33 45 36 47 36	~~~~	44 41 34 31	4 21 4 24 4 27 4 30 4 33	~~~~	52 49 45 37
	112 17 19	5 14 5 15 5 17 5 19 5 20	စစစစ	56 53 51 46	5 06 5 08 5 10 5 12 5 14	66677	03 01 55 52	4 58 5 00 5 02 5 05 5 05 5 05 5 05 5 05	64444	12 09 06 03 59	4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6	27777	17 13 10 07 03	444 444 4453 4456 456	88 77 7 6 7 7 7 9 9 7 7 7 9 9 7 7 7 9 9 9 7 7 7 9	22 18 115 111 07	44 44 45 44 51 44 51 45 45 45 45 45 45 45 45 45 45 45 45 45	~~~~	27 28 16 12	4 36 4 39 4 42 4 46 4 49	~~~~	34 30 26 21 17
	22232	28 25 25 28 28 28 28 28 28 28 28 28 28 28 28 28	9999	43 38 33 33	5 16 5 18 5 20 5 22 5 24	စ္စစ္စစ္	49 446 440 37	5 09 5 11 5 14 5 16 5 18	00000	56 53 50 47 43	50 05 05 05 05 05 05 05 05 05 05 05 05 0	53185	00 56 44 45	5 01 5 04 5 07 5 09 5 12	144 7 7 6 6 9 9 6 9 6 9 6	04 00 57 53 49	4 57 5 00 5 00 5 00 5 00 5 00 5 00 5 00	66777	08 04 56 52	4 52 4 56 4 59 5 02 5 05	01111	13 09 00 56
,	31	5 30	9	30	5 25	9	34	5 20	9 (40	5 18	8	42	5 1	15 6	45	5 12	9	48	509	9	51

DATE	Latitude 36° Sunrise Sunset	Latituc Sunrise	le 40° Sunset	Latitud e 44 ° Sunrise Sunset		Latitude 46° Sunrise Sunset	le 46° Sunset	Latitud e 48 ° Sunrise Sunset	le 48° Sunset	Latitude Sunrise Su	e 50° Sunset	Latitude Sunrise Su	e 52° Sunset
September 2 4 6 6 10	5 3 3 6 6 5 3 8 6 6 5 8 8 6 6 5 8 8 6 6 6 6 6 6 6 6 6	m h m 27 27 5 27 24 5 29 22 5 31 19 5 33	h m 6 31 6 28 6 25 6 25 6 18	5 2 2 3 6 6 5 3 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	33 32 22 25 25 21	5 2 2 3 6 6 5 3 3 1 6 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 34 6 34 6 31 6 27 6 23	5 20 5 20 5 20 5 20 5 26 5 26	h m 6 41 6 37 6 33 6 29 6 25	5 15 5 15 5 21 5 24 5 27	h m 6 44 6 40 6 35 6 31 6 27	5 12 12 15 25 25 25 25 25 25 25 25 25 25 25 25 25	6 47 6 41 6 31 6 33 6 28
21 41 18 18 20	5 39 6 5 44 6 6 6 6 6 6 6 6	13 5 37 10 5 39 07 5 41 04 5 43 01 5 45	6 15 6 12 6 08 6 05 6 02	5 34 6 5 36 6 5 39 6 5 41 6	17 114 110 07 03	5 33 6 5 38 6 6 41 6 44 6 6	6 19 6 15 6 11 6 07 6 03	5 31 5 34 5 37 5 40 5 43	6 21 6 16 6 12 6 08 6 04	5 33 5 33 5 39 5 45	6 22 6 18 6 13 6 09 6 05	5 28 5 31 5 34 5 41	6 23 6 19 6 14 6 10 6 05
3645 388 388 388	5 447 5 5 4 49 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	58 5 47 55 5 49 52 5 51 49 5 52 46 5 54	55 55 55 56 46 96 96 96 96 96 96 96 96 96 96 96 96 96	5 46 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55 55 44 48	5 46 5 48 5 51 5 56 5	5 55 55 55 55 55 55 55 55 55 55 55 55 5	5 45 5 48 5 51 5 54 5 57	6 00 5 56 5 51 5 43	5 45 5 48 5 51 5 54 5 57	6 00 5 56 5 51 5 47 5 43	5 44 5 47 5 51 5 54 5 57	6 00 5 56 5 51 5 46 5 42
October 2 4 4 6 6 6 8 8 8 10	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	44 5 56 41 5 58 38 6 00 35 6 02 32 6 04	5 43 5 36 5 33 5 33	5 57 5 5 59 5 6 02 5 6 04 5 6 07 5	41 5 37 6 34 6 30 6 27 6	5 58 6 01 6 03 6 08 6 08 6 08 6	5 40 5 32 5 28 5 25	5 59 6 02 6 04 6 07 6 10	5 39 5 35 5 31 5 27 5 23	6 00 6 03 6 06 6 09 6 12	5 38 5 29 5 25 5 21	6 00 6 04 6 07 6 11 6 14	5 37 5 32 5 28 5 23 5 19
12 14 16 18 20	6 03 6 04 6 06 6 08 6 10 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	30 6 06 27 6 08 25 6 10 22 6 12 19 6 15	5 27 5 24 5 21 5 18 5 15	6 09 5 6 11 5 6 14 5 6 17 5 6 20 5	24 20 17 61 13 61 10	6 11 6 14 6 17 6 19 6 22 6	5 21 5 18 5 14 5 11 5 07	6 13 6 16 6 19 6 22 6 25	5 19 5 15 5 11 5 08 5 04	6 15 6 19 6 22 6 25 6 28	5 17 5 13 5 09 5 05 5 01	6 17 6 21 6 25 6 28 6 32 6 32	5 15 5 10 5 06 5 02 4 58
22 24 26 28 30 30	6 12 5 1 6 14 5 1 6 16 5 1 6 18 5 0 6 20 5 0	17 6 17 14 6 19 12 6 21 09 6 24 07 6 26	5 12 5 09 5 06 5 00	6 22 5 6 22 6 27 6 30 4 6 33 4 1	07 6 04 6 01 6 57 6	6 25 5 6 28 6 31 4 6 37 4	5 04 5 00 4 57 4 50 4 50	6 28 6 31 6 35 6 38 6 41	5 00 4 57 4 53 4 49 4 46	6 31 6 35 6 38 6 42 6 45	4 57 4 53 4 49 4 45 4 42	6 35 6 39 6 43 6 47 6 50	4 54 4 50 4 46 4 42 4 38

DATE	Latitude 36° Sunrise Sunset	Latitude 40° Sunrise Sunset	Latitude 44° Sunrise Sunset	Latitude 46° Sunrise Sunset	Latitude 48° Sunrise Sunset	Latitude 50° Sunrise Sunset	Latitude 52° Sunrise Sunset
November 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	h m h m 6 22 5 05 6 24 5 03 6 26 5 01 6 27 4 59 6 29 4 57	h m h m 6 28 4 58 6 31 4 55 6 33 4 53 6 51 6 37 4 51 6 37 4 49	h m h m 6 35 4 52 6 38 4 49 6 41 4 46 6 43 4 43 6 46 4 41	h m h m 6 39 4 47 6 42 4 44 6 48 4 41 6 48 4 38 6 51 4 36	h m h m 6 44 4 43 6 47 4 40 6 50 4 37 6 53 6 53 6 53 6 53 6 53 6 55 6 6 55 6 6 31	h m h m 6 48 4 39 6 52 4 33 6 55 4 4 32 6 58 4 28 7 7 01 4 25	h m h m 6 53 4 34 6 55 4 20 7 00 4 27 7 04 4 23 7 07 4 19
11	6 31 4 56	6 39 4 47	6 48 4 39	6 53 4 33	6 59 4 29	7 04 4 22	7 11 4 16
13	6 33 4 54	6 42 4 45	6 51 4 37	6 56 4 31	7 02 4 26	7 08 4 20	7 14 4 13
15	6 35 4 52	6 44 4 44	6 54 4 35	6 59 4 29	7 05 4 24	7 11 4 17	7 18 4 10
17	6 37 4 51	6 47 4 42	6 57 4 32	7 02 4 27	7 08 4 21	7 15 4 14	7 22 4 07
19	6 39 4 50	6 49 4 41	6 59 4 31	7 04 4 25	7 10 4 19	7 18 4 12	7 25 4 04
76 77 77 76 76 76 76 76 76 76 76 76 76 7	6 41 4 49	6 51 4 39	7 01 4 29	7 07 4 23	7 13 4 17	7 21 4 10	7 28 4 02
	6 43 4 48	6 54 4 38	7 04 4 28	7 10 4 21	7 16 4 15	7 24 4 08	7 31 4 00
	6 45 4 48	6 56 4 37	7 06 4 27	7 12 4 20	7 19 4 14	7 27 4 06	7 35 3 58
	6 47 4 47	6 58 4 36	7 09 4 25	7 15 4 19	7 22 4 12	7 30 4 04	7 38 3 56
	6 48 4 47	6 59 4 36	7 11 4 24	7 18 4 18	7 25 4 11	7 33 4 03	7 41 3 55
December 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 50 4 47	7 01 4 35	7 13 4 23	7 20 4 17	7 27 4 10	7 36 4 02	7 44 3 54
	6 52 4 46	7 03 4 35	7 15 4 23	7 22 4 16	7 30 4 09	7 38 4 01	7 47 3 52
	6 54 4 46	7 05 4 35	7 18 4 23	7 25 4 15	7 32 4 08	7 41 4 00	7 49 3 51
	6 56 4 46	7 07 4 35	7 20 4 22	7 27 4 15	7 35 4 07	7 43 3 59	7 52 3 50
	6 57 4 46	7 09 4 35	7 22 4 22	7 29 4 15	7 37 4 07	7 45 3 59	7 54 3 50
11	6 59 4 46	7 10 4 35	7 24 4 22	7 31 4 15	7 39 4 07	7 48 3 58	7 57 3 49
13	7 01 4 47	7 12 4 35	7 25 4 22	7 32 4 15	7 40 4 07	7 50 3 58	7 59 3 49
15	7 02 4 47	7 14 4 36	7 27 4 23	7 34 4 16	7 42 4 07	7 51 3 59	8 01 3 49
17	7 04 4 48	7 16 4 36	7 29 4 23	7 36 4 16	7 44 4 08	7 53 3 59	8 03 3 49
17	7 05 4 49	7 17 4 37	7 30 4 24	7 37 4 17	7 45 4 08	7 54 4 00	8 04 3 49
23 23 23 23 23 23	7 06 4 50 7 07 4 51 7 08 4 52 7 09 4 53 7 09 4 54	7 18 4 38 7 19 4 39 7 20 4 40 7 21 4 41 7 21 4 42	7 31 4 25 7 32 4 26 7 33 4 27 7 34 4 28 7 34 4 30	7 38 4 18 7 39 4 19 7 40 4 20 7 41 4 21 7 41 4 22	7 46 4 09 7 47 4 10 7 48 4 11 7 49 4 13 7 50 4 14	7, 55, 4, 01 7, 56, 4, 02 7, 57, 4, 03 7, 58, 4, 04 7, 58, 4, 06	8 05 3 50 8 06 3 51 8 07 3 52 8 08 3 54 8 08 3 54
31	7 10 4 56	7 22 4 44	7 35 4 31	7 42 4 24	7 50 4 16	7 59 4 07	8 08 3 58

BEGINNING OF MORNING AND ENDING OF EVENING TWILIGHT

	1			i .	1
	Latitude 35°	Latitude 40°	Latitude 45°	Latitude 50°	Latitude 52°
	Morn. Eve.	Morn. Eve.	Morn. Eve.	Morn. Eve.	Morn. Eve.
Jan. 1 11 21 31 Feb. 10	5 38 6 29 5 39 6 37 5 38 6 45 5 34 6 54 5 27 7 03	5 45 6 22 5 45 6 31 5 43 6 40 5 38 6 50 5 29 7 01	5 52 6 15 5 52 6 24 5 48 6 35 5 41 6 47 5 31 7 00	6 00 6 07 5 59 6 17 5 54 6 30 5 45 6 44 5 32 6 59	6 04 6 04 6 02 6 14 5 56 6 28 5 46 6 42 5 32 6 58
Mar. 2 12 22 Apr. 1	5 17 7 12 5 06 7 20 4 52 7 29 4 38 7 38 4 23 7 47	5 17 7 12 5 04 7 22 4 48 7 33 4 31 7 45 4 13 7 57	5 18 7 12 5 02 7 26 4 43 7 39 4 23 7 54 4 01 8 09	5 15 7 14 4 56 7 30 4 35 7 47 4 11 8 06 3 46 8 25	5 14 7 15 4 54 7 33 4 31 7 51 4 05 8 11 3 38 8 33
May 1 11 21 21	4 07 7 57 3 51 8 07 3 37 8 19 3 23 8 30 3 12 8 41	3 55 8 09 3 36 8 23 3 18 8 37 3 02 8 52 2 47 9 07	3 39 8 25 3 17 8 43 2 54 9 02 2 33 9 22 2 13 9 42	3 19 8 46 2 50 9 10 2 20 9 37 1 48 10 08 1 13 10 44	3 08 8 57 2 36 9 25 2 01 9 57 1 20 10 37 0 02 —
June 31 20 30 July 10	3 04 8 51 2 59 8 59 3 02 9 04 3 02 9 04 3 09 9 01	2 36 9 20 2 29 9 30 2 27 9 35 2 31 9 35 2 39 9 30	1 56 10 01 1 43 10 16 1 39 10 23 1 44 10 22 1 56 10 13	0 23 11 42	
20 30 Aug. 9 19 29	3 18 8 54 3 28 8 43 3 39 8 30 3 50 8 16 4 00 8 00	2 51 9 20 3 05 9 06 3 20 8 50 3 34 8 32 3 47 8 14	2 14 9 57 2 33 9 38 2 52 9 16 3 12 8 53 3 29 8 31	1 04 11 04 1 43 10 26 2 15 9 53 2 42 9 23 3 06 8 53	1 07 11 00 1 53 10 15 2 26 9 38 2 54 9 05
Sept. 8 18 28 Oct. 8 18	4 10 7 44 4 19 7 28 4 28 7 13 4 35 6 59 4 43 6 46	3 59 7 55 4 11 7 36 4 22 7 18 4 32 7 02 4 42 6 47	3 46 8 08 4 01 7 46 4 15 7 25 4 28 7 06 4 40 6 49	3 28 8 26 3 47 8 00 4 05 7 35 4 22 7 12 4 37 6 51	3 19 8 34 3 40 8 07 4 01 7 39 4 18 7 15 4 36 6 53
Nov. 7 17 27 Dec. 7	4 51 6 36 5 00 6 27 5 08 6 21 5 16 6 18 5 24 6 18	4 52 6 34 5 02 6 24 5 12 6 17 5 22 6 13 5 31 6 12	4 53 6 34 5 05 6 21 5 17 6 12 5 28 6 06 5 38 6 04	4 53 6 34 5 07 6 19 5 21 6 07 5 34 6 00 5 45 5 57	4 52 6 34 5 08 6 18 5 23 6 06 5 37 5 57 5 48 5 54
17 27 Jan. 1	5 31 6 21 5 36 6 26 5 38 6 29	5 38 6 14 5 43 6 19 5 45 6 22	5 45 6 06 5 51 6 11 5 52 6 15	5 53 5 58 5 59 6 03 6 00 6 07	5 57 5 55 6 02 6 00 6 03 6 04

The above table gives the local mean time of the beginning of morning twilight, and of the ending of evening twilight, for various latitudes. To obtain the corresponding standard time, the method used is the same as for correcting the sunrise and sunset tables, as described on page 10. The entry — in the above table indicates that at such dates and latitudes, twilight lasts all night. This table, taken from the American Ephemeris, is computed for astronomical twilight, i.e., for the time at which the sun is 108° from the zenith (or 18° below the horizon).

THE PLANETS FOR 1941

By A. F. Bunker

MERCURY

Mercury, the smallest planet of the solar system, is seen least frequently of all the planets. It moves swiftly in an orbit lying closest to the sun and consequently is lost in the sun's brilliance much of the year. From the earth, it appears to move rapidly from one side of the sun to the other several times each year. Only near the ends of these apparent oscillations (greatest eastern and western elongations) can the planet be seen with the naked eye. Its maximum angular distance from the sun is never large, varying from 18 to 28 degrees.

When Mercury is at greatest eastern elongation it appears in the evening twilight only a few degrees above the horizon. At greatest western elongation it can be seen in the morning just before sunrise. The most favourable times for observation are during eastern elongation in the spring, and western elongation in the fall, at which times the ecliptic is nearly vertical.

The dates of greatest elongation in 1941, the angular separations from the sun and stellar magnitudes are as follows: Eastern elongation—Feb. 11, 18° 10′, -0.3 (most favourable); June 16, 23° 47′, 0.7; Oct. 3, 25° 42′, 0.2; Western elongation—Mar. 25, 27° 48′, 0.5; July 24, 20° 00′, 0.5; Nov. 12, 19° 11′, -0.3 (most favourable).

At these times its semi-diameter is between 3" and 4" while its distance from the earth is approximately 90,000,000 miles.

VENUS

The planet Venus moves in an orbit lying outside that of Mercury. Its apparent motions are similar to Mercury's, oscillating about the sun. Because of its greater distance from the sun, it moves more slowly, requiring 1.6 years for a complete oscillation, and reaching a greatest elongation of about 47 degrees. Venus approaches the earth more closely than any of the principal planets, being only 26,000,000 miles from the earth at inferior conjunction.

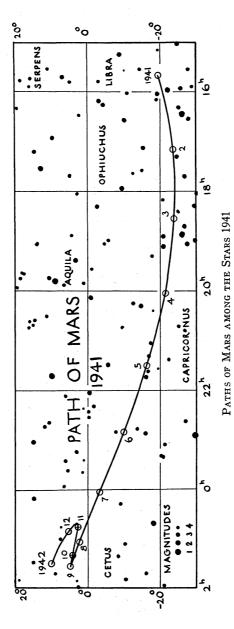
In size and mass Venus is nearly the earth's twin, being only slightly smaller and less dense. A dense atmosphere surrounds the planet which prevents observation of surface markings.

With the exception of the sun and moon, Venus is the brightest object in the sky. During times of greatest elongation it is easily visible to the naked eye in full daylight. At the beginning of 1941 Venus will be morning star of magnitude -3.4 two hours west of the sun. It will slowly approach the sun until superior conjunction occurs April 19. After conjunction Venus will become the evening star, increasing in brilliance as it moves eastward toward the earth. On November 23 Venus will reach greatest eastern elongation, 47° 16′ from the sun. At that time its semidiameter will be 12″.7, and its distance 62,000,000 miles from the earth. It will not reach its greatest brilliance, magnitude -4.4, until December 29. It will then be 38,000,000 miles from the earth and have a semi-diameter of 20″.5. The phase of the planet can be seen easily with a small telescope at this time.

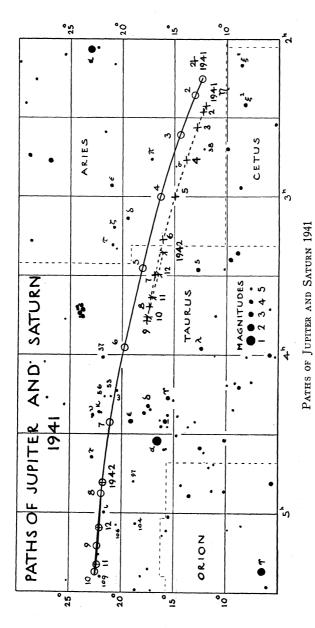
MARS

During the latter part of 1941 Mars, the fourth planet from the sun, will be well situated for observation. On October 10 it will come into opposition with the sun and appear in the evening sky in the constellation Pisces as a "star" of magnitude -2.4. The opposition will be of great interest as Mars will come within 38,000,000 miles of the earth. This is not the closest approach possible (34,000,000 miles) as Mars will have passed perihelion in August. For northern observers this approach will be more favourable than the 1939 approach since Mars will have a declination of +03° in contrast to the declination of -25° in 1939, although the planet was then 2,000,000 miles closer.

At the beginning of 1941, Mars is the morning star three hours west of the sun. The angular separation increases gradually until opposition occurs in October. Its magnitude increases from 0.9 to -2.4 at opposition. Its semi-diameter will then be 11".3.


Mars is the planet next to the earth in order of distance from the sun. Its apparent motions in the sky are characteristic of planets moving outside the earth's orbit. It appears to move eastward among the stars until the earth, moving faster in a smaller orbit, starts to pass the outer planet. Mars then retrogrades until the earth is well past opposition, and then continues its eastward movement.

Because of its small size, 4,200 miles in diameter, and density, 4.0, Mars has difficulty retaining its atmosphere. The resulting thin atmosphere permits observation of surface markings which show seasonal and irregular variations.


THE ASTEROIDS

Between the orbits of Mars and Jupiter a large number of small bodies. revolve around the sun. Most of these planetoids are less than 50 miles in diameter, while the largest is nearly 500 miles. Since the first one was discovered in 1801, many more have been found. The orbits of over 1,400 have been determined, and these cover a wide range of eccentricity and inclination. They all revolve from west to east, some approaching the earth closely.

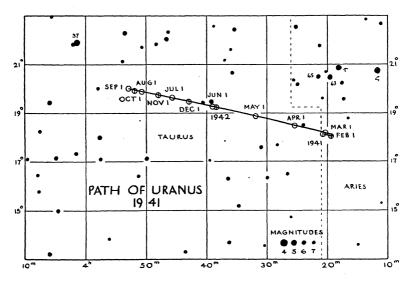
In most telescopes these asteroids show no discs, but their changing brightness and rapid motions among the stars make them interesting objects for observation.

In this and the following maps the position of the planet is indicated for the first of each month.

Jupiter, solid line above; Saturn, broken line below.

JUPITER

Jupiter is the largest and most massive planet of the solar system. It is an easy object to study with a telescope or even a good pair of field-glasses. Its cloud-banded surface, flattened at the poles by rapid rotation, and the ever changing configuration of the satellites, make it a fascinating object to observe.

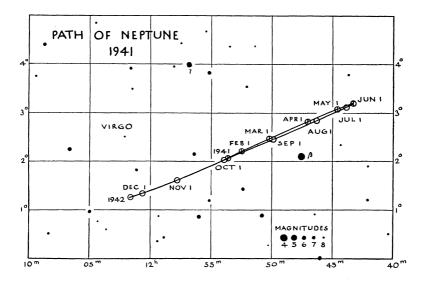

Jupiter is a conspicuous object during the first and last months of the year. In January it is seen in Aries as a -2.4 magnitude object. The sun slowly overtakes it, conjunction occurring on May 9. In July it appears as morning star two hours west of the sun. It continues to move eastward until October when it starts retrograding. Opposition with the sun occurs December 8, when it is 380,000,000 miles from the earth. Its magnitude is -2.4 and its semi-diameter 22".47.

The configuration of Jupiter's four bright moons are given among the phenomena.

URANUS

Uranus, the planet beyond Saturn, was discovered by Sir William Herschel in 1781. When the planet was first seen it was thought to be a comet. Uranus has four faint satellites, of about magnitude 14. The planet itself is of the sixth magnitude and can be easily recognized with field-glasses. Its disc can be distinguished only with a large telescope as its semi-diameter is but 1".85.

Uranus is in the constellation Taurus throughout the year. From April to July it is hidden by the sun's brilliance. It comes into opposition November 21 at which time it is 1,730,000 miles from the earth.


SATURN

Saturn, the next planet beyond Jupiter, is a very interesting object for telescopic observation, because of its ring system. There are three major rings, the bright main ring, an outer one, and the inner crepe ring. The rings are composed of a large number of small satellites revolving about Saturn in a plane. In 1941 the ring system is well opened out to the earth. Since the system is inclined 27 degrees to the planet's orbit, the rings appear to open out twice during the planet's 29.5-year period. In 1936 the rings were on edge and invisible, so in 1943 they will be fully opened.

At the beginning of 1941 Saturn is conspicuous in the constellation Aries, having passed opposition two months previously. It becomes less noticeable as the sun overtakes it and the two come into conjunction in May. Later Saturn appears as a morning star, with increasing brightness, rises earlier each night until opposition occurs on November 17. It will then have a semi-diameter of 9".16 and a magnitude of -0.1. At this time it is nearest the earth, 760,000,000 miles distant, and most favourably situated for observation.

NEPTUNE

Neptune's discovery in 1846 was the result of the calculations of Leverrier and Adams. It had been noted that Uranus was not following the orbit predicted. From the perturbations, the two astronomers independently predicted the existence and position of Neptune. It was found within a degree of the predicted position.

Neptune, because of its great distance from the sun, 2,800 million miles, appears as an eighth magnitude star. Its semi-diameter is only 1".2 hence it can be observed with only a large telescope.

Neptune remains in the constellation Virgo throughout the year. It can be observed best in March when it is in opposition with the sun. Conjunction occurs in September so the planet will be lost to observers a few months before and after that date.

PLUTO

Pluto, discovered in March, 1930, by the Lowell Observatory is the farthest planet from the sun. Because of its great distance from the sun and its small size, it can be observed only with the largest telescopes. During 1941, Pluto is a yellowish 15th magnitude star in the constellation Cancer. Its position near opposition in January is: α 8h 26m 12s, δ 23° 37′ 35″.

ECLIPSES FOR 1941

In 1941 there will be four eclipses, two of the sun and two of the moon.

1. Partial Eclipse of the Moon, March 13, 1941. The beginning is visible generally in North America, except the extreme northeastern part, the western half of the Pacific Ocean, Australia, the Indian Ocean, Asia, Eastern Europe, and Africa, except the northwestern part. The ending is visible in the western part of North America, the Pacific Ocean, Australia, the Indian Ocean, and eastern Asia, except the extreme northwestern part.

Circumstances of the Eclipse (75th Meridian Civil Time)

Moon enters penumbra	March	13	đ.	4	h.	37.6	m.
Moon enters umbra	March	13	d.	5	h.	55.1	m.
Middle of Eclipse	March	13	d.	6	h.	55.4	m.
Moon leaves umbra	March	13	đ.	7	h.	55.8	m.
Moon leaves penumbra	March	13	đ.	9	h.	13.1	m.

Magnitude of the eclipse is 0.328 (Moon's diameter=1).

- 2. An Annular Eclipse of the Sun, March 27, 1941, invisible in Canada. The path of the central eclipse is short, sweeping up across the Southern Pacific to Peru and ending in central South America at sunset. The partial phase is visible in most of the Southern Pacific Ocean, Central and South America.
- 3. A Partial Eclipse of the Moon, September 5, 1941. The beginning is visible generally in the northwestern extremity of North America, the western half of the Pacific Ocean, Australia, the Indian Ocean, Asia, eastern Europe, and Africa, except the northwestern part. The ending is visible generally in the western part of the Pacific Ocean, Australia, Indian Ocean, Asia, Europe, except the southwestern part, and Africa except the extreme northwestern part.

Circumstances of the Eclipse

Moon enters penumbra	.September	5	đ.	10	h.	25.3	m.
Moon enters umbra	.September	5	d.	12	h.	18.9	m.
Middle of the eclipse	September	5	đ.	12	h.	46.9	m.
Moon leaves umbra	.September	5	d.	13	h.	14.6	m.
Moon leaves penumbra	September	5	đ.	15	h.	08.3	m.

4. A Total Eclipse of the Sun, September 21, 1941, invisible in Canada. The path of totality crosses Asia and passes out into the Pacific where it ends at sunset. The maximum duration of totality is 3 minutes, 20 seconds.

THE SKY MONTH BY MONTH

By P. M. MILLMAN

THE SKY FOR JANUARY, 1941

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During January the sun's R.A. increases from 18h 44m to 20h 57m and its Decl. changes from 23° 03′ S. to 17° 16′ S. The equation of time drops from -3m 21s to -13m 37s (see p. 7). Owing to this rapid drop in value the time of mean noon appears, for the first ten days of the month, to remain at the same distance from sunrise, that is, the forenoons as indicated by our clocks are of the same length. For changes in the length of the day, see p. 11. The sun enters Aquarius, the second winter sign of the zodiac, on the 20th of the month. The sign Aquarius now corresponds in the main with the stars of the constellation Capricornus, a condition brought about by the shifting position of the Vernal Equinox. The earth is nearest the sun, that is in perihelion, on January 3.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 19h 57m, Decl. 22° 50′ S. and transits at 12.23. It is in superior conjunction with the sun on January 11, and too near the sun to be observed this month.

Venus on the 15th is in R.A. 18h 06m, Decl. 22° 58' S. and transits at 10.31. It is slowly approaching the sun in the morning sky and rises about an hour and twenty minutes before sunrise. It is a bright star of magnitude -3.4.

Mars on the 15th is in R.A. 16h 20m, Decl. 21° 13′ S. and transits at 8.43. It is a red star between first and second magnitude and rises about three hours before the sun in the morning sky.

Jupiter on the 15th is in R.A. 2h 16m, Decl. 12° 30′ N. and transits at 18.37. It is a prominent object for the first half of the night and sets a little over an hour after midnight. Jupiter is of magnitude -2.1. Quadrature with the sun takes place on the 27th. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 50.

Saturn on the 15th is in R.A. 2h 25m, Decl. 11° 53' N. and transits at 18.45. It is still fairly near Jupiter in Aries and sets a little over an hour after midnight. It is at a stationary point in its orbit on January 10 and in quadrature with the sun on the 28th. For the elongations of Saturn's satellites, etc., see p. 52.

Uranus on the 15th is in R.A. 3h 20m, Decl. 18° 05' N. and transits at 19.39. Neptune on the 15th is in R.A. 11h 53m, Decl. 2° 07' N. and transits at 4.16. Pluto—For information in regard to this planet, see p. 24.

ASTRONOMICAL PHENOMENA MONTH BY MONTH BY RUTH J. NORTHCOTT

				JANUARY	Min.	Config.
					of Algol	Jupiter's Sat.
				75th Meridian Civil Time	Aigoi	21h 30m
	d	h	m	*	h m	
Wed.	1					3 412O
Thu.	2					32041
Fri.	3	13		⊕ in Perihelion. Dist. from ⊙, 91,345,000 mi.		31024
				Quadrantid Meteors, p. 54		
Sat.	4					O1234
Sun.	5	8	40	First Quarter	13 20	2034*
Mon.	6	0		Moon in Apogee. Dist. from ⊕, 251,200 mi		210 34
Tue.	7	2	11	୪ଥାଏ ଥା 1° 27′ N		dO124
		7	17	グ2億 24 1° 27′ N ぐり億 り 0° 17′ N		
Wed.	8	10	37	♂ 🌣 🐧 🐧 3° 29′ N	10 0 9	d31O4
Thu.	9					32014
Fri.	10	5		b Stationary in R.A		31042
Sat.	11	5		o ♥ ⊙ Superior		40132
Sun.	12			-		4203*
Mon.	13	6	04	1 Full Moon		4210 3
Tue.	14				03 48	40312
Wed.	15					43102
Thu.	16					43201
Fri.	17	2 3	13	ϭΨ	00 37	4310*
Sat.	18					4012*
Sun.	19	3		Moon in Perigee. Dist. from ⊕, 230,000 mi	21 26	21043
		10		g Greatest Hel. Lat. S		
Mon.	20	5	01	Last Quarter		d2043
Tue.	21					O1324
Wed.	22				18 15	31024
Thu.	2 3	4	48	ර්ර්්් ර් 4° 37′ S		32014
Fri.	24					3104*
Sat.	25	10		Q in %	15 05	O3124
	-	15	10	♂♀ℂ ♀ 5° 00′ S		
Sun.	26			***************************************		21043
Mon.	27	1		□21⊙		20413
			03			
Tue.	28				11 54	4032*
		8	53	□♭⊙		
Wed.	29	Ü				43102
	30	3		Stationary in R.A		43201
	31	•			08 43	43120
	<u> </u>					

Explanation of symbols and abbreviations on p. 4, of time on p. 8.

THE SKY FOR FEBRUARY, 1941

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During February the sun's R.A. increases from 20h 57m to 22h 46m and its Decl. changes from 17° 16′ S. to 7° 49′ S. The equation of time drops to a minimum of -14m 21s on February 11 and then rises to -12m 36s at the end of the month (see p. 7). For changes in the length of the day, see p. 11. The sun enters Pisces, the third winter sign of the zodiac, on the 20th.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 22h 54m, Decl. 4° 59' S. and transits at 13.13. It reaches greatest elongation east of the sun in the evening sky on the 11th. This is a favourable period of the year during which to observe Mercury in the evening. The planet will be visible for about a week before and after the above date. It will set approximately one and a half hours after the sun in the southwest and will be 16° above the horizon at sunset. Inferior conjunction with the sun is on the 26th.

Venus on the 15th is in R.A. 20h 51m, Decl. 18° 30′ S. and transits at 11.14. It is in the morning sky and is the bright star which rises shortly before the sun in the morning twilight.

Mars on the 15th is in R.A. 17h 51m, Decl. 23° 35′ S. and transits at 8.12. It is slowly separating from the sun in the morning sky and rises in the southeast about three hours before sunrise.

Jupiter on the 15th is in R.A. 2h 28m, Decl. 13° 37' N. and transits at 16.46. It is a bright star, visible for the first half of the night. Conjunction with Saturn takes place on February 20. This is the last time these two planets are in conjunction for approximately twenty years. Jupiter will be a little over a degree north of Saturn. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 50.

Saturn on the 15th is in R.A. 2h 30m, Decl. 12° 24' N. and transits at 16.48. It is visible near Jupiter during the first half of the night. Conjunction with Jupiter takes place on February 20. For the elongations of Saturn's satellites, etc., see p. 52.

Uranus on the 15th is in R.A. 3h 20m, Decl. 18° 06' N. and transits at 17.38. Neptune on the 15th is in R.A. 11h 51m, Decl. 2° 20' N. and transits at 2.12. Pluto—For information in regard to this planet, see p. 24.

				FEBRUARY 75th Meridian Civil Time	Min. of Algol	Config. of Jupiter's Sat. 21h 15m
	d	h	m		h m	-
Sat.	1					43012
Sun.	_	21		Moon in Apogee. Dist. from ⊕, 251,300 mi		41203
Mon.		9		♂ in ♡	.05 33	42013
2,2011		-		o'21 € 2 2° 00′ N		-2010
				♂b © b 0° 44′ N		
Tue.	4	6				41023
				♂ ී € 3° 44′ N		
Wed.	5					31042
Thu.	6				.02 22	32014
Fri.	7	11		ψ in Ω		31204
Sat.	8				.23 11	30124
Sun.	9					d1034
Mon.	10	19		g Greatest elongation E., 18° 10'		20134
Tue.	11	2		□ 8 ○	.20 01	10234
		19	2 6	Full Moon		
Wed.	12	1		§ in Perihelion		d3O24
Thu.	13				•	3 24 O*
Fri.	14	5	36	σΨ © Ψ 1° 50′ N		34210
		15		Moon in Perigee. Dist. from ⊕, 227,000 mi	•	
Sat.	15					43 O 12
Sun.	16	15		以 Stationary in R.A		41023
Mon.	17				.13 39	42013
Tue.	18	13	07	C Last Quarter	•	4103*
Wed.						d4O12
Thu.	20	14		성외	.10 29	4320*
		21	52	ර්ට්ලි ට් 5° 28′ S	•	
Fri.	21					3214O
Sat.	22	8		Greatest Hel. Lat. N		3O142
Sun.	2 3				.07 18	10234
			-	ϭ ♀ ઉ ♀ 4° 34′ S		20134
Tue.				New Moon		1034*
•••				σ ♥ ℂ		00:-:
Wed.		7		√♥⊙ Inferior		O3124
Thu.				• • • • • • • • • • • • • • • • • • • •	-	32104
Fri.	2 8			••••	• ,	d32O4

Explanation of symbols and abbreviations on p. 4, of time on p. 8.

THE SKY FOR MARCH, 1941

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During March the sun's R.A. increases from 22h 46m to 0h 40m and its Decl. changes from 7° 49′ S. to 4° 18′ N. The equation of time increases from -12m 36s to -4m 09s (see p. 7). For changes in the length of the day, see p. 12. The sun is at the vernal equinox at 19h 21m E.S.T. on March 20. At this time the sun crosses the equator on its trip north, enters the sign of Aries, and spring commences. There is an annular eclipse of the sun on March 27. For details see p. 25.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. There is a partial eclipse of the moon on March 13. For details see p. 25.

Mercury on the 15th is in R.A. 22h 05m, Decl. 11° 05′ S. and transits at 10.35. The planet is in the morning sky for the first half of the month but too near the sun to be seen. It reaches greatest elongation west of the sun on March 25 but will be difficult to see as it rises only one hour before the sun and is just 9° above the horizon at sunrise.

Venus on the 15th is in R.A. 23h 07m, Decl. 7° 13' S. and transits at 11.39. It is rapidly fading into the twilight in the morning sky. Venus will be very close to the old moon on the morning of March 27.

Mars on the 15th is in R.A. 19h 15m, Decl. 22° 57′ S. and transits at 7.46. It is in the morning sky and is slowly growing brighter, appearing about three hours before the sun.

Jupiter on the 15th is in R.A. 2h 46m, Decl. 15° 09′ N. and transits at 15.15. It is a bright object in the early evening sky and sets approximately four hours after the sun. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 50.

Saturn on the 15th is in R.A. 2h 39m, Decl. 13° 14′ N. and transits at 15.07. It is in the evening sky and sets over four hours after the sun. Saturn is a pale yellow star of magnitude +0.5. Its rings are now fairly well open, being inclined to the line of sight by 20°. We see their southern side. For the elongations of Saturn's satellites, etc., see p. 52.

Uranus on the 15th is in R.A. 3h 23m, Decl. 18° 17' N. and transits at 15.50. Neptune on the 15th is in R.A. 11h 49m, Decl. 2° 38' N. and transits at 0.19. Opposition to the sun is on the 17th.

Pluto-For information in regard to this planet, see p. 24.

				MARCH	Min.	Config.
				75th Meridian Civil Time	of Algol	Jupiter's Sat. 20h 45m
	\mathbf{d}	h	m		h m	
Sat.	1	3		♀ in Aphelion		3O142
Sun.	2	16		Moon in Apogee. Dist. from ⊕, 251,800 mi		1402*
Mon.	3	3	44	♂b © b 1° 08′ N	.21 46	42013
		5	31	♂ 2 € 2 2° 33′ N ♂ 8 ♀ \$ 4° 48′ N		
		8		성 및 4° 48′ N		
Tue.	4	3	20	ර ී රි		41203
Wed.	5			· · · · · · · · · · · · · · · · · · ·		40132
Thu.	6	2	43	First Quarter		43120
Fri.	7			~		43201
Sat.	8					4302*
Sun.	9				15 24	4102*
Mon.		15		Stationary in R.A		20413
	11	-0				12043
Wed.						O1324
Thu.				Partial eclipse of ©, see p. 25		d31 0 4
ı nu.	10	e	47	© Full Moon		u0104
				Ψ Full Mooli		
17*	1 4		19			20014
		17		Moon in Perigee. Dist. from ⊕, 223,800 mi		32014
	15					3024*
~	16			01tt 0		31024
Mon.	17	3		$\mathcal{O} \Psi \odot$ Dist. from \oplus , 2,716,000,000 mi		20134
m.		19		ÿ in ♥		10010
	18	٠.		<u></u>		12043
				C Last Quarter		4012 3
		19	21	\odot enters Υ , Spring commences. Long. of \odot , 0°	· ·	4 13 O2
Fri.	21	16	31	ර්ගී ී රී රී 5° 46′ S	.02 42	43201
Sat.	22					4310*
Sun.	2 3	7		Q Greatest Hel. Lat. S		d43O2
Mon.	24					42013
Tue.	25	6	08	♂ ♥ © ♥ 3° 43′ S		42103
		10		₽ Greatest elongation W., 27° 48′		
Wed.	2 6				.20 20	40123
Thu.	27			Annular eclipse of ⊙, see p. 25		13042
		3	46	σ ♀ © ♀ 1° 38′ S		
				New Moon		
Fri.	28	1		g in Aphelion		32014
	29	•		* in representation		3104*
	30	5		Moon in Apogee. Dist. from ⊕, 252,400 mi		30124
Juii.	υU	-	07	Moon in Apogee. Dist. from ⊕, 252,400 mi		JU124
					•	
M	01			6 2 € 2 3° 01′ N	•	0004*
won.	ðΙ	12	19	♂ ී € 4° 00′ N	•	2034*

Explanation of symbols and abbreviations on p. 4, of time on p. 8.

THE SKY FOR APRIL, 1941

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During April the sun's R.A. increases from 0h 40m to 2h 31m and its Decl. changes from 4° 18′ N. to 14° 53′ N. The equation of time increases from -4m 09s to +2m 52s at the end of the month (see p. 7). For changes in the length of the day, see p. 12. The sun enters Taurus, the second spring sign of the zodiac, on the 20th.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 0h 20m, Decl. 0° 33' S. and transits at 10.50. Mercury is in the morning sky but not well placed for observation during April owing to its proximity to the sun.

Venus on the 15th is in R.A. 1h 29m, Decl. 8° 04' N. and transits at 11.58. It reaches superior conjunction with the sun on the 19th, and will be too near the sun to be seen this month.

Mars on the 15th is in R.A. 20h 46m, Decl. 19° 18′ S. and transits at 7.14. It rises barely three hours before the sun in the morning sky and is a red star of magnitude +0.8.

Jupiter on the 15th is in R.A. 3h 12m, Decl. 17° 05' N. and transits at 13.39. The planet is rapidly fading into the evening twilight and at the middle of the month sets only two hours after the sun. Jupiter is now of magnitude -1.6, just the brightness of Sirius. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 50.

Saturn on the 15th is in R.A. 2h 53m, Decl. 14° 21' N. and transits at 13.19. It is approaching the sun in the evening sky and may still be seen at the first of the month to the west of Jupiter in the evening twilight.

Uranus on the 15th is in R.A. 3h 28m, Decl. 18° 39' N. and transits at 13.54. Neptune on the 15th is in R.A. 11h 46m, Decl. 2° 57' N. and transits at 22.10. Pluto—For information in regard to this planet, see p. 24.

				APRIL 75th Meridian Civil Time	Min. of Algol	Config. of Jupiter's Sat. 20h 30m
	d	h	m		h m	
Tue.	1				.13 58	21034
Wed.	2					01234
Thu.	3					10324
Fri.	4	19	12	First Quarter	.10 48	32041
Sat.	5			~		34120
Sun.	6					43012
Mon.	7				.07 37	d41O3
Tue.	8					42103
Wed.	9					40123
Thu.	10	0	12	∀Ψ Ψ 1° 59′ N	.04 26	41032
Fri.	11		15			43201
Sat.	12	3		Moon in Perigee. Dist from ⊕, 222,000 mi		34120
Sun.	13					30412
Mon.	14					1024*
Tue.	15				.22 04	d2O34
Wed.	16					01234
Thu.	17	9		g Greatest Hel. Lat. S		10324
Fri.	18	8	03	Last Quarter	.18 53	32014
Sat.	19	2		of ♀⊙ Superior		31204
		12	26	ර ් ී ි ර ් 5° 29′ S		
Sun.	20			***************************************		30124
Mon.	21			Lyrid Meteors, p. 54		13042
Tue.	22			***************************************		24013
Wed.	2 3				•	403**
Thu.	24				.12 32	41032
Fri.	25	6	07	σβ © 9° 12′ N	•	42301
Sat.	26	8		Moon in Apogee. Dist. from ⊕, 252,600 mi		43210
		8	2 3			
		10	58	o' ♀ ℂ ♀ 2° 20' N		
Sun.	27	4	59	ơ b € b 1° 40′ N	.09 21	43012
		17	55	o'21 € 24 3° 23′ N		
		21	16	♂ â © å 4° 01′ N		
Mon.	28			***************************************		41302
Tue.	29			***************************************		24013
Wed.	30				06 10	10243

Explanation of symbols and abbreviations on p. 4, of time on p. 8.

THE SKY FOR MAY, 1941

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During May the sun's R.A. increases from 2h 31m to 4h 34m and its Decl. changes from 14° 53′ N. to 21° 58′ N. The equation of time increases from +2m 52s to +3m 47s on the 15th and then drops to +2m 27s at the end of the month (see p. 7). For changes in the length of the day, see p. 13. On May 21 the sun enters Gemini, the third spring sign of the zodiac.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 4h 07m, Decl. 22° 20′ N. and transits at 12.42. Mercury is too near the sun to be well seen this month. It is in superior conjunction with the sun on the 6th. The planet might possibly be glimpsed in the evening sky after sunset during the last few days of May.

Venus on the 15th is in R.A. 3h 54m, Decl. 20° 07' N. and transits at 12.25. Venus is now in the evening sky but very near the sun and not well placed for observation.

Mars on the 15th is in R.A. 22h 08m, Decl. 13° 36' S. and transits at 6.38. It is becoming more prominent in the morning sky, having now brightened to magnitude +0.4. It rises three hours before the sun.

Jupiter on the 15th is in R.A. 3h 41m, Decl. 18° 51' N. and transits at 12.09. Conjunction with the sun takes place on May 19 so that the planet will be too close to the sun for observation this month.

Saturn on the 15th is in R.A. 3h 08m, Decl. 15° 28' N. and transits at 11.36. Conjunction with the sun takes place on the 9th and Saturn is too near the sun to be observed during May.

Uranus on the 15th is in R.A. 3h 35m, Decl. 19° 03' N. and transits at 12.03. Conjunction with the sun is on the 17th.

Neptune on the 15th is in R.A. 11h 44m, Decl. 3° 09' N. and transits at 20.10. Pluto—For information in regard to this planet, see p. 24.

				MAY	Min. of
				75th Meridian Civil Time	Algol
	d	h	m		h m
Thu.	1				
Fri.	2				
Sat.	3				
Sun.	4	7	49		
		13		of ♀b ♀ 1° 33′ N	
				Eta Aquarid Meteors, p. 54	
Mon.	-				23 48
Tue.	6	0		of ♥ ⊙ Superior	
	_	10		ψ in Ω	
Wed.	7				
			2 3		• • • • • • •
	_	12		σῦ þ 및 2° 19′ N	
Thu.	_	20		δb ⊙	
Sat.	10	14		Moon in Perigee. Dist. from ⊕, 222,000	
_		2 3		σ ♀ 0° 05′ S	
Sun.	11	0		⊘ ♥ δ ♥ 1° 03′ N	
		-	15	© Full Moon	
		1		§ in Perihelion	
		1		∀ ♀ ♀ 1° 08′ N	
		8		σ 2	
		15		o ♀ 24	
Wed.	_	-			
Sat.	17	7	1 17		
C	10		17	- ~	
Sun.	18		91	of Φ of 4° 41′ S ♀ in Ω	
M	10	14			
Mon. Tue.		19		6 21⊙	
Wed.		7		g Greatest Hel. Lat. N	
vvea. Fri.	2 3			Moon in Apogee. Dist. from \oplus , 252,400	
Sat.	_		ΛQ	⊘ b 0	J 1111 UT 42
Sat. Sun.					
Juii.	20				
Mor	26			• New Moon	
141 O I I .	20				
Тиа	27				• • • • • •
Wed.		21	υU	O Y W Y 7 10 N	
wed. Sat.	31				
Jal.	91				19 08

Explanation of symbols and abbreviations on p. 4, of time on p. 8. Jupiter being near the Sun, phenomena of the satellites are not given from May 1 to June 18.

THE SKY FOR JUNE, 1941

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During June the sun's R.A. increases from 4h 34m to 6h 38m and its Decl. changes from 21° 58′ N. to a maximum of 23° 27′ N. on June 22, and then decreases to 23° 09′ N. The equation of time drops from +2m 27s to -3m 32s at the end of the month (see p. 7). For changes in the length of the day, see p. 13. The sun reaches its most northerly position at 14h 34m E.S.T. on June 21 and this marks the beginning of summer when the sun enters the sign of Cancer. During the last half of June the days are longest in the northern hemisphere and the duration of daylight changes little. The local mean time of sunset is almost constant owing to the decrease in the equation of time.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 7h 04m, Decl. 22° 23′ N. and transits at 13.30. It reaches its greatest apparent distance from the sun in the evening sky on June 6 and should be easy to locate during the first half of the month as this is the most favourable time of the year to observe Mercury in the evening sky. It will set approximately two hours after the sun, somewhat north of the west point. It will be 18° above the horizon at sunset. Look for a reddish star of magnitude +0.6.

Venus on the 15th is in R.A. 6h 38m, Decl. 24° 12' N. and transits at 13.07. It is slowly separating from the sun in the evening sky but sets less than an hour after sunset and so is difficult to observe. Its magnitude is -3.4.

Mars on the 15th is in R.A. 23h 26m, Decl. 6° 42′ S. and transits at 5.54. It is in the morning sky and is in quadrature with the sun on June 2. Mars rises four hours before the sun and will be seen as a red star of magnitude zero in Aquarius, just to the east of the meridian at sunrise.

Jupiter on the 15th is in R.A. 4h 11m, Decl. 20° 22' N. and transits at 10.37. It is now in the morning sky but very close to the sun. It may be glimpsed just before sunrise near the end of the month. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 50.

Saturn on the 15th is in R.A. 3h 23m, Decl. 16° 28' N. and transits at 9.49. It is in the morning sky and rises shortly before the sun, being poorly placed for observation.

Uranus on the 15th is in R.A. 3h 42m, Decl. 19° 28' N. and transits at 10.08 Neptune on the 15th is in R.A. 11h 43m, Decl. 3° 11' N. and transits at 18.08. Pluto—For information in regard to this planet, see p. 24.

JUNE 75th Meridian Civil Time	Min. of Algol	Config. of Jupiter's Sat. 4h 30m
d h m	h m	
Sun. 1		
Mon. 2 4 □♂⊙		
16 56 D First Quarter		
Tue. 3 16 43 ♂Ψ € Ψ 1° 42′ N	15 58	
Wed. 4		
Thu. 5 23 \$\Q\$ Greatest elongation E., 23\circ 47'		
Fri. 6 5 \(\Psi \) Stationary in R.A		
Sat. 7 21 Moon in Perigee. Dist. from ⊕, 223,800 mi.		
Sun. 8		
Mon. 9 7 34 ⁽²⁾ Full Moon		
Tue. 10		
Wed. 11		
Thu. 12		
Fri. 13 18 \Q in \gamma\gamma		
Sat. 14		
Sun. 15		
Mon. 16 4 24 ♂♂ ⑤ ♂ 3° 37′ S		
7 □Ψ⊙		
10 45 (Last Quarter		
Tue. 17		
Wed. 18		
Thu. 19 6 \Q Stationary in R.A		42103
Fri. 20 2 Moon in Apogee. Dist. from \oplus , 251,900 mi.		O4123
7 σ φ φ φ 2° 54′ S		01120
Sat. 21 7 21 of b 6 b 2° 10′ N		10234
11 Q in Perihelion		10201
14 34 ① enters ②, Summer commences. Long. of ①,		
16 10 ♂ ô © 6 4° 14′ N		
Sun. 22 8 49 \circlearrowleft 24 \circlearrowleft 24 4° 02′ N		d23O4
Mon. 23		32014
Tue. 24 0 \(\beta \) in Aphelion		31024
14 22 ® New Moon		01021
Wed. 25 12 54 ♂ ♥ ♥ 1° 40′ N	• • •	32014
Thu. 26 5 50 ♂♀ ♥ ♀ 5° 53′ N		21034
Fri. 27		02143
Sat. 28		10423
Sun. 29		24031
Mon. 30 22 40 ♂Ψ € Ψ 1° 24′ N		4320*
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · ·	1040

THE SKY FOR JULY, 1941

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During July the sun's R.A. increases from 6h 38m to 8h 43m and its Decl. changes from 23° 09′ N. to 18° 11′ N. The equation of time decreases from -3m 32s to a minimum of -6m 23s on the 27th and then increases to -6m 15s (see p. 7). For changes in the length of the day, see p. 14. The sun enters Leo, the second summer sign of the zodiac, on July 23. The earth is in aphelion, that is the point in its orbit furthest from the sun, on July 2 (see opposite page).

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 6h 27m, Decl. 19° 06' N. and transits at 10.55. It is in inferior conjunction with the sun on July 2 and will be too near the sun to be seen for the first half of the month. Its greatest apparent separation from the sun in the morning sky takes place on the 24th, at which time Mercury will rise nearly two hours before the sun and reach an altitude of 15° above the horizon at sunrise. It will be a reddish star of magnitude +0.4, almost due east.

Venus on the 15th is in R.A. 9h 13m, Decl. 17° 48' N. and transits at 13.44. The planet is in the evening sky setting about an hour after the sun. It is just over 10° above the horizon at sunset.

Mars on the 15th is in R.A. 0h 32m, Decl. 0° 29' S. and transits at 5.01. It now rises in the east before midnight and is very prominent as a red star of magnitude -0.7. The apparent diameter of Mars as seen in the telescope has now increased to 13 seconds of arc.

Jupiter on the 15th is in R.A. 4h 38m, Decl. 21° 26' N. and transits at 9.07. It is slowly separating from the sun in the morning sky, rising about three hours before sunrise. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 50.

Saturn on the 15th is in R.A. 3h 36m, Decl. 17° 10′ N. and transits at 8.04. It is in the morning sky and rises a little before Jupiter. For the elongations of Saturn's satellites, etc., see p. 52.

Uranus on the 15th is in R.A. 3h 48m, Decl. 19° 47' N. and transits at 8.16. Neptune on the 15th is in R.A. 11h 45m, Decl. 3° 01' N. and transits at 16.12. Pluto—For information in regard to this planet, see p. 24.

				JULY	Min.	Config. of Jupiter's
-				75th Meridian Civil Time	Algol	Sat. 4h 0m
	-	h			h m	
Tue.			24	~	•	43102
Wed.	2	16 19				d43O1
Thu.	3					42103
Fri.	4					40213
Sat.	5	21		Moon in Perigee. Dist. from ⊕, 226,700 mi	.04 53	41023
Sun.	6					42031
Mon.	7					3204*
Tue.	8	15	17	⑤ Full Moon	.01 42	d3 O24
Wed.	9					30214
Thu.	10	8		o⊓ Greatest Hel. Lat. S	. 22 30	21034
Fri.	11					O134*
Sat.	12					10234
Sun.	13	1		Q Greatest Hel. Lat. N	.19 19	2 0134
		19		§ Stationary in R.A		
Mon.	14	9		B Greatest Hel. Lat. S		23104
		20	39	ර්්්		
Tue.	15					30142
Wed.	16	3	07	C Last Quarter	16 08	34012
Thu.	17	19		Moon in Apogee. Dist. from ⊕, 251,300 mi		4210*
Fri.	18	20	14	♂b © b 2° 25′ N		4013*
Sat.	19	2	02	ර ී © ි 6 4° 27′ N		41023
Sun.	20	4	13	of 21 € 21 4° 19′ N		42013
Mon.	_					42310
Tue.	22	11	07	♂ ♥ ⑤ ♀ 2° 18′ N	09 45	43012
Wed.	2 3	2 3		Greatest elongation W., 20° 00′		3402*
Thu.	24	2	39	New Moon		2104*
Fri.	25					2 0134
Sat.	26	8	04	♂♀ℂ ♀ 3° 48′ N		10234
Sun.	27			σΨ@ Ψ 1°08′N	,	dO134
Mon.	28	4	51	ϭΨ	03 22	21304
				Delta Aquarid Meteors, p. 54		
Tue.	2.9					30124
Wed.	30				•	31024
Thu.	31	4	19	First Quarter	00 11	d23O4

THE SKY FOR AUGUST, 1941

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During August the sun's R.A. increases from 8h 43m to 10h 39m and its Decl. changes from 18° 11′ N. to 8° 31′ N. The equation of time increases from -6m 15s to -0m 11s (see p. 7). For changes in the length of the day, see p. 14. The sun enters Virgo, the third summer sign of the zodiac, on August 23.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 9h 22m, Decl. 17° 11′ N. and transits at 11.53. The planet will be too near the sun to be seen during this month. Superior conjunction takes place on the 19th.

Venus on the 15th is in R.A. 11h 35m, Decl. 3° 52' N. and transits at 14.03. It is still not very favourably placed for observation except by those who have a clear west horizon. It sets slightly over an hour after the sun in the evening sky.

Mars on the 15th is in R.A. 1h 21m, Decl. 3° 55' N. and transits at 3.48. It rises a little over two hours after sunset and is in view for the rest of the night. It is a brilliant red star of magnitude -1.3 in Pisces. Its apparent diameter has increased to 17 seconds of arc and its south pole is turned towards the earth.

Jupiter on the 15th is in R.A. 5h 02m, Decl. 22° 06′ N. and transits at 7.29. Jupiter now rises over five hours before the sun in the morning sky and has brightened to magnitude -1.8. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 50.

Saturn on the 15th is in R.A. 3h 45m, Decl. 17° 35′ N. and transits at 6.11. It rises a little over an hour before midnight and is just east of the meridian at sunrise. Quadrature with the sun takes place on the 21st. For the elongations of Saturn's satellites, etc., see p. 52.

Uranus on the 15th is in R.A. 3h 52m, Decl. 19° 58′ N. and transits at 6.18. Neptune on the 15th is in R.A. 11h 48m, Decl. 2° 41′ N. and transits at 14.13. Pluto—For information in regard to this planet, see p. 24.

				AUGUST 75th Meridian Civil Time	Min. of Algol	Config. of Jupiter's Sat. 3h 30m
	d	h	m		h m	
Fri.	1	17		Moon in Perigee. Dist. from ⊕, 229,400 mi		20413
Sat.	2	9		ğ in Ω		41023
Sun.	3					40213
Mon.	4	9		o in Perihelion		d4210
Tue.	5					43021
Wed.	6					43102
Thu.	7	0		§ in Perihelion		43201
2 2241	٠	_	38	© Full Moon		
Fri.	8	Ū	•			4203*
Sat.	9					14023
Sun.	10					02143
Mon.					.11 25	21034
Tue.		4	53	ර∂්@		3014*
ı uc.		_	00	Perseid Meteors, p. 54		
Wed.	13			t ciscia inecesso, p. 621		31024
Thu.		13		Moon in Apogee. Dist. from ⊕, 251,100 mi		32014
ı nu.				Last Quarter		0
Fri.	15			σ b @ b 2° 35′ N		2034*
1 11.	10			⟨	•	2001
Sat.	16			σ21 € 24 4° 32′ N	•	10234
Sun.	17		10	\$\frac{1}{2} Greatest Hel. Lat. N		01243
Suii.	11	19		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		01210
Mon.	10			σ Φ Ω <td></td> <td>21403</td>		21403
Tue.		19		0 ¥ O Superior		4301*
Wed.						43102
Thu.		11		□ b ⊙		43201
Fri.		13	94			4210*
F11.	24				. 22 00	1210
Sat.	22	25 15	40		•	d4O23
Sun.			E٥		•	40123
					10.28	42103
Mon. Tue.		20	40		.10 20	32401
Wed.		20		Moon in Ferigee. Dist. from ⊕, 228,000 iii		31042
Wea. Thu.						d3O14
		0	04			21304
Fri.	29	9	U4	First Quarter		O1234
Sat.	30 31					0234*
Sun.	91				. 10 00	0201

THE SKY FOR SEPTEMBER, 1941

The times of transit are given in local mean time 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During September the sun's R.A. increases from 10h 39m to 12h 27m and its Decl. changes from 8° 31′ N. to 2° 57′ S. The equation of time rises from -0m 11s to +10m 05s at the end of the month (see p. 7). For changes in the length of the day, see p. 15. The sun enters Libra and is at the autumnal equinox at 5h 33m E.S.T. on September 23. This is the beginning of autumn and day and night are approximately equal all over the world. There is a total eclipse of the sun on September 21. For details see page 25.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 12h 44m, Decl. 5° 28' S. and transits at 13.11. It is in the evening sky during this month but too near the sun to be well seen. It may be possible to glimpse Mercury during the last few days of September since greatest elongation is on October 3. However, this is a very unfavourable elongation of the planet.

Venus on the 15th is in R.A. 13h 50m, Decl. 11° 49′ S. and transits at 14.16. It is in the evening sky and has now started to brighten slightly, being of magnitude -3.5. Venus sets about an hour and twenty minutes after the sun in the southwest

Mars on the 15th is in R.A. 1h 33m, Decl. 4° 55' N. and transits at 1.57. It is steadily growing brighter as it approaches opposition, reaching magnitude -2.1 on the 15th. It rises about an hour after sunset and is the most prominent object in the evening sky. Mars is stationary in right ascension on the 6th and commences to retrograde, or to move west among the stars, at this time.

Jupiter on the 15th is in R.A. 5h 18m, Decl. 22° 25' N. and transits at 5.43. It is in quadrature with the sun on the 13th and is visible for the last half of the night, being on the meridian at sunrise. The stellar magnitude is now -2.0. For the configurations of Jupiter's stellites see opposite page, and for their eclipses, etc., see p. 50.

Saturn on the 15th is in R.A. 3h 47m, Decl. 17° 37′ N. and transits at 4.11. It rises about three hours after sunset a little north of the east point and has now brightened to magnitude +0.2. Saturn reaches a stationary point and starts to retrograde on the 11th. For the elongations of Saturn's satellites, etc., see p. 52.

Uranus on the 15th is in R.A. 3h 53m, Decl. 20° 00′ N. and transits at 4.17. Neptune on the 15th is in R.A. 11h 52m, Decl. 2° 15′ N. and transits at 12.15. Conjunction with the sun is on the 20th.

Pluto—For information in regard to this planet, see p. 24.

				SEPTEMBER	Min.	Config. of Jupiter's
•				75th Meridian Civil Time	of Algol	Sat. 3h 0m
	d	h	m		h m	
Mon.	1					21034
Tue.	2					23014
Wed.	3					31042
Thu.	4					34021
Fri.	5			Partial eclipse of \mathbb{Q} , see p. 25		42 13O
		1		σ ♥ Ψ		
		12	36			
		13		Stationary in R.A		
Sat.	6	13		Stationary in R.A		40213
Sun.	7	3		♀ in ♡		4023*
Mon.	8	21	15	ර්්්් ් ් 1° 50′ S		d42O3
Tue.	9	17		₿ in ♡	.03 31	42301
Wed.	10	22		b Stationary in R.A		4 31 02
Thu.	11	8		Moon in Apogee. Dist. from ⊕, 251,500 mi		34021
		17	00	♂b @ b 2° 36′ N		
		19	45	ර ී € 6 4° 44′ N		
Fri.	12				.00 19	23140
Sat.	13	7		□ 21⊙		O134*
		13	16	♂21 € 24 4° 36′ N		
		14	31	C Last Quarter	•	
Sun.	14				.21 08	10234
Mon.	15					20134
Tue.	16					20314
Wed.	17				.17 57	31 024
Thu.	18				•	3 0124
Fri.	19					23104
Sat.	20	0		₿ in Aphelion	.14 45	O431*
		15		of Ψ⊙; Total eclipse of ⊙, see p. 25		
		2 3	37	ϭΨ ઉ Ψ 0° 51′ N		
		2 3	38			
Sun.	21					41023
Mon.	22	14	2 8	♂ ♥ ⑤ ♀ 4° 32′ S		42013
Tue.	2 3	5		Moon in Perigee. Dist. from \oplus , 225,600 mi	.11 34	4203*
		5	33	\odot enters \Rightarrow , Autumn commences. Long. of \odot , 18	30°	
		18	44	♂♀€ ♀ 5° 03′ S		
Wed.	24					43102
Thu.	25					43012
Fri.	2 6					432 10
Sat.	27	15	09			42031
Sun.	28					41023
Mon.	2 9				.05 11	dO413
Tue.	30					2034*

THE SKY FOR OCTOBER, 1941

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During October the sun's R.A. increases from 12h 27m to 14h 23m and its Decl. changes from 2° 57′ S. to 14° 14′ S. The equation of time rises from +10m 05s to +16m 20s (see p. 7). For changes in the length of the day, see p. 15. On October 23 the sun enters Scorpio, the second autumnal sign of the zodiac.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 14h 35m, Decl. 18° 37' S. and transits at 12.59. It reaches its greatest apparent distance from the sun in the evening sky on October 3 but will be very difficult to see since the planet sets just three-quarters of an hour after the sun in the southwest. It is only 6° above the horizon at sunset. Inferior conjunction is on October 27, at which time Mercury enters the morning sky.

Venus on the 15th is in R.A. 16h 10m, Decl. 23° 17′ S. and transits at 14.38. It sets nearly two hours after the sun in the evening sky and has brightened to magnitude -3.7. It is now a prominent object low in the evening twilight, being about 13° above the horizon at sunset.

Mars on the 15th is in R.A. 1h 02m, Decl. 3° 15' N. and transits at 23.23. It is now in view all night and is closest to the earth on October 3. It is just 38,100,000 miles distant from the earth on this date. This is a fairly favourable opposition though not quite as close as those of 1937 and 1939. The apparent diameter of the disk of Mars is 23 seconds of arc at this time. Actual opposition takes place a few days after closest approach, that is on October 10. The apparent magnitude of the planet is -2.4.

Jupiter on the 15th is in R.A. 5h 23m, Decl. 22° 28' N. and transits at 3.49. It rises about three hours after sunset and is in view for the rest of the night. Jupiter reaches a stationary point in its orbit on the 10th and commences to retrograde, that is to move westward among the stars, at this time. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 51.

Saturn on the 15th is in R.A. 3h 43m, Decl. 17° 19′ N. and transits at 2.10. The planet is now of zero magnitude and rises less than two hours after sunset. In the telescope its rings appear well open, inclined to the line of sight by 24°. For the elongations of Saturn's satellites, etc., see p. 52.

Uranus on the 15th is in R.A. 3h 50m, Decl. 19° 53' N. and transits at 2.17. Neptune on the 15th is in R.A. 11h 56m, Decl. 1° 49' N. and transits at 10.21. Pluto—For information in regard to this planet, see p. 24.

				OCTOBER	Min.	Config.
				75th Meridican Civil Time	of Algol	Jupiter's Sat.
						2h 15m
	d	h	m		h m	
Wed.	_					d3O24
Thu.	2			,		30124
Fri.	3	0		♥ Greatest elongation E., 25° 42′		32104
_		2		$ \sigma$ nearest \oplus . Dist. from \oplus , 38,130,000 miles		
Sat.	4	_				2014*
Sun.	5	_		Tull Moon		10234
	_	17	34	ර්ග් ී ් 1° 27′ S		00110
Mon.	-					02143
Tue.	7	~~		/I	.19 37	21043
Wed.	-		53	⊘ b ⊕ 2° 27′ N		43012
Thu.	9	1		Moon in Apogee. Dist. from ⊕, 252,100 mi		4000*
ъ.			09	♂ 6 € 6 4° 41′ N		4302*
Fri.	10	3		24 Stationary in R.A		43210
		8		⊕ ♂⊙ Dist. from⊕, 38,510,000 mi		
		8		Greatest Hel. Lat. S		
.	4.4		09	✓ 24 € 24 4° 32′ N		4001*
Sat.		19		Q in Aphelion		42O1* 41O23
Sun.	12	-	۲0	ℂ Last Quarter		40213
Mon.	14	4	34	Last Quarter		42103
Tue. Wed.		10		Stationary in R.A		4301*
Thu.	-	10		Q Stationary in K.A		3042*
Fri.	17					32104
Sat.		11	10	οΨ © Ψ 0° 44′ N	•	23014
Sun.	19	11	40	0 4 4 0 11 11		10234
Mon.		۵	20	New Moon		02134
Tue.					•	21034
i ue.	21	9	10	Moon in Perigee. Dist. from ⊕, 222,900 mi	•	21001
Wed.	22	9		Orionid Meteors, p. 54		3014*
Thu.		12	13	σ Q Q Q 7° 49′ S	.00 11	31042
Fri.	24	12	10			d324O
Sat.	25					42301
Sun.		22		σ₿⊙ Inferior		41023
Mon.			04	- , -		40123
Tue.	28	J	O.L			42103
Wed.		8		ğ in Ω		d42O1
Thu.		3		¥ moo		43102
Fri.	31					d34O1
					•	

THE SKY FOR NOVEMBER, 1941

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During November the sun's R.A. increases from 14h 23m to 16h 27m and its Decl. changes from 14° 14′ S. to 21° 43′ S. The equation of time increases from +16m 20s to a maximum of +16m 23s on November 4, and then drops to +11m 10s at the end of the month. For changes in the length of the day, see p. 16. The sun enters Sagittarius, the third autumnal sign of the zodiac, on the 22nd of the month.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 14h 08m, Decl. 10° 35′ S. and transits at 10.34. Greatest apparent distance from the sun is reached on November 12 and this is the best opportunity of the year to see Mercury in the morning sky. It will rise two hours before the sun, being 19° above the southeast horizon at sunrise. It will also be quite bright, being of magnitude -0.3.

Venus on the 15th is in R.A. 18h 41m, Decl. 26° 19′ S. and transits at 15.07. It is a very brilliant star, setting over three hours after the sun in the evening sky. Venus is at greatest apparent distance from the sun on November 23, at which time the magnitude of the planet has brightened to -4.0.

Mars on the 15th is in R.A. 0h 43m, Decl. 3° 34′ N. and transits at 21.04. It is still very prominent in the evening sky but its brightness has dropped a whole magnitude since October. Mars is now of magnitude -1.5 and sets about three hours before sunrise, being in view for the first three-quarters of the night. It reaches a stationary point and ceases to retrograde on November 12.

Jupiter on the 15th is in R.A. 5h 14m, Decl. 22° 20′ N. and transits at 1.38. It rises a little over an hour after sunset and has brightened to magnitude -2.3 being the most prominent object in the sky after Venus has set. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 51.

Saturn on the 15th is in R.A. 3h 34m, Decl. 16° 47' N. and transits at 23.54. It is now in view all night and has brightened to magnitude -0.1. Opposition to the sun is on November 17, at which time Saturn rises at sunset. For the elongations of Saturn's satellites, etc., see p. 52.

Uranus on the 15th is in R.A. 3h 46m, Decl. 19° 38' N. and transits at 0.10. Opposition to the sun is on the 20th.

Neptune on the 15th is in R.A. 11h 59m, Decl. 1° 27' N. and transits at 8.22. Pluto—For information in regard to this planet, see p. 24.

				NOVEMBER Min. of 75th Meridian Civil Time Algol	Config. of Jupiter's Sat. 1h 45m
	d	h		h n	
Sat.	1			ර්ර්ලි	2340*
Sun.		23	00	Q Greatest Hel. Lat. S14 50	
Juii.		23		g in Perihelion	10201
Mon.	2	21	ΛΛ	•	01234
Tue.	_	13	v	Stationary in R. A	21034
Wed.	5		50	σ b C b 2° 16′ N	
•	Ü	_		♂ â € å 4° 34′ N	
•		12		Moon in Apogee. Dist. from ⊕, 252,500 mi	
Thu.	6				31024
Fri.	7		57	o 21 € 24 4° 24′ N	30214
Sat.	8		-		2 304*
Sun.	9				10243
Mon.	10				4O12 3
Tue.	11	22		g Greatest elongation W., 19° 11′05 25	4210 3
		2 3	53	Last Quarter	
Wed.	12	3		Stationary in R.A	42031
Thu.		6		Greatest Hel. Lat. N	43102
Fri.	14	2 3	2 9	σΨ © Ψ 0° 33′ N	43021
Sat.	15				43210
Sun.	16			Leonid Meteors, p. 54	d4O3*
Mon.	17	12	00	σ 및 ¶ 1° 38′ S	4012 3
		14		\circ b \odot . Dist. from \oplus , 756,300,000 mi	
Tue.	18	19	04		21043
		21		Moon in Perigee. Dist. from ⊕, 221,700 mi	
Wed.	19			19 49	
Thu.	20	20		6° 6 ⊙ Dist. from ⊕, 1,719,000,000 mi	31024
Fri.	21				30214
Sat.	22		2 3	o'♀ €	
Sun.	2 3	0		Q Greatest elongation E., 47° 16′	014**
Mon.					O234*
Tue.		12	52	P First Quarter	
Wed.				•••••	20413
Thu.					41302
Fri.		17	10	ଟଟିଏ ଟି 1° 51′ N10 16	
Sat.	29				43210 42301
Sun.	30				42501

THE SKY FOR DECEMBER, 1941

The times of transit are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During December the sun's R.A. increases from 16h 27m to 18h 43m and its Decl. changes from 21° 43′ S. to 23° 27′ S. on December 22 and then increases to 23° 04′ S. The equation of time drops from +11m 10s to -3m 14s at the end of the month. At 0h 45m E.S.T. December 22 the sun enters Capricornus, winter commences and the days are shortest in the northern hemisphere. The length of the day changes very little at this time (see p. 16).

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15th is in R.A. 17h 11m, Decl. 23° 50′ S. and transits at 11.40. It is in superior conjunction with the sun on December 22, passing into the evening sky at this time. Mercury will be too near the sun to be seen this month.

Venus on the 15th is in R.A. 20h 43m, Decl. 20° 12′ S. and transits at 15.09. It grows rapidly brighter throughout December, being at its greatest brilliancy on the 29th. It is of stellar magnitude -4.4 at this time and sets over three hours after the sun. During the last part of the month it should be possible to see Venus in broad daylight. One way to locate it is to look due south, 20° below the celestial equator, at the time Venus is due to cross the meridian.

Mars on the 15th is in R.A. 1h 06m, Decl. 7° 21' N. and transits at 19.30. It is a brilliant red star of magnitude -0.5, setting about two hours after midnight. It is rapidly fading by about one magnitude a month. Its apparent diameter is now only 12 seconds of arc. It is fairly prominent in Pisces for the first half of the night.

Jupiter on the 15th is in R.A. 4h 57m, Decl. 22° 02′ N. and transits at 23.19. It is in view all night during this month and is a bright star of magnitude -2.4. Opposition to the sun takes place on December 8. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 51.

Saturn on the 15th is in R.A. 3h 25m, Decl. 16° 17' N. and transits at 21.47. It is a bright object in the evening sky, being of zero magnitude. Saturn is in the eastern sky for the first part of the night. For the elongations of Saturn's satellites, etc., see p. 52.

Uranus on the 15th is in R.A. 3h 41m, Decl. 19° 22' N. and transits at 22.03. Neptune on the 15th is in R.A. 12h 01m, Decl. 1° 16' N. and transits at 6.26. Pluto—For information in regard to this planet, see p. 24.

				DECEMBER	Min.	Config.
				75th Meridian Civil Time	of Algol	Jupiter's Sat. 0h 15m
	d	h	m		h m	•
Mon.	1				.07 05	41023
Tue.	2	3	33	で り © り 2° 13′ N		dd4O3
		10	36	ර ී 🕻 රී 4° 31′ N		
		12		Moon in Apogee. Dist. from ⊕, 252,200 mi		
Wed.	3	15	51	Full Moon		42013
Thu.	4	2	24	♂21 € 21 4° 21′ N	.03 53	41302
		16		♂ in \(\oldsymbol{\oldsymbol{O}}\)		
Fri.	5					30412
Sat.	6	16		₿ in ♡		32104
Sun.	7				.00 43	23014
Mon.	8	15		&24⊙ Dist. from ⊕, 380,000,000 mi		10324
Tue.	9				.21 32	O1234
Wed.	10					20134
Thu.	11	13	48	Last Quarter		13024
	12			∀Ψ Ψ 0° 15′ N		30142
				Geminid Meteors, p. 54		
Sat.	13					31240
Sun.	14					43201
Mon.	15				.15 12	41032
Tue.	16	23		in Aphelion		40123
Wed.	17	9		Moon in Perigee. Dist. from ⊕, 222,500 mi		4203*
Thu.	18	1	14	σ'ਊ @ ਊ 6° 10′ S		4103*
			18			
Fri.	19					43012
Sat.	20					34120
Sun.	21	11	10	σ Q Ø Q 4° 04′ S	.08 49	32401
		19		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		02-0-
		21		$\square\Psi\odot$		
Mon.	22		45	⊙ enters ⊙, Winter commences. Long. of ⊙, 270)°	10324
Tue.		·				O1234
Wed.						21034
Thu.		5	43	D First Quarter		dO34*
	_			ර් ලී රී 3° 49′ N		30124
	27		٠ <u>ـ</u> ـ			31204
Sun.		20		♀ Greatest Brilliancy		32014
Mon.			24	δ β β 2° 24′ N		10342
011,		7	₩ T	φ in δ	.20 10	10012
		-	50	ර්රී © රි 4° 38′ N	•	
		19	00	Moon in Apogee. Dist. from ⊕, 252,200 mi	•	
Tue.	30	10		Woon in Apogee. Dist. Hom ⊕, 202,200 in		40123
Wed.		1	37	୪ଥାଏ ଥା 4° 28′ N	•	42103
cu.	<u> </u>		J.	U + u	•	12100

PHENOMENA OF JUPITER'S SATELLITES, 1941

E—eclipse, O—occulation, T—transit, S—shadow, D—disappearance, R—reappearance, I—ingress, e—egress. The Roman numerals denote the satellites.

75th Meridian Civil Time. (For other times see p. 8).

75th Meridian Civil Time.	(For other times see p. 8).
JANUARY	APRIL
d h m Sat. Phen. d h m Sat. Phen. 1 17 44 II TI 15 00 09 III TI 20 21 II SI 22 57 II TI 20 27 II Te 17 19 40 II OR 22 53 II Se 19 45 II ED 22 01 I TI 18 19 38 III ED 23 15 I SI 21 36 III ED 5 00 10 I Te 19 23 07 I OD	d h m Sat. Phen. 1 19 03 I Se 15 20 09 I TI 7 19 34 II SI 16 19 18 II ER 8 20 18 I Te 20 10 I ER 14 19 44 III OR 23 19 28 I OD Jupiter being near the Sun, phenomena of the Satellites are not given from May 1
01 24 I Se 20 20 16 I TI 19 20 I OD 21 35 I SI	June 18.
22 46 I ER 22 25 I Te 6 17 44 I SI 23 44 I Se 18 38 I Te 21 21 06 I ER	JUNE d h m Sat. Phen. d h m Sat. Phen.
19 53 I Se 18 13 I Se 7 01 16 II OD 24 19 40 II OD	25 03 47 II Te 29 04 13 III Se
20 18 III TI 22 16 II OR 22 18 III Te 22 23 II ED 8 20 24 II TI 25 18 08 III OD	JULY d h m Sat. Phen. d h m Sat. Phen.
22 58 11 SI 20 18 III OR 22 58 11 Te 23 40 III OR 10 19 42 II ER 26 20 03 II Se 11 23 54 I TI 22 21 13 I OD 23 31 I SI 30 042 I ER 28 19 31 I OD	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
18 22 I TI 23 02 I ER 19 40 I SI 29 18 00 I SI	16 03 23
20 31 I Te 18 50 I Te 21 48 I Se 20 09 I Se 14 19 11 I ER 31 22 18 II OD	AUGUST
FEBRUARY	d h m Sat. Phen. d h m Sat. Phen. 1 01 51 I OR 22 01 06 III OD
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 02 12 II SI 03 31 III OR 04 27 II TI 04 15 I ED 04 27 III TI 04 15 I ED 05 15 15 15 15 15 15 15 15 15 15 15 15 15
12 18 28 III Te 20 12 I SI 20 34 I TI 21 12 I Te	SEPTEMBER d h m Sat. Phen. d h m Sat. Phen.
21 41 III SI 22 21 1 Se 21 52 I SI MARCH	1 00 09 I Se 11 04 27 II SI 01 28 I Te 12 23 33 II ED 4 01 52 II SI 13 02 10 II ER 04 28 II Se 02 15 II OD
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	04 33 II TI 04 53 II OR 5 03 55 III ED 14 04 25 I ED 23 40 II OD 23 06 II Te 6 02 17 II OR 15 01 46 I SI 7 02 31 I ED 03 06 I TI 23 53 I SI 03 56 I Se 8 01 12 I TI 05 16 I Te 02 22 I Se 16 00 19 III Se 03 22 I Te 02 26 I OR 23 26 III TI 03 26 III TI 9 00 33 I OR 23 44<

SEPT	`EMB	ER—Cont.			NOVEMBER—Cont.					
	hen.	d h m	Sat.	Phen.	d h m		Phen.	d h m		Phen.
04 45 II 04 48 II	ER OD	24 00 18 01 36	I	Se Te	05 51 19 48		OR ED	03 54 04 25	III	OR Se
21 22 59 II 23 03 II	Se T I	22 47 26 23 36	III	OR OR	16 00 20	? II	ED SI	04 42 04 48	II I	OR Te
22 01 41 II 03 40 I	Te SI	27 04 42 28 22 58	II	ED SI	00 35 00 54	III	OR TI	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I I	ED OR
04 59 Î 23 00 47 Î	ŤÎ ED	29 01 35 01 36	II II	Se TI	02 28 02 31	3 II	OR Se	19 52 20 36	II II	SI TI
01 59 III 04 19 I	SI OR	04 13 30 02 41	ÎÎ I	Te ED	03 04 21 32	I	Te ED	20 42 21 03	I I	SI TI
04 19 III 23 27 I	Se TI	23 11	ÎI	ÖR	17 00 17 19 20		OR TI	22 32 22 53	ΪΙ Ι	Se
	ОСТО	BER			19 58 20 59	II	Se Se Te	23 14 23 15	ΙΙ	Se Te Te OR
d h m Sat. P		d h m		Phen.	20 59) I	Te	25 20 28 30 03 49	ĬĬĬ	ED ED
1 00 02 I 01 18 I	SI TI	17 00 27 01 34	Ĭ	Se Te	22 04 58	III	ED ED	03 51 04 07	ΙΙ	SI TI
02 12 I 03 28 I	Se Te	22 46 18 03 51	ΙΙΙ	OR ED	23 01 16 02 13	Ι	ED SI TI	04 21 06 19	Ĭ	Se
2 00 39 I 3 22 15 III	OR ER	21 22 14 22 00 37	III	TI Te	02 38	I		06 31	I	Te
4 00 59 III 03 25 III	OD OR	01 42 05 42	Ĭ	ED SI	1 1	C-1		MBER	C-4	Dhan
6 01 34 II 04 06 II	SI TI	23 02 52 22 11	ΪΪ	ED	d h m	. I	Phen. ED	d h m 02 24	I	Phen. SI TI
04 12 II 7 04 35 I	Se ED	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I	Se SI	03 45	II (OR SI SI	03 21 03 45	ΪΙ	SI
8 01 38 II 01 55 I	OR SI	$00 ext{ } 49 \\ 01 ext{ } 11$	Ĩ	ŠĬ Te TI	22 36 22 47	I	TI	04 24 04 36	I I	Te Se
03 08 I 04 05 I	TI Se	$\begin{array}{ccc} 02 & 21 \\ 03 & 21 \end{array}$	Ī	Se Te	22 51 2 00 47	I	TI Se	06 00 23 27	Î	Te OD
05 18 I 23 03 I	Te ED	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I	ED OR	00 57 01 10	II	Se	17 01 52 20 39	Ī	ER TI
$egin{array}{cccccccccccccccccccccccccccccccccccc$	OR TI	$\begin{array}{ccc} 20 & 49 \\ 21 & 48 \end{array}$	I I	Se Te	01 30 19 50) I	Te ED	20 53 21 50	ΙΙ	$_{\mathrm{OD}}^{\mathrm{SI}}$
22 34 I 23 45 I	Se Te	28 21 53 29 00 20	III	SI Se	22 11 3 17 50	III	OR SI	22 50 23 05	I I	Te Se
10 23 51 III 11 02 16 III	ED	$\begin{array}{c} 01 & 45 \\ 04 & 08 \end{array}$	III	TI Te	18 25 19 16	I	TI Se Te	18 00 54 00 57	III II III	TI ER
04 43 III 13 04 10 II	OD SI	$04 ext{ } 16 \\ 30 ext{ } 04 ext{ } 46$	II	ED ED	19 23 20 01	II	OR	01 49 03 19	III	SI Te
14 23 08 II 15 03 49 I	ED	$\begin{array}{c} 22 & 41 \\ 31 & 00 & 33 \end{array}$	II II	SI TI	20 23 20 49	III	Se Te	04 24 17 53	III I	Se OD
04 03 II 04 57 I	OR TI	$\begin{array}{cc}01&21\\02&04\end{array}$	II I	Se SI TI	7 06 02 06 04		SI TI	20 21 19 17 33	I I	ER Se
16 00 57 I 04 19 I	ED OR	$\begin{array}{ccc} 02 & 58 \\ 03 & 11 \end{array}$	I II	TI Te	8 03 16		ED ED	19 08 19 44	II II	Te Se
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SI Te	04 14 05 08	I I	Se Te	9 00 30	I	OR SI	21 18 25 23 03 57	III I	ER TI
23 24 I	ΤĬ	23 14	I	ED	00 30 01 06	I	TI TI	04 19 05 37	I II	SI TI
NO	OVEN	MBER			01 07 02 41	II	SI	24 01 11 03 48	I I	OD ER
d h m Sat. Pl 1 02 20 I	OR	d h m 8 01 09		Phen. ED	02 42 03 45	I	Te Se Te	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I I	TI SI
20 32 I 21 24 I	SI TI	$\begin{array}{ccc} 04 & 06 \\ 20 & 08 \end{array}$	I I II	OR ED	03 48 21 43	II	Se OD	25 00 03 00 34	II I	OD Te
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OR Se	$\begin{array}{cccc} 21 & 14 \\ 22 & 26 \end{array}$	ΪΙΙ Ι	OR	23 57 10 18 56	Ι	ĔŔ TI	00 59 03 32	Ī II	Se ER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Te OR	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ī II	SI TI OR	18 59 19 37	Ĩ II	SÎ OD	04 10 19 37	ÎÎI Î	TI OD
5 01 53 III 04 20 III	SI Se	00 37 01 20	Î I	Se Te	21 06 21 10	Ι	Te Se	22 16 26 18 45	Î II	ER TI
05 12 III 7 01 18 II	TI SI	19 37 22 33	Î I	ED OR	21 39 21 50	III	ŤĬ SI	19 00 19 28	Î	Te Se
02 53 II 03 58 I	TI SI	10 19 46 12 05 52	İ III	Te SI	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	II	ER	19 41 19 41 21 24	İI II	SI Te
03 58 II 04 43 I	Se TI	14 03 55 05 11	II II	SI TI	00 23 18 26		Te Se ER	22 22 28 17 48	II III	Se OD
05 31 II 06 08 I	Te Se	$05 \ 51$ $15 \ 03 \ 03$	Ĭ Ī	SI ED	15 05 01 16 02 13	Ī	OD TI	22 26 31 02 56	İİİ	ER OD
00 00 1	SC I	10 00 00			1 10 02 10		- 11	01 02 00		UD

SATURN'S SATELLITES TITAN AND JAPETUS

	ELON	GATION		CONJUNCTION						
	TI	ΓAN		TITAN						
Easte d Jan. 7 23 Feb. 8 24 July 18 Aug. 3 Sept. 4 20 Oct. 6 22 Nov. 7 23	h 13.4 12.3 11.7 11.6 18.9 19.0 18.6 17.8 16.4 12.0 09.3 06.4	Wester: d Jan. 15 31 Feb. 16 Mar. 4 July 26 Aug. 11 27 Sept. 12 28 Oct. 14 30 Nov. 15 Dec. 1	h 12.5 11.6 11.2 11.1 16.4 16.1 15.5 14.3 12.7 10.6 08.1 05.5 02.8	Infe d Jan. 11 27 Feb. 12 28 July 22 Aug. 7 Sept. 8 Oct. 10 Nov. 11 27	h 16.4 15.5 15.0 14.9 20.8 20.3 19.3 17.7 15.7 13.3 10.6 07.9	Superior d Jan. 3 19 Feb. 4 20 July 30 Aug. 15 31 Sept. 16 Oct. 2 Nov. 3 Dec. 4	h 10.1 08.8 08.1 07.9 14.3 14.1 13.3 12.1 10.3 08.0 05.4 02.6 23.9			
Dec. 9 25	03.7 01.2	17	00.3	Dec. 13	05.3 03.0	20	21.4			
	IAPI	ETUS			IAP	ETUS				
East		Wester		Infe	rior h	Superio d	Superior d h			
Jan. 3 Oct. 1 Dec. 18	h 12.2 04.9 05.9	Aug. 23 Nov. 10	h 08.5 02.8	Feb. 21 Aug. 3 Oct. 21	15.5 12.4 19.0	Jan. 11 Sept. 11 Nov. 28	$18.2 \\ 06.6 \\ 15.2$			

LUNAR OCCULTATIONS

Prepared by J. F. HEARD

When the moon passes between the observer and a star that star is said to be occulted by the moon and the phenomenon is known as a lunar occultation. The passage of the star behind the east limb of the moon is called the immersion and its appearance from behind the west limb the emersion. As in the case of eclipses, the times of immersion and emersion and the duration of the occultation are different for different places on the earth's surface. The tables given below, adapted from the 1941 Nautical Almanac, give the times of immersion or emersion or both for occultations of stars brighter than magnitude 5.0 visible at Toronto and at Montreal and also at Vancouver and Calgary, at night.† Occultations of stars fainter than magnitude .5 are excluded for 24 hours before and after Full Moon. Emersions at the bright ilmb of the moon are given only in the case of stars brighter than magnitude 3.5, and immersions at the bright limb only in the case of stars brighter than magnitude 4.5; so that most of the phenomena listed take place at the dark limb. The terms a and b are for determining corrections to the times of the phenomena for stations within 300 miles of Toronto or Montreal in the first table, and within 300 miles of Vancouver or Calgary, in the second table. Thus if λ_0 , ϕ_0 , be the longitude and latitude of the standard station and λ , ϕ , the longitude and latitude of the neighbouring station then for the neighbouring station we haveStandard Time of phenomenon = Standard Time of phenomenon at the standard station

$$+a(\lambda-\lambda_0)+b(\phi-\phi_0)$$

where $\lambda - \lambda_0$ and $\phi - \phi_0$ are expressed in degrees. The quantity P in the table is the position angle of the point of contact on the moon's disc reckoned from the north point towards the east.

LUNAR OCCULTATIONS VISIBLE AT TORONTO AND MONTREAL, 1941

D-4-	Cton	Man	I	Age		Toro nto				Montreal			
Date	Star	Mag.	or E*	of Moon	E.S.T.	a	b	P	E.S.T.	a	b	P	
Jan. 22 Mar. 5† " † Apr. 1 8 " 14 June 8 Aug. 16 " " " † Oct. 6	θ Lib α Tau π Leo θ Lib θ¹ Tau θ² Tau θ² Tau θ² Tau θ² Tau θ Tau ξ¹ Cet	4.3 1.1 1.1 4.9 4.3 4.0 3.6 4.0 1.1 4.5	IEIEIIIEEIEIEI	d 24.6 7.7 5.2 11.4 17.5 13.0 23.0 23.2	h m 5 03.0 6 14.7 12 29.0 13 33.3 22 09.3 22 11.8 22 57.6 4 11.3 0 36.6 1 56.5 2 07.4 2 42.7 2 42.7 8 05.1 21 14.7 22 06.1	$\begin{array}{c} -1.3 \\ -0.1 \\ -0.6 \\ +0.1 \\ 0.0 \\ -1.6 \\ -1.6 \\ -0.5 \\ -1.0 \\ -2.0 \\ -2.0 \\ -1.0 \\ 4 \end{array}$	+0.2 +1.7 +1.7 -1.6 -2.6 -0.7 -0.9 +1.1 -0.1 +3.7 +2.4 +0.8 0.0 +0.8 +3.0	295 75 259 102 156 116 268 101 104 133 198 228 79 259 112 204	12 33.1 13 40.2 Low 2 07.2 3 05.8 4 18.7 0 43.5 2 01.8 2 13.8 2 48.5 3 01.9 6 47.4 8 15.6 21.23.2	$\begin{bmatrix} -1.4 \\ -1.3 \\ -0.3 \\ -0.7 \\ 0.0 \\ -1.6 \\ -1.4 \\ -0.7 \\ -1.3 \\ +0.2 \\ -0.5 \\ -2.0 \\ -1.8 \\ -0.4 \\ \end{bmatrix}$	$ \begin{array}{c} -0.2 \\ +1.7 \\ +1.7 \\ -2.3 \\ -0.8 \\ -0.9 \\ -1.0 \\ +1.1 \\ +2.6 \\ +0.6 \\ -0.5 \\ +0.7 \\ +3.1 \end{array} $	304 76 258 147 110 271 97 105 135 196 226 76 265 114 202	
Nov. 5	ν Tau α Tau	3.9 1.1	E	16.5 16.8			$ ^{+2.8}_{-1.7}$		$\begin{bmatrix} 20 & 15.8 \\ 5 & 52.6 \end{bmatrix}$		+3.0 -1.5		

LUNAR OCCULTATIONS VISIBLE AT VANCOUVER AND CALGARY, 1941

- n .	6.		I Age Vancouver							Calgar	У	
Date	Star	Mag.	e*	Moon	P.S.T.	a	b	P	M.S.T.	a	b	P
Feb. 9 Mar. 21 Apr. 11 4 7 14 14 7 Aug. 16	λ Gem ρ Sgr α Tau λ Gem π Leo θ Lib θ Lib 15° 637 α Tau γ Tau γ Tau γ Tau γ Tau 11° 637 α Tau π Tau π Tau π Tau π Tau π Tau π Tau π Tau π Tau π Tau π Tau	3.6 4.0 1.1 3.6 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	ILLELLLELELEELEELE	d 13.0 23.5 5.2 8.4 11.4 17.5 8.7 13.0 23.1 23.2 20.7 16.0 16.7	22 33.9 20 33.4 0 53.5 3 07.0 3 41.7 3 31.2 4 31.2 Low 21 02.2 21 51.8 23 19.2 1 40.0	$\begin{array}{c} -1.1 \\ -1.3 \\ -1.0 \\ -0.9 \\ \hline -1.4 \\ -0.1 \\ -0.3 \\ +0.3 \\ \hline -2.1 \\ -1.2 \\ -0.8 \\ -0.2 \\ -1.1 \end{array}$	$\begin{array}{c} +1.4 \\ -2.0 \\ -0.5 \\ -1.2 \\ \hline -0.6 \\ +0.6 \\ +4.0 \\ -0.6 \\ +2.9 \\ +0.8 \\ +3.0 \\ +2.0 \\ +0.2 \end{array}$	79 111 241 79 — 247 69 120 308 15 318 121 119 212 241 86	5 51.2 19 41.7 20 50.6 23 33.9 23 49.5 0 1 15.9 23 42.2 21 43.3 4 11.8 4 49.0 5 47.0 22 12.8 22 12.8 22 25.5 0 32.4	-1.0 -0.7 -0.7 -1.4 -1.0 -1.1 -0.5 -1.9 -2.1 -1.4 -0.1 -0.3	$\begin{array}{c} -1.8 \\ -1.0 \\ -1.0 \\ +0.2 \\ +1.0 \\ -0.7 \\ +0.9 \\ +3.6 \\ -0.4 \\ -1.4 \\ +1.9 \\ +0.3 \\ +3.4 \\ +1.9 \\ -0.2 \end{array}$	103 251 68 182 131 259 55 109 302 24 309 125 211 243 126 205 237 85

^{*}Immersion or Emersion. †Daytime occultations of the first magnitude star, α Tauri, have been included.

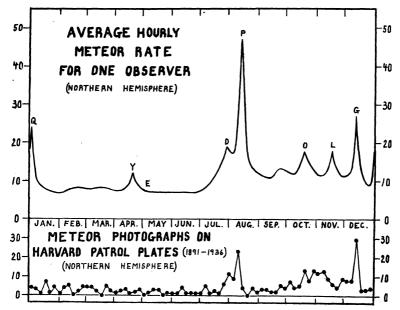
METEORS OR SHOOTING STARS

By PETER M. MILLMAN

Meteors are small fragmentary particles of iron or stone, the debris of space, which, on entering the earth's atmosphere at high velocity, ignite and are in general completely vaporized. On a clear moonless night a single observer should see on the average about 7 meteors per hour during the first six months of the year and approximately twice this number during the second half of the year. The above figures are averages over the whole night, however, and it should be noted that meteors are considerably more numerous during the second half of the night at which time the observer is on the preceding hemisphere of the earth in its journey around the sun.

In addition to the so-called sporadic meteors there are well-marked groups of meteors which travel in elliptical orbits about the sun and appear at certain seasons of the year. The meteors of any one group, or shower, move along parallel paths and hence, owing to the laws of perspective, seem to radiate from a point in the sky known as the radiant. The shower is usually named after the constellation in which the radiant is located. The following table lists the chief meteoric showers of the year. The material was collected from different sources, including the publications of Denning and Olivier.

1 0	, 11,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	more on		2.07.07.0		
	Approx.	Radiant	Maximum	Hourly No. (all	Duration	Abbre-
Shower	α	δ	Date	meteors)	(in days)	viation
Quadrantids Lyrids Eta Aquarids Delta Aquarids Perseids Orionids	232° 280 336 340 47 96	+52° +37 - 1 -17 +57 +15	Jan. 3 Apr. 21 May 4 July 28 Aug. 12 Oct. 22	20 10 10 20 50 20	4 4 8 3 25 14	Q Y E D P
Leonids Geminids	152 110	$^{+22}_{+33}$	Nov.16 Dec. 12	20 30	14 14	L G


The Chief Annual Meteor Showers for the Northern Hemisphere.

The date of maximum given above applies to either morning or evening and is approximate only, as local irregularities in the showers in addition to the effect of leap year may shift it by a day or more. With the exception of the Geminids, all the showers listed are most active well after midnight. It should be noted that large numbers of meteors appeared on June 28, 1916, and on Oct. 9, 1933, and there is the possibility of a return of these showers.

A meteor observer should make as complete a record as he can with efficiency. The most important information to note includes the number of meteors per hour, their magnitudes and positions in the sky, evidences of enduring trains and, where several stations are co-operating, the exact time of the appearance of each meteor. Magnitudes of meteors are generally determined by comparison with stars and the positions of meteor trails may most conveniently be recorded by plotting them as straight lines on gnomonic star maps. The observer should also make sure that the record sheet contains his name, the exact place of observation, the night when the observations were made given as a double date (e.g. the evening of May 4 or the morning of May 5 would be recorded as May 4-5), and finally, a note on the weather conditions.

The first curve shown in the figure below gives the expected hourly rate of meteors for a single observer at different times of the year. It has been drawn from data published by Denning, Olivier, and Hoffmeister. This curve varies somewhat from year to year. The corresponding curve for the southern hemisphere, which is not plotted, lacks the high maximum at P, has its highest maxima at E and D, and best general rates from April through July.

The second curve gives the number of meteor photographs found on all Harvard patrol plates up to Oct. 15, 1936, for each five-day interval throughout the year, taken from a catalogue of meteor photographs published by Miss Hoffleit. Since these plates were exposed on a uniform system the curve gives some indication of the favourable periods for meteor photography. The high photographic efficiency of the Geminid shower is a marked feature.

Of recent years the study of meteors has become increasingly important both because of its cosmic significance and because of its close association with studies of the upper atmosphere. The amateur who does not possess a telescope can render more real assistance in this field than in any other. In particular, all observations of very bright meteors or fireballs should be reported immediately in full. Maps and instructions for meteor observations may be secured from the writer at the Dunlap Observatory, Richmond Hill, Ont., the Canadian headquarters for the collection of meteor data.

For more complete instructions concerning the visual observation of meteors see the JOURNAL of the Royal Astronomical Society of Canada, vol. 31, p. 255, 1937; and for meteor photography volume 31, p. 295, 1937.

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

ORBITAL ELEMENTS (Jan. 1, 0h, 1938)

Planet	Mean D from (a ⊕ =1	Sun	Period	Eccen- tri- city	In- clina- tion (i)	Long. of Node (&)	Long. of Perihelion (π)	Long. of Planet
	$\Phi = 1$	of fifties	(P)	(e)	(1)	(00)	(%)	
					۰	•	۰	•
Mercury	.387	36.0	88.0days	.206	7.0	47.6	76.5	96.3
Venus	.723	67.2	224.7	.007	3.4	76.1	130.7	259.3
Earth	1.000	92.9	365.3	.017			101.9	99.5
Mars	1.524	141.5	687.0	.093	1.9	49.1	334.9	7.3
Jupiter	5.203	483.3	11.86yrs.	.048	1.3	99.8	13.3	311.8
Saturn		886.	29.46	.056	2.5	113.1	91.8	11.5
Uranus	19.19	1783.	84.0	.047	0.8	73.7	169.7	46.7
Neptune	30.07	2793.	164.8	.009	1.8	131.1	44.1	168.6
Pluto	39.46	3666.	247.7	.249	17.1	109.5	223.4	148.0

PHYSICAL ELEMENTS

Object	Symbol	Mean Dia- meter miles	Mass ⊕ =1	Density water =1	Axial Rotation	Grav- ity	Albedo Bond's	tud Opp tio Elo	gni- le at posi- n or nga-
Sun	0	864,000	332,000	1.4	24 ^d 7 (equa- torial)	27.9		_	26.7
Moon	Œ	2,160	.0123	3.3	27 ^d 7.7 ^h	.16	.07	_	12.6
Mercury		3,010	.056	3.8	88 ^d	.27	1		$0\pm$
Venus		7,580	.82	4.9	30 ^d ?	.85	.59	_	$4\pm$
Earth		7,918	1.00	5.5	23 ^h 56 ^m	1.00	.29		
Mars	1	4,220	.108	4.0	24 ^h 37 ^m	.38	.15	_	$2\pm$
Jupiter		87,000	318.	1.3	9 ^h 50 ^m ±	2.6	.56?	_	$2\pm$
Saturn		72,000	95.	.7	10 ^b 15 ^m ±	1.2	.63?		$0\pm$
Uranus	8	31,000	14.6	1.3	10 ^h .8±	.9	.63?	+	5.7
Neptune	Ψ	33,000	17.2	1.3	16 ^h ?	1.0	.73?	+	7.6
Pluto	P	4,000?	<.1					+	14

SATELLITES OF THE SOLAR SYSTEM

Name	Stellar Mag.		Dist. from Planet Miles		volu Perio h		Diamete Miles	r Discoverer					
Satellite of the Earth Moon -12.6 530 238,857 27 07 43 2160													
			200,001		••			I					
SATELLITES		RS											
Phobos	12	8	5,800	0	07	39		Hall, 1877					
Deimos	13	21	14,600	1	06	18	5?	Hall, 1877					
SATELLITES	or Iur	PITER											
V	13	48	112,600	0	11	57	100?	Barnard, 1892					
Ιο	$1 \tilde{5}$	112	261,800	ĭ	18	28	2300	Galileo, 1610					
Europa	6	178	416,600	3	13	14	2000	Galileo, 1610					
Ganymede	5	284	664,200	7	03	43	3200	Galileo, 1610					
Callisto	6	499		16	16	32	3200	Galileo, 1610					
VI	14	3037	7,114,000		16		100?	Perrine, 1904					
Λιι	16	3113	7,292,000		01		40?	Perrine, 1905					
X XI	18 18	3116 5990	7,300,000 14,000,000			1	15? 15?	Nicholson, 1938					
VIII	16		14,600,000				40?	Nicholson, 1938 Melotte, 1908					
IX	17		14,900,000				20?	Nicholson, 1914					
_			•			·		,					
SATELLITES	OF SAT	URN											
Mimas	12	27	115,000	0	22	37	400?	W. Herschel, 1789					
Enceladus	12	34	148,000	1	08	53	500?	W. Herschel, 1789					
Tethys	11	43	183,000	1	21	18	800?	G. Cassini, 1684					
Dione	11	55	234,000	2	17	41	700?	G. Cassini, 1684					
Rhea	10	76	327,000	4	12	25	1100?	G. Cassini, 1672					
Titan	8 13	$\begin{array}{c} 177 \\ 214 \end{array}$	759,000	15 21	22 06	41 38	2600?	Huygens, 1655					
Hyperion Iapetus	11 1	515	$920,000 \\ 2,210,000$	79	07	56	300? 1000?	G. Bond, 1848 G. Cassini, 1671					
Phoebe	14	1870	8.034.000		01	30		W. Pickering, 1898					
			, -,,			'		,					
SATELLITES	of Ur	ANUS											
Ariel	16	14	119,000	2	12	29		Lassell, 1851					
Umbriel	16	19	166,000	4	03	28		Lassell, 1851					
Titania	14	32	272,000	8	16	56	1000?	W. Herschel, 1787					
Oberon	14	42	364,000	13	11	07	9001	W. Herschel, 1787					
SATELLITE	of Nep	TUNE											
(Triton)	13	16	220,000	5	21	03	3000?	Lassell, 1846					
	· · · · ·							<u> </u>					

^{*}As seen from the sun.

DOUBLE AND MULTIPLE STARS

By Frank S. Hogg

A number of the stars which appear as single to the unaided eye may be separated into two or more components by field glasses or a small telescope. Such objects are spoken of as double or multiple stars. With larger telescopes pairs which are still closer together may be resolved, and it is found that, up to the limits of modern telescopes, over ten per cent. of all the stars down to the

ninth magnitude are members of double stars.

The possibility of resolving a double star of any given separation depends on the diameter of the telescope objective. Dawes' simple formula for this relation is d''=4.5/A, where d is the separation, in seconds of arc, of a double star that can be just resolved, and A is the diameter of the objective in inches. Thus a one-inch telescope should resolve a double star with a distance of 4''.5 between its components, while a ten-inch telescope should resolve a pair 0''.45 apart. It should be noted that this applies only to stars of comparable brightness. If one star is markedly brighter than its companion, the glare from the brighter makes it impossible to separate stars as close as the formula indicates. This formula may be applied to the observation of double stars to test the quality of the seeing and telescope.

It is obvious that a star may appear double in one of two ways. If the components are at quite different distances from the observer, and merely appear close together in the sky the stars form an optical double. If, however, they are in the same region of space, and have common proper motion, or orbital motion about one another, they form a physical double. An examination of the probability of stars being situated sufficiently close together in the sky to appear as double shows immediately that almost all double stars must be physical rather

than optical.

Double stars which show orbital motion are of great astrophysical importance, in that a careful determination of their elliptical orbits and parallaxes furnishes a measure of the gravitational attraction between the two components, and hence

the mass of the system.

In the case of many unresolvable close doubles, the orbital motion may be determined by means of the spectroscope. In still other doubles, the observer is situated in the orbital plane of the binary, and the orbital motion is shown by the fluctuations in light due to the periodic eclipsing of the components. Such doubles

are designated as spectroscopic binaries and eclipsing variables.

The accompanying table provides a list of double stars, selected on account of their brightness, suitability for small telescopes, or particular astrophysical interest. The data are taken chiefly from Aitken's New General Catalogue of Double Stars, and from the Yale Catalogue of Bright Stars. Successive columns give the star, its 1900 equatorial coordinates, the magnitudes and spectral classes of its components, their separation, in seconds of arc, and the approximate distance of the double star in light years. The last column gives, for binary stars of well determined orbits, the period in years, and the mean separation of the components in astronomical units. For stars sufficiently bright to show colour differences in the telescope used, the spectral classes furnish an indication of the colour. Thus O and B stars are bluish white, A and F white, G yellow, K orange and M stars reddish.

A good reference work in the historical, general, and mathematical study of

double stars is Aitken's The Binary Stars.

REPRESENTATIVE DOUBLE STARS

5	Star	a	1900	δ		Mag. and Spect.	d	D	Remarks
π π α γ	And Cas UMi Ari Pis	00 01 01	$43.0 \\ 22.6 \\ 48.1$	$+57 \\ +88 \\ +18$	17 46 48	4.4B3; 8.5 3.6F8; 7.2M0 var. F8; 8.8 4.8A0; 4.8A0 5.2A2; 4.3A2	36 8 19 8.3 2.4		479y; 66AU Polaris
$egin{array}{c} \gamma \\ 6 \\ \eta \\ 32 \\ eta \end{array}$	And Tri Per Eri Ori	$\begin{array}{c} 02 \\ 02 \\ 03 \end{array}$	$06.6 \\ 43.4$	$^{+29}_{+55}_{-03}$	$\begin{array}{c} 50 \\ 29 \\ 15 \end{array}$	2.3K0; 5.4A0; 6.6 5.4G4; 7.0F3 3.9K0; 8.5 5.0A; 6.3G5 0.3B8; 7.0	10, 0.7 3.6 28 6.7 9	220 270 360 330 540	
$egin{array}{c} heta \ eta \ lpha \ \delta \end{array}$	Ori Mon Lyn CMa Gem	06 06 06	$24.0 \\ 37.4 \\ 40.7$	$ \begin{array}{r} -06 \\ +59 \\ -16 \end{array} $	58 33 35	5.4;6.8; 6.8; 7.9; O 4.7B2; 5.2; 5.6 5.3A2; 6.2; 7.4 -1.6A0; 8.5F 3.5F0; 8.0M0	13, 17 7, 25 1.7, 8 11 6.8	330 190	50y; 20AU
αζγει	Gem Cnc Leo UMa Leo	08 10 11	$06.5 \\ 14.5 \\ 12.9$	$+17 \\ +20 \\ +32$	$\begin{array}{c} 57 \\ 21 \\ 06 \end{array}$	2.0A0; 2.8A0; 9M10 5.6G0; 6.0; 6.2 2.6K0; 3.8G5 4.4G0; 4.9G0 4.1F3; 6.8F3	4, 70 1, 5 4 2 2	71 140	340y; 79AU 60y; 21AU ††60y; 20AU
γ α ζ π ϵ	Vir CVn UMa Boo Boo	12 13 14	51.4 19.9 36.0	$^{+38}_{+55}_{+16}$	51 27 51	3.6F0; 3.7F0 2.9A0; 5.4A0 2.4A2; 4.0A2 4.9A0; 5.1A0 2.7K0; 5.1A0	6 20 14 6 3	38 130 76 200 180	† ·
& & & & & & & & & & & & & & & & & & &	Boo Ser Sco Her Her	15 15 17	30.0 58.9 10.1	$+10 \\ -11 \\ +14$	52 06 30	4.8G5; 6.7 4.2F0; 5.2F0 5.1F3; 4.8; 7G7 var.M5; 5.4G 3.2A0; 8.1G2	3 4 1, 7 5 11	130 86 470 91	151y; 31AU 44.7y; 19AU † † Optical
ε β α γ 61	Lyr Cyg Cap Del Cyg	19 20 20	26.7 12.3 42.0	$+27 \\ -12 \\ +15$	45 50 46	5.1, 6.0A3; 5.1, 5.4A5 3.2K0; 5.4B9 3.8G5; 4.6G0 4.5G5; 5.5F8 5.6K5; 6.3K5	3, 2 34 376 10 23	230 220 96 11	Pairs 207'' † Optical
β δ 8 σ	Cep Aqr Cep Lac Cas	22 22 22	23.7 25.5 31.4	$-00 \\ +57 \\ +39$	$\begin{array}{c} 32 \\ 54 \\ 07 \end{array}$	var.B1; 8.0A3 4.4F2; 4.6F1 var.G0; 7.5A0 5.8B3; 6.5B5 5.1B2; 7.2B3	14 3 41 22 3	410 120 650 650	†

† or ††, one, or two of the components are themselves very close visual double or, more generally, spectroscopic binaries.

VARIABLE STARS

By FRANK S. HOGG

Of the naked eyes stars visible to a northern observer, nearly a hundred are known to undergo variations in their light. With field glasses or a small telescope the number of variables is enormously increased. Thus there is no dearth of material with which an inquisitive amateur may satisfy himself as to the reality and nature of the fluctuations of the light of stars. Further this curiosity may be turned to real scientific value, in that the study of variable stars is one of the best organized and most fruitful fields of research for amateur observers. For years the professional astronomer has entrusted the visual observation of many of the most important variable stars entirely to amateurs, as organized into societies in England in 1890, America in 1911, and France in 1921. The American Association of Variable Star Observers has charts of the fields of 350 of these stars, and in general supervises the work of amateur observers. The Recorder is Mr. Leon Campbell, at the Harvard Observatory, Cambridge, Massachusetts. New observers are welcomed, and supplied with charts.

In our galaxy there are already known about 5,000 variables, while in globular clusters and outside systems there are some 3,000 more. Almost all those which have been sufficiently studied may be conveniently classified, according to their light variation into ten groups, by Ludendorff's classification. His classes, with their typical stars, are listed as follows:

- I. New or temporary stars: Nova Aquilae 3, 1918.
- II. Nova-like variables: T Pyxidis, RS Ophiuchi.
- III. R Coronae stars: R Coronae Borealis. Usually at constant maximum, with occasional sharp minima.
- IV. U Geminorum stars: U Geminorum. Usually at constant minimum, with occasional sharp maxima.
- V. Mira stars: o Ceti. Range of several magnitudes, fairly regular period of from 100 to 600 days.
- VI. μ Cephei stars: μ Cephei. Red stars with irregular variations of a few tenths of a magnitude.
- VII. RV Tauri stars: RV Tauri. Usually a secondary minimum occurs between successive primary minima.
- VIII. Long period Cepheids: δ Cephei. Regular periods of one to forty-five days. Range about 1.5 magnitudes.
 - IX. Short period Cepheids: RR Lyrae. Regular periods less than one day.

 Range about a magnitude.
 - X. Eclipsing stars: β Persei. Very regular periods. Variations due to covering of one star by companion.

1941 maxima of bright variable stars (E.S.T.)

o Ceti June. 25
δ Cep Jan. 0.7, 6.1, etc.
γ Cyg Nov. 17
β Lyr Jan. 11.0, 23.9, etc.
R Sct May. 7, Sept. 25
γ Per (See pp. 27-41)

REPRESENTATIVE BRIGHT VARIABLE STARS

				,					
N	lame	Design.	Max.	Min.	Sp.	Period	Туре	Date	Discoverer
η Ν ε δ U	Aql Aql Aur Cep Cep	194700 184300 045443 222557 005381	3.7 -0.2 3.3 3.6 6.8	4.4 10.9 4.1 4.3 9.2	G4 Q F5p G0 A0	7.17652 Irr. 9833. 5.36640 2.49293		1918 1821 1784	Pigott Bower Fritsch Goodricke W. Ceraski
o RR R X P	Cet ¹ Cet CrB Cyg Cyg	0214 <i>03</i> 012700 154428 194632 201437a	2.0 8.4 5.8 4.2 3.5	10.1 9.0 13.8 14.0 6.0	M5e F0 cG0e M7e B1qk	331.8 0.55304 Irr. 412.9 Irr.	V IX III V II	1906 1795 1686	Fabricius Oppolzer Pigott Kirch Blaeu
SS XX \$ \$ R	Cyg Cyg Gem Gem Gem	213843 200158 065820 060822 070122a	8.1 11.4 3.7 3.3 6.5	12.0 12.1 4.1 4.2 14.3	Pec. A cG1 M2 Se	Irr. 0.13486 10.15353 235.58 370.1	IV IX VII V V	1904 1847 1865	Wells L. Ceraski Schmidt Schmidt Hind
R	Gem Her Hya Leo Lyr	074922 171014 1324 <i>22</i> 094211 184633	8.8 3.1 3.5 5.0 3.4		Pec. M5 M7e M7e B5e	Irr. Irr. 414.7 310.3 12.92504	IV VI V X	1795 1670 1782	Hind W. Herschel Montanari Koch Goodricke
RR α U β	Lyr Ori² Ori Per³ Per	192242 054907 054920 030140 025838	7.2 0.2 5.4 2.3 3.3	12.2	A5 M2 M7e B8 M4	0.56685 2070.Irr. 376.9 2.86731 Irr.	IX VI V X VI	1840 1885 1669	Fleming J. Herschel Gore Montanari Schmidt
R λ RV	Sge Sct Tau Tau Tau	200916 1842 <i>o</i> 5 035512 044126 054319			cG7 K5e B3 K0 G0e	70.84 141.5 3.95294 78.60 Irr.	VII VII X VII III	1795 1848 1905	Baxendell Pigott Baxendell L. Ceraski Cannon
N	UMi ⁴ Her Lac	012288 180445 221255	$\begin{array}{c} 2.3 \\ 1.5 \\ 2.2 \end{array}$		cF 7 Q Q	3.96858 Irr. Irr.	VIII I I	1934	Hertzsprung Prentice Peltier

¹0 Cet (Mira); ²α Ori (Betelgeuse); ³β Per (Algol); ⁴α UMi (Polaris).

Most of the data in this Table are from Prager's 1936 Katalog und Ephemeriden Veränderlicher Sterne. The stars are arranged alphabetically in order of constellations. The second column, the Harvard designation, gives the 1900 position of the star. The first four figures of the designation give the hour and minute of right ascension, the last two the declination in degrees, italicised for stars south of the equator. Thus the position of the fourth star of the list, δ Cephei, is R.A. 22h 25m, Dec. +57, (222557). The remaining columns give the maximum and minimum magnitudes, spectral class, the period in days and decimals of a day, the classification on Ludendorff's system, and the discoverer and date. In the case of eclipsing stars, the spectrum is that of the brighter component.

THE DISTANCES OF THE STARS

The measurement of the distances of the stars is one of the most important problems in astronomy. Without such information it is impossible to form any idea as to the magnitude of our universe or the distribution of the various bodies in it.

The parallax of a star is the apparent change of position in the sky which the star would exhibit as one would pass from the sun to the earth at a time when the line joining earth to sun is at right angles to the line drawn to the star; or, more accurately, it is the angle subtended by the semi-major axis of the earth's orbit when viewed perpendicularly from the star. Knowing the parallax, the distance can be deduced at once.

For many years attempts were made to measure stellar parallaxes, but without success. The angle to be measured is so exceedingly small that it was lost in the unavoidable instrumental and other errors of observation. The first satisfactory results were obtained by Bessel, who in 1838, by means of a heliometer, succeeded in determining the parallax of 61 Cygni, a 6th magnitude star with a proper motion of 5" a year. On account of this large motion the star was thought to be comparatively near to us, and such proved to be the case. At about the same time Henderson, at the Cape of Good Hope, from meridian-circle observations, deduced the parallax of Alpha Centauri to be 0".75. For a long time this was considered to be the nearest of all the stars in the sky, but in 1913 Innes, director of the Union Observatory, Johannesburg, South Africa, discovered a small 11th mag. star, 2° 13' from Alpha Centauri, with a large proper motion and to which, from his measurements, he assigned a parallax of 0".78. Its brightness is only 1/20,000 that of Alpha Centauri. In 1916 Barnard discovered an 11th mag, star in Ophiuchus with a proper motion of 10" per year, the greatest on record, and its parallax is about 0".53. It is believed to be next to Alpha Centauri in distance from us.

The distances of the stars are so enormous that a very large unit has to be chosen to express them. The one generally used is the light-year, that is, the distance travelled by light in a year, or $186,000x60x60x24x365\frac{1}{4}$ miles. A star whose parallax is 1" is distant 3.26 light years; if the parallax is 0".1, the distance is 32.6 l.-y.; if the parallax is 0".27 the distance is $3.26 \div .27 = 12$ l.-y. In other words, the distance is inversely proportional to the parallax. In recent years the word parsec has been introduced to express the distances of the stars. A star whose distance is 1 parsec is such that its par-allax is 1 sec-ond. Thus 1 parsec is equivalent to 3.26 l.-y., 10 parsecs = 32.6 l.-y., etc.

In later times much attention has been given to the determination of parallaxes, chiefly by means of photography, and now several hundred are known with tolerable accuracy.

THE SUN'S NEIGHBOURS

By J. A. PEARCE

Through the kindness of Dr. Adriaan van Maanen, who has supplied the fundamental data, this table has been revised to contain all stars known to be nearer than five parsecs or 16.3 light-years. One star of the former table, has been discarded, and five new members have been added, making a total of forty stars in a space of 524 cubic parsecs. With the exceptions of Sirius, Procyon and Altair, all the stars are dwarfs; the list including the three white dwarfs, Sirius B, 40 Eridani B, and van Maanen's star. Forty-five per cent. of the stars are members of binary systems.

- Inclination of billion								
Star	α (1900)δ	Sp_	μ	π	L.y.	m	M	L
	hm ° '		"	"				
Sun	l l	G0	ll			-26.7	4.8	1.0
Groom 34A	$0 \ 13 + 43 \ 27$	M2	2.89	0.274	11.9	8.1	10.3	.0063
Groom 34B	1	M5	2.85	.271	12.1	10.7	12.9	.0006
van Maanen	$0 \ 44 + 4 \ 55$	F3	3.01	.242	13.5	12.3	14.2	.0002
τCeti	1 39 -16 28	G7	1.92	.292	11.2	3.6		
ε Eri	$\begin{vmatrix} 3 & 28 \\ -9 & 48 \end{vmatrix}$	Κi	0.96		10.7	3.8		
40 Eri A	4 11 - 7 49	Ko	4.08	.213	15.3	4.5		
40 Eri B		A0	4.03	.213	15.3		11.3	
40 Eri C		M6	4.03	.213	15.3	10.8		
Gould 5h 243	5 08 -44 59	MO	8.70	.264	12.3		11.3	
aCMa A	$\begin{vmatrix} 6 & 41 & -16 & 35 \end{vmatrix}$	A2	1.32	.373	8.7	-1.6		25.1
aCMa B		FO	1.32	.373	8.7		11.3	
aCMi A	$\begin{vmatrix} \\ 7 & 34 \\ + & 5 & 29 \end{vmatrix}$	F4	1.24	.303	10.8		$\frac{11.0}{2.9}$	
	1 1 1	r4	1.24	.303	10.8	12.5		
aCMi B	10.05 1.40.50	740	1.45	.230	$10.8 \\ 14.2$	$\frac{12.3}{6.8}$		
Groom 1618	$\begin{vmatrix} 10 & 05 \\ 10 & 14 \end{vmatrix} + 49 & 58 \\ 10 & 14 \end{vmatrix}$	M0					10.7	
	$ 10 \ 14 + 20 \ 22 $	M4e		.217	15.0			
	$ 10 \ 52 + 7 \ 36 $	M6e	4.84	.413	7.9	13.5		
	$ 10 \ 58 + 36 \ 38 $	M2	4.78	.381	8.6		10.5	
	$ 11 \ 12 -57 \ 02$		2.69	.339	9.6	(12.5)		
aCen A		G5	3.68	.758	4.3	0.3	4.7	
aCen B		K1	3.68	.758	4.3	1.7	6.1	.30
Prox. Cen	$ 14 \ 23 - 62 \ 15 $	M	3.85	.758	4.3	11.0	15.4	.00006
DM - 12.4523.	$ 16 \ 25 - 12 \ 24 $	M5	1.24	.270	12.1		11.7	
DM - 46.11540	$ 17 \ 21 - 46$		1.06	.239	13.6		11.3	
CD-44.11909.			1.14	.215	15.2	(12.9)		
AO 17415	$ 17 \ 37 + 68 \ 26 $	M4	1.33	.214	15.2		10.7	
Barnard	$ 17 \ 53 + 4 \ 25 $	M5	10.30	.541	6.0	9.7	13.4	.0004
Bu 8798A	$ 18 \ 42 + 59 \ 29 $	M4	2.31	290	11.2		11.5	.0021
Bu 8798B		M5	2.31	290	11.2	9.7	12.0	.0013
αAqu	$ 19 \ 46 + 8 \ 36 $	A2	0.66	. 207	15.7	0.9	2.5	8.3
61 Cyg A	$ 21 \ 02 + 38 \ 15 $	K8	5.27	.301	10.8	5.6	8.0	.052
61 Cyg B		M0	5.15	.301	10.8	6.3	8.7	.028
Lac 8760		M1	3.53	.255	12.8	6.6	8.6	.030
€Indi		K8	4.70	.288	11.3	4.7	7.0	. 13
Kruger 60A		M3	0.87	.247	13.2		11.2	.0028
Kruger 60B		M4	0.92	$.\overline{247}$	13.2	10.8		.0006
BD+43.4305		M5e	0.86	.217	15.0	9.5	11.2	.0028
Lac 9352	$\begin{vmatrix} 22 & 42 & +43 & 49 \\ 22 & 59 & -36 & 26 \end{vmatrix}$	M2	6.90	.274	11.9	7.4		.012
	$\begin{vmatrix} 22 & 39 & -30 & 20 \\ 23 & 36 & +43 \end{vmatrix}$	M6	1.82	.319	10.2	(13.8)		.0002
					$10.2 \\ 15.0$.0083
DM - 37.15492	$ 23 \ 59 - 37 \ 51 $	M3	6.11	.217	10.0	0.3	10.0	.0003

Note.—Magnitudes in brackets are photographic, all others are visual. A colour index of +2.0 has been taken to compute the visual absolute magnitudes of these stars. Symbols: Sp, spectrum; μ , proper motion; π , parallax; L.-y., lightyear; m, apparent magnitude; M, absolute magnitude; L, luminosity compared to the sun.

THE BRIGHTEST STARS

Their Magnitudes, Types, Proper Motions, Distances and Radial Velocities

By W. E. HARPER

The accompanying table contains the principal facts regarding 259 stars brighter than apparent magnitude 3.51 which it is thought may be of interest to our amateur members. The various columns should be self-explanatory but some comments may be in order.

The first column gives the name of the star and if it is preceded by the sign | such means that the star is a visual double and the combined magnitude is entered in the fourth column. Besides the 48 thus indicated there are 12 others on the list with faint companions but for these it is not thought that there is any physical connection. In the case of the 20 stars variable in light this fourth column shows their maximum and minimum magnitudes. The 19 first magnitude stars are set up in bold face type.

In the fifth column are given the types as revised at various observatories—principally at our own, but omitting the s and n designations descriptive of the line character. The annual proper motion follows in the next column and this may not necessarily be correct to the third decimal place.

The parallaxes are taken from the Yale Catalogue of Stellar Parallaxes 1935, the mean of the trigonometric and spectroscopic being adopted. The few negative trigonometric parallaxes were adjusted by Dyson's tables before being combined with the spectroscopic. The distance is given also in light years in the eighth column as to the lay mind that seems a fitting unit. The absolute magnitudes in the ninth column are the magnitudes the stars would have if all were at a uniform distance of 32.6 light years ($\pi = 0.$ "1). At that distance the sun would appear as a star of magnitude 4.8.

The radial velocities in the last column have been taken from Vol. 18 of the Lick Publications. An asterisk * following the velocity means that such is variable. In these cases the velocity of the system, if known, is given; otherwise a mean velocity for the observations to date is set down.

Of the 258 stars or star systems here listed 146 are south and 113 north of the equator. This is to be expected from the fact that the northern half of the sky includes less of the Milky Way than the southern.

The number in each spectral class, apart from the one marked peculiar, is as follows: O, 3; B, 74; A, 55; F, 22; G, 43, K, 42 and M, 19. The B-stars are intrinsically luminous and appear in this list out of all proportion to their total number. The stars in Classes A and K are by far the most numerous but the revision of types throws many originally labelled K back into the G group.

From the last column we see that 98 velocities are starred, indicating that 38 per cent of the bright stars, or at least one in every three, are binary in character. For visual binaries the proportion has usually been listed as one in nine. Our list shows one in six but it is only natural to expect that we would observe a higher proportion among the nearby stars, such as these are on the average.

Other relationships can be established from the list if our amateur members care to study it.

		1	1	1	1 -	1	f		
Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
	<u>/</u>	1 0 /		<u>' </u>	1 "	"		-	<u>!</u>
a Andr. β Cass. γ Pegs. β Hydi. a Phoe. δ Andr. a Cass. β Ceti. γ Cass.	h m 0 3 4 8 20 21 34 35 39 51	+28 32 +58 36 +14 38 -77 49 -42 51 +30 19 +55 50 -18 32 +60 11	2.2 2.4 2.9 2.9 2.4 3.5 2.2–2.8 2.2	A1 F2 B2 G0 G5 K3 G8 G7 B0e	.217 .561 .015 2.243 .448 .167 .062 .233 .031	.034 .080 .005 .162 .040 .026 .018 .052	96 41 652 21 81 125 181 63 93	$ \begin{vmatrix} -0.1 \\ 1.9 \\ -3.6 \\ 4.0 \\ 0.4 \\ 0.6 \\ -1.5 \\ 0.8 \\ -0.1 \end{vmatrix} $	km./sec. -13.0* +11.4 + 5.0* +22.8 +74.6* - 7.1* - 3.8 +13.1 - 6.8
β Phoe. β Andr β	1 2 4 19 23 24 34 47 49 56 58	$\begin{array}{c} -47 \ 15 \\ +35 \ 5 \\ +59 \ 43 \\ +88 \ 46 \\ -43 \ 50 \\ -57 \ 44 \\ +63 \ 11 \\ +20 \ 19 \\ -62 \ 3 \\ +41 \ 51 \end{array}$	3.4 2.4 2.8–2.9 2.3–2.4 3.4 0.6 3.4 2.7 3.0 2.3	G4 M0 A3 F7 M1 B9 B5 A3 A7 K0	.043 .219 .308 .043 .223 .093 .043 .150 .255 .073	.020 .041 .050 .008 .008 .046 .011 .066 .080	163 79 65 407 407 71 296 49 41 163	$ \begin{vmatrix} -0.1 \\ 0.5 \\ 1.3 \\ -3.4 \\ -2.1 \\ -1.1 \\ -1.4 \\ 1.8 \\ 2.5 \\ -1.2 \end{vmatrix} $	$ \begin{vmatrix} -1.2 \\ +0.1 \\ +6.8 \\ -17.4* \\ +25.7* \\ +19. \\ -8.1 \\ -0.6* \\ +7.0* \\ -11.7 \end{vmatrix} $
a Arie β Tria o Ceti θ Erid a Ceti γ Pers ρ Pers	2 2 4 14 54 57 58 59	+22 59 +34 31 - 3 26 -40 42 + 3 42 +53 7 +38 27	2.2 3.1 1.7-9.6 3.4 2.8 3.1 3.3-4.1	K2 A6 M6e A2 M1 F9 M6	.242 .161 .239 .068 .080 .012 .176	.045 .029 .013 .032 .018 .017 .024	72 112 251 102 181 192 136	0.5 0.4 -2.7 0.9 -0.9 -0.7 0.3	$ \begin{array}{r} -14.3 \\ +10.4* \\ +57.8* \\ +11.9* \\ -25.7 \\ +1.0* \\ +28.2 \end{array} $
β Pers	3 2 17 36 41 48 49 51 53 55	+40 34 +49 30 +47 28 +23 48 +31 35 -74 33 +39 43 -13 47 +12 12 -62 43	2.1-3.2 1.9 3.1 3.0 2.9 3.2 3.0 3.2 3.8-4.2 3.4	B8 F4 B5 B5p B1 M3 B2 M0 B3	.011 .041 .047 .053 .023 .124 .041 .133 .015	.033 .017 .012 .014 .008 .008 .006 .012 .008	99 192 272 233 407 407 543 272 407	-0.3 -2.0 -1.5 -1.3 -2.6 -2.3 -3.1 -1.6 -2.2	+ 5.7* - 2.4 -10. * +10.3 +20.9 +16.0 - 6 * +61.7 +13.0*

Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
	R.	Δ	M	Ę.	Z Z	д		A	R
	h m	0 /			"	"	1		km./sec.
a Taur	4 30	+16 18	1.1	K8	.205	.060	54	0.0	+54.1
a Dora	32	$-55 \ 15$	3.5	A0p					+25.6
π^3 Orio	44	+647	3.3	F5	.474	.124	26	3.8	+24.6
ι Auri	50	+33 0	2.9	K4	.030	.020	163	-0.6	+17.6
ε Auri	55	+43 41	3.1-3.8	F2	.015	006	543	-2.7	-4.1 *
C 11u11		1 20 22							
η Auri	5 0	+41 6	3.3	В3	.082	013	251	-1.1	+7.8
ε Leps	1	$-22 \ 30$	3.3	K5	.074	.016	204	-0.7	+ 1.0
β Erid	3	- 5 13	2.9	A1	.117	.055	59	1.6	- 7
μ Leps	8	-16 19	3.3	A0p	.053	.020	163	-0.2	+27.7
a Auri	9	+45 54	0.2	G1	.439	.078	42	-0.3	+30.2
β Orio	10	- 8 19	0.3	B8p	.005	.006	543	-5.8	+23.6*
η Orio	19	- 2 29	3.4	B0	.009	.006	543	-2.7	+19.5*
γ Orio	20	+ 6 16	1.7	B2	.019	.015	217	-2.4	+18.0
β Taur	20	+28 31	1.8	В8	.180	.028	116	-1.0	+ 8.0
β Leps	24	-20 50	3.0	G2	.095	.018	181	-0.7	-13.5
δ Orio	27	- 0 22	2.4-2.5	В0	.006	.007	466	-3.4	+19.9*
α Leps	28	-17 54	2.7	F6	.006	.012	272	-2.1	+24.7
ι Orio	31	- 5 59	2.9	08	.007	.021	155	-0.5	+21.5*
ε Orio	31	- 1 16	1.8	В0	.004	.008	407	-3.7	+25.8
Taur	32	+21 5	3.0	·B3e	.028	.010	326	-2.0	+16.4*
ζ Orio	36	-20	1.8	B0	.012	.011	296	-3.0	+18.8
a Colm	36	-34 8	2.8	B8	.036	.022	148	-0.6	+34.6
к Orio	43	- 9 42	2.2	BO	.009	.006	543	-3.9	+20.1
β Colm	47	$ -35 \ 48 $	3.2	K0	.397	.026	125	0.3	+89.4
α Orio	50	+ 7 23	0.5-1.1	M2	.032	.012	272	-4.1	+21.0*
β Auri	52	+44 56	2.1-2.2	!	.046	.052	63	0.7	-18.1*
$ \theta $ Auri	53	+37 12	2.7	A1	.106	.029	112	0.0	+28.6
V Muii	00	10. 12			.100	.020	1.2	0.0	
η Gemi	6 9	$ +22 \ 32$	3.2-4.2	M2	.062	.014	233	-1.1	+21.4*
C Maj	16	-30 01	3.7	B3	.012	.013	251	-0.7	+33.1*
μ Gemi	17	$+22 \ 34$	3.2	M3	.129	.016	204	-0.8	+54.8
β C Maj	18	-17 54	2.0	B1	.003	.014	233	-2.3	+34.4*
α Cari	22	-52 38	-0.9	FO	.022	.005	652	-7.4	+20.5
γ Gemi	32	+16 29	1.9	A2	.066	.050	65	0.4	-11.3*
ν Pupp	35	-43 6	3.2	B8	.021	.023	148	0.0	+28.2*
ε Gemi	38	+25 14	3.2	G9	.020	.009	362	-2.0	+ 9.9
ξ Gemi	40	+13 0	3.4	F5	.230	.054	60	2.1	+25.1
la C Maj	41	$-16 \ 35$	-1.6	A2	1.315	.386	8	1.3	- 7.5*
a Pict	47	-61 50	3.3	A5	.271				+20.6
u 1100	1 41	01 00	1 0.0	//	,	1	1	12	

Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
			F	<u></u>	<u>, </u>			1 4	1 1
τ Pupp ε C Maj ζ Gemi o² C Maj	h m 6 47 55 58 59	-50 30 -28 50 +20 43 -23 41	$egin{array}{c} 2.8 \ 1.6 \ 3.7 - 4.3 \ 3.1 \ \end{array}$	G8 B1 G0p B5p	.091 .005 .007 .006	.025 .010 .005 .007	130 326 652 466		km./sec. +36.4* +27.4 + 6.7* +48.6
δ C Maj L² Pupp π Pupp η C Maj β C Min σ Pupp α₂ Gemi α₁ Gemi [a C Min β Gemi ξ Pupp	7 4 10 14 20 22 26 28 28 34 39 45	$\begin{array}{c} -26 \ 14 \\ -44 \ 29 \\ -36 \ 55 \\ -29 \ 6 \\ +8 \ 29 \\ -43 \ 6 \\ +32 \ 6 \\ +32 \ 6 \\ +5 \ 29 \\ +28 \ 16 \\ -24 \ 37 \end{array}$	2.0 3.4-6.2 2.7 2.4 3.1 3.3 2.0 2.8 0.5 1.2 3.5	G4p M5e K5 B5p B8 M0 A2 A0 F5 G9 K1	.003 .332 .004 .007 .063 .191 .201 .209 1.242 .623	.006 .018 .018 .012 .022 .016 .074 .074 .316 .105 .006	543 181 181 272 148 204 44 44 10 31 543	$ \begin{vmatrix} -4.1 \\ -0.3 \\ -1.0 \\ -2.2 \\ -0.2 \\ -0.7 \\ 1.4 \\ 2.2 \\ 3.0 \\ 1.3 \\ -2.6 $	+34.3* +53.0 +15.8 +40.4 +23 * +88.1* + 6.0* - 1.2* - 3.0* + 3.3 + 3.7*
\$Open Pupp	8 0 3 6 20 22 41 42 50 52	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.3 2.9 2.2 1.7 3.5 3.5 2.0 3.3	O8 F6 OW9 K0 G2 F9 A0 G7 A4	.032 .097 .002 .030 .166 .193 .093 .101	.004 .025 .010 .014 .012 .030 .026 .060	815 130 326 233 272 109 125 54	$\begin{bmatrix} -4.7 \\ -0.1 \\ \dots \\ -3.3 \\ -0.8 \\ -1.1 \\ -0.6 \\ 0.3 \\ 2.0 \\ \end{bmatrix}$	$ \begin{array}{c} -24. \\ +46.6 \\ +3.5 \\ +11.5 \\ +19.8 \\ +36.8* \\ +2.2 \\ +22.6 \\ +12.6 \end{array} $
λ Velr	9 4 12 14 15 19 23 26 28 40 45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2 1.8 2.2 3.3 2.6 2.2 3.3 3.4-4.2 3.1 3.1	K4 A0 F0 K8 B3 K4 F7 K5 G0	.024 .192 .023 .214 .017 .036 1.096 .038 .045	.016 .022 .017 .018 .072 .022 .009	204 148 192 181 45 148 362	-1.8 0.0 -1.2 -1.5 2.6 0.1 -2.1	+18.4 $-5.$ $+13.3$ $+37.4$ $+21.7*$ -4.4 $+15.8$ -13.9 $+5.1$ $+13.6$
α Leon q Cari	10 3 14	+12 27 -60 50	1.3 3.4	B6 K5	.244	.046	71 233	$-0.4 \\ -0.9$	+ 2.6 + 8.6

Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
	~		2	Ţ	A Z		n n	<	~
μ U Maj θ Cari η Cari μ Velr ν Hyda	h m 10 14 16 39 41 42 45	+20 21 +42 0 -63 52 -59 10 -48 54 -15 40	2.3 3.2 3.0 1.0-7.4 2.8 3.3	G8 K4 B0 Pec G5 K3	.347 .082 .022 .007 .079	.024 .031 .007 .033 .020	136 105 466 99 163	$ \begin{vmatrix} -0.8 \\ 0.7 \\ -2.8 \\ \\ 0.4 \\ -0.2 \end{vmatrix} $	km./sec. -36.8 -20.3* +24. * -25.0 + 6.9 - 1.0
β U Maj	56	+56 55	2.4	A3	.089	.045	72	0.7	-12.1*
a U Maj	58	+62 17	2.0	G5	.137	.036	91	-0.2	- 8.6*
 ψ U Maj δ Leon θ Leon λ Cent β Leon γ U Maj 	11 4 9 9 31 44 49	+45 2 +21 4 +15 59 -62 28 +15 8 +54 15	3.2 2.6 3.4 3.3 2.2 2.5	K0 A2 A2 B9 A2 A0	.067 .208 .103 .045 .507	.035 .058 .025 .031 .084 .035	93 56 130 105 39 93	0.9 1.4 0.4 0.8 1.8 0.2	$ \begin{array}{r} -3.6 \\ -23.2 \\ +7.8 \\ +7.9 \\ -2.3 \\ -11.1 \end{array} $
δ Cent ε Corv δ Cruc δ U Maj γ Corv α¹ Cruc δ Corv γ Cruc β Corv α Musc γ Virg β Musc β Cruc ε U Maj α² C. Ven ε Virg	12 3 5 10 10 11 21 21 25 26 29 31 36 40 42 50 51 57	-50 10 -22 4 -58 12 +57 35 -16 59 -62 33 -62 32 -15 58 -56 33 -22 51 -68 35 -48 24 - 0 54 -59 9 +56 30 +38 51 +11 30	2.9 3.2 3.1 3.4 2.8 1.6 2.1 3.1 1.5 2.8 2.9 2.4 2.9 3.3 1.5 1.7 2.8 3.0	B3e K2 B3 A0 B8 B1 B3 A0 M4 G5 B5 A0 F0 B3 B1 A2 A1 G6	.040 .063 .045 .113 .159 .048 .249 .270 .059 .040 .200 .561 .039 .054 .117 .233 .270	.015 .024 .017 .050 .024 .022 .026 .027 .015 .032 .080 .011 .007 .067	217 136 192 65 136 148 148 125 121 217 102 41 296 466 49 109 88	$ \begin{vmatrix} -1.2 \\ 0.1 \\ -0.7 \\ 1.9 \\ -0.3 \\ -1.7 \\ -1.2 \\ 0.2 \\ \dots \\ 0.0 \\ -1.2 \\ -0.1 \\ 2.4 \\ -1.5 \\ -4.3 \\ 0.8 \\ 0.2 \\ 0.8 \\ \end{vmatrix} $	$egin{array}{c} + 9. \\ + 4.9 \\ + 26.4 \\ -12. \\ - 4.2* \\ -12.2* \\ + 0.3* \\ + 8.7 \\ + 21.3 \\ - 7.7 \\ + 18. \\ - 7.5 \\ -19.6 \\ + 42. * \\ -20. * \\ -11.9* \\ - 3.5 \\ -14.0 \\ \hline \end{array}$
	13 13 15 20 20 30	+11 30 -22 39 -36 11 +55 27 -10 38 - 0 5	3.3 2.9 2.4 1.2 3.4	G6 G7 A2 A2p B2 A2	.085 .351 .131 .051 .285	.028 .049 .042 .018	116 67 78 181 86	0.8 0.5 1.4 0.5 -2.5 1.3	$ \begin{array}{r} -14.0 \\ -5.4 \\ +0.1 \\ -9.9^* \\ +1.6^* \\ -13.1 \end{array} $

_										
	Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Red. Vel.
η μ ζ η	Cent	h m 13 34 44 44 49 50		2.6 1.9 3.3 3.1 2.8 0.9	B2 B3 B3e B3 G1 B3	.039 .116 .026 .080 .370 .039	.012 .015 .009 .013 .100	272 217 362 251 33 125	$ \begin{array}{c c} -2.0 \\ -2.2 \\ -1.9 \\ -1.3 \\ 2.8 \\ -2.0 \end{array} $	km./sec. - 5.6 -10.9 +12.6 * - 0.2* -12. *
θ α γ η $ \alpha$ α $ \epsilon$ $ \alpha^2$ β β κ	Hyda Cent Boot Cent Circ Lupi Boot Libr U. Min Lupi Cent Lupi Lupi Lupi Lupi Lupi Lupi Lupi Lupi Cent Lubr	14 1 11 28 29 33 34 35 41 45 51 52 53 58	-35 53 +19 42 +38 45 -41 43 -60 25 -64 32 -46 58 +27 30	3.5 2.3 0.2 3.0 2.6 0.1 3.4 2.9 2.7 2.9 2.2 2.8 3.4	K3 G8 K0 A3 B3 G0 F0 B2 G8 F1 K4 B3 B2 M4	.164 .745 2.287 .182 .046 3.682 .308 .033 .045 .128 .028 .067 .034	.037 .056 .102 .063 .012 .768 .063 .009 .019 .056 .030 .012 .011	88 58 32 52 272 4 52 362 172 58 109 272 296 163	1.3 1.0 0.2 2.0 -2.0 4.5 2.4 -2.3 -0.9 1.6 -0.4 -1.8 -1.4	+27.2 + 1.3 - 5.1 -35.5 - 0.2* -22.2* + 7.4 + 7.3* -16.4 -10. * +16.9 - 0.3* + 9.1* - 4.3
ζ γ β δ γ ι γ α α β π	Lupi Tr. Au Libr Lupi U. Min Drac Lupi Cor. B Serp Tr. Au Scor Scor		-51 43 -68 19 - 9 1 -40 17 +72 11 +59 19 -40 50 +27 3 + 6 44 -63 7 -25 50 -22 20	3.5 3.1 2.7 3.4 3.1 3.5 3.0 2.3 2.8 3.0 2.5	G5 A0 B8 B3 A2 K3 B3 A0 K3 F0 B3 B1	.125 .064 .100 .031 .016 .010 .038 .160 .142 .436 .037	.027 .015 .012 .022 .030 .013 .054 .043 .096 .012	121 217 272 148 109 251 60 76 34 272 296	0.7 -1.4 -1.2 -0.2 0.9 -1.4 1.0 2.9 -1.6 -2.3	- 4.3 - 9.7 0. -37. * + 1.6 - 3.9* -11.1 + 6. + 1.0* + 3.0 - 0.3 - 3.0* - 16. *
δ ε σ	Scor	16 0 9 13 15 23	-19 32 - 3 26 - 4 27 -25 21 +61 44	2.8 3.3 3.3 3.1 2.9	B3 K8 G9 B1 G5	.029 .159 .088 .033 .062	.016 .030 .031 .009 .038	204 109 105 362 86	$ \begin{array}{r} -1.2 \\ 0.7 \\ 0.8 \\ -2.1 \\ 0.8 \end{array} $	- 9.3* -19.8 -10.3 - 0.4* -14.3

Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
	8	l ŏ	Z	T,	A A	Pa	E D	A	%
	h m	, ,	<u> </u>		"	"	Ì	i T	km./sec.
α Scor	16 23	-26 12	1.2	M1	.032	.019	172	-2.4	- 3.2*
β Herc	26	+21 42	2.8	G4	.104	.020	163	-0.7	-25.8*
τ Scor	30	-28 1	2.9	B1	.037	.009	362	-2.3	+0.6
ζ Ophi	32	$-10^{\circ} 22^{\circ}$	2.7	B0	.023	.008	407	-2.8	-19. *
Herc	38	$+31 \ 47$	3.0	G0	.601	. 105	31	3.1	-70.8*
a Tr. Au	38	$-68 \ 51$	1.9	K5	.031	.025	130	-1.1	-3.7
€ Scor	44	-34 7	2.4	G9	.665	.038	86	0.3	-2.5
μ^1 Scor	45	-37 53	3.1	ВЗр	.030	.011	296	-1.7	*
ζ Arae	50	-55 50	3.1	K5	.046	.028	116	0.3	- 6.0
κ Ophi	53	+932	3.1-4.0	K3	.290	.042	78	1.2	-55.6
к орш		1 5 52	0.1 1.0	110	.200	.012		1.2	00.0
η Ophi	17 5	$-15 \ 36$	2.6	A2	.095	.047	69	1.0	- 1.0
η Scor	5	-43 6	3.4	A7	.294	.066	49	2.5	-28.4
ζ Drac	8	+65 50	3.2	B8	.023	.028	116	0.4	-14.1
a ¹ Herc	10	+14 30	3.1-3.9	M7	.030	.008	407	-2.4	-32.5
δ Herc	11	+24 57	3.2	A2	.164	.036	91	1.0	-39. *
π Herc	12	+36 55	3.4	K3	.021	.018	181	-0.3	-25.7
θ Ophi	16	-24 54	3.4	B2	.031	.008	407	-2.1	-3.6
β Arae	17	-55 26	2.8	K1	.036	.023	142	-0.4	-0.4
v Scor	24	$-37 \ 13$	2.8	B3	.042	.010	326	-2.2	+18. *
α Arae	24	$-49 \ 48$	3.0	B3e	.090	.015	217	-1.1	-2.2
λ Scor	27	-37 2	1.7	B2	.036	.016	204	-2.3	0. *
β Drac	28	$+52 \ 23$	3.0	G0	.012	.007	466	-2.8	-20.1
θ Scor	30	-42 56	2.0	F0	.012	.024	136	-2.6	+1.4
α Ophi	30	+12 38	2.1	A0	.264	.060	54	1.0	+15. *
к Scor	36	-38 58	$\frac{2.1}{2.5}$	B3	.028	.009	362	-2.7	^{+13.} −10. *
β Ophi	38	+437	2.9	K2	.157	.030	109	0.3	-10.
ι^1 Scor	41	-40 5	3.1	F8	.004	.008	407	-2.4	-27.6*
$\parallel \mu \text{ Herc.} \dots$	43	+27 47	3.5	G5	.817	.114	28	3.8	-16.1
G Scor	43	-37 1	3.3	K2	.069	.029	112	0.5	+24.7
ν Ophi	54	-946	3.5	G7	.118	.023	148	0.3	+12.4
γ Drac	54	+51 30	2.4	K5	.026	.022	125	$-0.2 \\ -0.5$	-27.8
	59	$-30 \ 26$	3.1	K0	.202	.030	109	0.5	+27.3
γ Sgtr	Ja	-30 20	3.1	120	.202	.000	109	0.5	722.0
n Satr	18 11	-36 48	3.2	M4	.216	.030	109	0.6	+ 0.5
η Sgtr δ Sgtr	15	-30 48 $-29 52$	2.8	K4	.052	.033	99	0.0	-20.0
	16	-29 52 $-2 55$	3.4	G9	.898	.050	65	1.9	+8.9
η Serp	18	-255 -3426	2.0	A0	.139	.020	1	-1.5	+8.9 -10.8
€ Sgtr	1	1	1	K1	l	4	163	1	
λ Sgtr	22	-25 29	2.9	A1	.196	.036	91 23	0.7	-43.3
a Lyra	34	+38 41	0.1	ΛI	. 048	1.140	23	0.8	-13.8

Star	۸. 1900	Decl. 1900	ė.	ed.	Ann. Proper Motion	Parallax	Distance in Light Years	s. Mag.	f. Vel.
	R.A.	ĕ	Mag.	Туре	A o	ar	Distar Light	Abs.	Red.
	`	1 0 ,		1	"	"	 	-	km./sec.
φ Sgtr	h m 18 39	-27 6	3.3	В8	. 150	.015	217	-0.8	+21.5*
β Lyra	46	+33 15	3.4-4.1	B2p	.011	.006	543	$-0.3 \\ -2.7$	-19.0*
σ Sgtr	49	$-26 \ 25$	2.1	B3	.067	.021	155	-1.3	-10.7
γ Lyra	55	+32 33	3.3	B9p	.008	.016	204	-0.7	-21.5*
Sgtr	56	-30 1	2.7	A2	.019	.035	93	0.4	+22.1
τ Sgtr	19 1	-27 49	3.4	K0	.268	.036	91	1.2	+45.4*
ζ A qil	1	+13 43	3.0	A0	.103	.038	86	0.9	-25. *
π Sgtr	4	$ -21 \ 11$	3.0	F2	.041	.017	192	-0.8	-9.8
δ Drac	13	+67 29	3.2	G8	.135	.028	116	0.4	+24.8
δ Aqil	21	+ 255	3.4	A3	.267	0.052	63	2.0	-32.3*
$ \beta^{1} \operatorname{Cygn} \dots \beta^{n} $	27	$+27 \ 45$	3.2	K0	.010	.010	326	-1.8	-23.9*
γ Agil	42	+10 22	2.8	K3	.018	.018	181	-0.9	-2.0
δ Cygn	42	+44 53	3.0	A1	.067	.023	116	0.2	-20.
a Aqil	46	+ 8 36	0.9	A2	. 659	.184	18	2.2	-26.1
θ Agil	20 6	-17	3.4	A0	.035	.018	181	-0.3	-28.6*
$\parallel \beta$ Capr	15	-15 6	3.2	F8	.042	.022	148	-0.3	-19.0*
a Pavo	18	-57 3	2.1	B3	.087	.014	233	-2.2	+ 1.8*
γ Cygn	19	+39 56	2.3	F8	.006	.008	407	-3.2	- 7.6
α Indi	31	-47 38	3.2	G2	.072	.034	96	0.9	- 1.1
a Cygn	38	+44 55	1.3	A2p	.004	.002	1630	-7.2	- 6.3*
ε Cygn	42	+33 36	2.6	G7	.485	.040	81	0.6	-10.5*
		Í				ĺ			
ζ Cygn	1	$+29 \ 49$	3.4	G6	.061	.018	181	-0.3	+16.9*
a Ceph	16	+62 10	2.6	A2	.163	.076	43	2.0	- 8.
β Agar	26	- 6 1	3.1	G1	.020	.008	407	-2.4	+6.7
β Ceph	27	+70 7	3.3-3.4	B1	.013	.006	543	-2.8	-7.2
ε Pegs	39	+ 9 25	2.5	K2	.028	.014	233	-1.8	+ 5.2
δ Capr	42	-16 35	3.0	A3	.395	.062	53	2.0	- 6.4*
γ Grus	48	-37 50	3.2	В8	.114	.020	163	-0.3	- 2.1
α Agar	22 1	- 0 48	3.2	G0	.019	.006	543	-2.9	+ 7.6
a Grus	2	$-47 \ 27$	2.2	B5	.202	.036	91	0.0	+11.8
a Tucn	12	$-60 \ 45$	2.9	K5	.088	.019	172		+42.2*
β Grus	37	-47 24	2.2	M6	.131	.010	326	-2.8	+1.6
η Pegs	38	$+29 \ 42$	3.1	G1	.039	.016	204	- 1	+ 4.4*
a Psc. A	52	-30 9	1.3	A3	.367	.118	28	1.7	+6.5
β Pegs	59	+27 32	2.6	М3	.235	.020	163	-0.9	+ 8.6
a Pegs	59	+14 40	2.6	A0	.077	.033	99	0.2	- 4. *
γ Ceph	$23 \ 35$	+77 4	3.4	K1	.167	.062	53	2.4	-42.0

STAR CLUSTERS AND NEBULAE

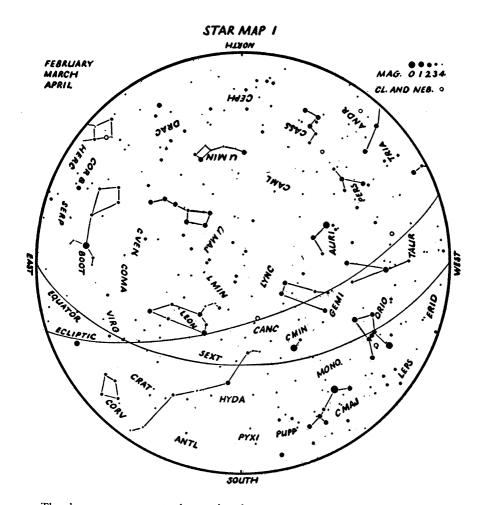
Prepared by J. F. HEARD

The amateur who possesses a telescope will find great interest in the observation and identification of star clusters and nebulae. Such objects, of course, have been extensively catalogued and classified. The most frequently quoted catalogue is Dreyer's New General Catalogue (N.G.C.) containing 7,840 objects, extended by the Index Catalogue (I.C.) containing 5,386 more. The most interesting catalogue historically, however, and one which is still quoted for reference to the more conspicuous objects is Messier's Catalogue (M) which contains 103 objects. It was drawn up in 1781 by Charles Messier for his own convenience in identifying comets.

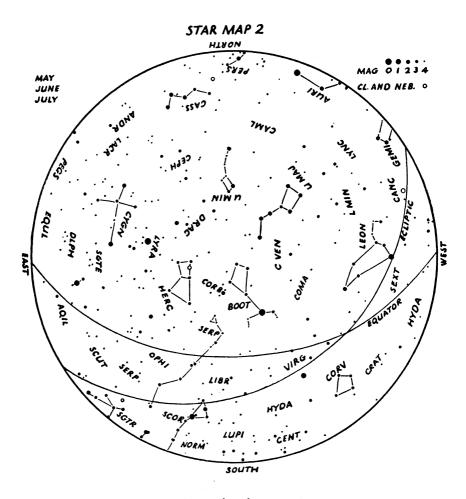
Messier's Catalogue as given below is adapted from a publication by Shapley and Davis (Pub. A.S.P., XXIX, 178, 1917). It includes the Messier number, the N.G.C. number, the 1900 position, the classification of the object and, under remarks, the name of the object (if any).

The classification is not that of Messier; it is the new classification based on modern knowledge of these objects. The clusters are classified as open clusters, which are loose irregular aggregates usually of a few scores of stars, or as globular clusters which are compact aggregates of probably hundreds of thousands of stars in spherical formation. The nebulae are classified as diffuse, planetary or spiral. The diffuse nebulae are great clouds of gas and "star-dust" rendered luminous by nearby stars and the planetaries are compact atmospheres of the same materials surrounding a single star. The spirals, on the other hand, are self-luminous and quite outside our stellar system and must be thought of as island universes or other galaxies like our own.

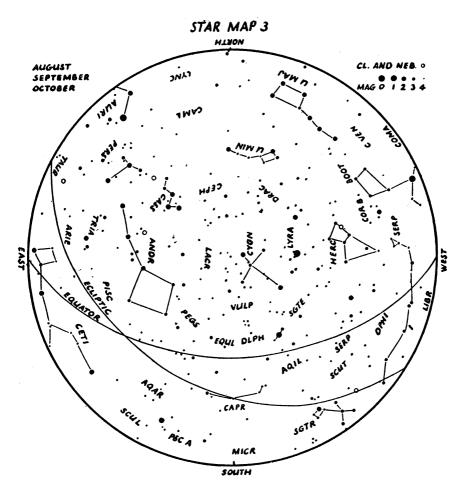
MESSIER'S CATALOGUE OF CLUSTERS AND NEBULAE

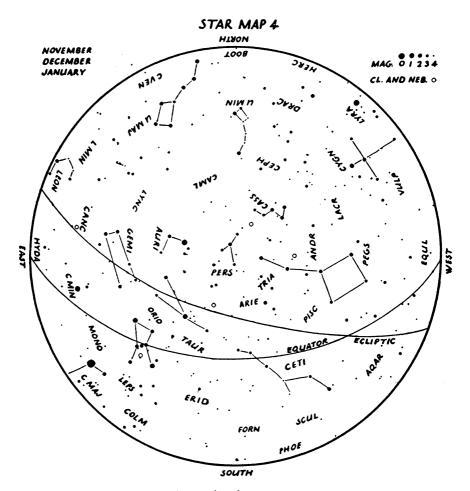

Messier	N.G.C.	R.A. (1900)	Dec. (1900)	Type of Object	Remarks
1	1952	h m 5 28.5	+21 57	Diffuse nebula	The Crab nebula in Taurus
2	7089	21 28.3	- 1 16	Globular cluster	
2 3 4 5	5272	13 37.6	+28 53	Globular cluster	
4	6121	16 17.5	-26 17	Globular cluster	
5	5904	15 13.5	+227	Globular cluster	
6	6405	17 33.5	$-32 \ 9$	Open cluster	
6 7 8	6475	17 47.3	-34 47	Open cluster	
8	6523	17 57.6	-24 23	Diffuse nebula	The Lagoon nebula -very large
9	6333	17 13.3	-18 25	Globular cluster	
10	6254	16 51.9	- 3 57	Globular cluster	
11	6705	18 45.7	- 6 23	Open cluster	
12	6218	16 42.0	- 1 46	Globular cluster	
13	6205	16 38.1	+36 39	Globular cluster	The Hercules cluster —best example

MESSIER'S CATALOGUE OF CLUSTERS AND NEBULAE-continued


	l Carr	R.A.	Dec.	1	
Messier	N.G.C.	(1900)	(1900)	Type of Object	Remarks
14 15 16 17	6402 7078 6611 6618	21 25.2 18 13.2	- 3 11 +11 44 -13 49 -16 13	Globular cluster Globular cluster Open cluster Diffuse nebula	The Horseshoe or Omega nebula—
18 19 20	6613 6273 6514	16 56.4	$\begin{array}{c c} -17 & 10 \\ -26 & 7 \\ -23 & 2 \end{array}$	Open cluster Globular cluster Diffuse nebula	bright The Trifid nebula—
21 22 23 24 25 26 27	6531 6656 6494 6603 I.C. 4725 6694 6853	18 30.3 17 51.0 18 12.6 18 25.8 18 39.8	$\begin{array}{cccc} -22 & 30 \\ -23 & 59 \\ -19 & 0 \\ -18 & 27 \\ -19 & 19 \\ -9 & 30 \\ +22 & 27 \end{array}$	Open cluster Globular cluster Open cluster Open cluster Open cluster Open cluster Planetary ne-	bright The Dumb-bell ne-
28 29 30 31	6626 6913 7099 224	20 20.3 21 34.7	$ \begin{array}{r} -24 & 55 \\ +38 & 12 \\ -23 & 38 \\ +40 & 43 \end{array} $	bula Globular cluster Open cluster Globular cluster Spiral nebula	bula The Andromeda ne- bula—largest
32	221	0 37.2	+40 19	Spiral nebula	spiral Very close to M31 much smaller
33 34 35 36 37 38 39	598 1039 2168 1960 2099 1912 7092	2 35.6 6 2.7 5 29.5 5 45.8 5 22.0	+30 9 +42 21 +24 21 +34 4 +32 31 +35 45 +48 0	Spiral nebula Open cluster Open cluster Open cluster Open cluster Open cluster Open cluster	muen smaner
40	••••	12 17.4	+58 40		Two faint stars mis- taken for a nebula by Messier
$\begin{array}{c} 41 \\ 42 \end{array}$	2287 1976		$ \begin{array}{rrr} -20 & 38 \\ - & 5 & 27 \end{array} $	Open cluster Diffuse nebula	The Orion nebula—very bright
43 44	$1982 \\ 2632$	$5\ 30.6\ 8\ 34.3$	$^{-520}_{+2020}$	Diffuse nebula Open cluster	Praesepe or the Bee-
45 46 47 48 49 50	2437 2478 2472 4472 2323 5194	$egin{array}{cccc} 8 & 9.0 \ 12 & 24.7 \ 6 & 58.2 \ \end{array}$	+23 48 -14 35 -15 9 -1 39 +8 33 -8 12 +47 43	Open cluster Open cluster Open cluster Open cluster Spiral nebula Open cluster Spiral nebula	hive cluster The Pleiades The Whirlpool ne-
52 53 54	7654 5024 6715	23 19.8 13 8.0 18 48.7	$^{+61}_{+18}$ $^{3}_{42}$ $^{-30}$ 36	Open cluster Globular cluster Globular cluster	bula

MESSIER'S CATALOGUE OF CLUSTERS AND NEBULAE-continued


Messier N.G.C. (1900) (1900) Type of Object Remarks	WIESSIE.	CIII	R.A.	Dec.	STERS TIVE I	EDOLITE Communes
19 33.7 -31 10 Globular cluster Globular cluster Globular cluster Form 19 12.7 +30 0 Globular cluster Globular cluster Form 12 32.7 +12 22 Spiral nebula Spiral nebula Spiral	Messier	N.G.C.	(1900)	(1900)	Type of Object	Remarks
56		6000			Clabular aluator	
1		6770		±30 0		
Lyra Lyra Lyra Spiral nebula Spiral				+30 0		The Ring nebula in
58 4579 12 32.7 +12 22 Spiral nebula 59 4621 12 37.0 +12 12 Spiral nebula 60 4649 12 38.6 +12 6 Spiral nebula 62 6266 16 54.8 -29 58 Globular cluster 63 5055 13 11.3 +42 34 Spiral nebula 64 4826 12 51.8 +22 13 Spiral nebula 65 3623 11 15.0 +13 32 Spiral nebula 66 3627 11 15.0 +13 32 Spiral nebula 67 2682 8 45.8 +12 11 Open cluster 68 6637 18 24.8 -32 23 Globular cluster 70 6681 3 36.0 -32 23 Globular cluster 71 6838 19 49.3 +18 31 Open cluster 72 6981 20 48.0 -12 55 Globular cluster 73 6684 20 0.2 -222 12 Globular cluster 76 650 <t< td=""><td>0.</td><td>0.20</td><td>10 10.0</td><td>102 01</td><td></td><td></td></t<>	0.	0.20	10 10.0	102 01		
59 4621 12 37.0 4649 12 38.6 +12 6 5piral nebula 5piral nebula Spiral nebula 61 4649 12 38.6 +12 6 5piral nebula 5piral nebula 5piral nebula 62 6266 16 54.8 -29 58 5055 31 1.3 +42 34 5piral nebula Spiral nebula 63 5055 31 1.3 +42 34 5piral nebula Spiral nebula 65 3623 11 13.7 +13 38 5piral nebula Spiral nebula 66 3627 11 15.0 +13 32 5piral nebula 67 2682 8 45.8 +12 11 5piral nebula 68 4590 12 34.2 -26 12 Globular cluster 69 6637 18 24.8 -32 25 Globular cluster 70 6681 18 36.7 -32 23 Globular cluster 71 6838 19 49.3 +18 31 Frican -12 55 Globular cluster 73 6994 20 53.5 -13 1 5piral nebula 75 6864 20 0.2 -22 12 2	58	4579	12 32.7	$+12\ 22$		2,
61			12 37.0			
61		4649	12 38.6	+12 6	Spiral nebula	
Solidar Soli				+52		
64 4826 12 51.8 +22 13 Spiral nebula 65 3623 11 13.7 +13 38 Spiral nebula 67 2682 8 45.8 +12 11 Open cluster 68 4590 12 34.2 -26 12 Globular cluster 69 6637 18 24.8 -32 25 Globular cluster 70 6681 18 36.7 -32 23 Globular cluster 71 6838 19 49.3 +18 31 Open cluster 72 6981 20 48.0 -12 55 Globular cluster 73 6994 20 53.5 -13 1 Open cluster 74 628 1 31.3 +15 16 Spiral nebula 75 6864 20 0.2 -22 12 Globular cluster 76 650 1 36.0 +51 4 Diffuse nebula 77 1068 2 37.6 - 0 26 Spiral nebula 78 2068 5 41.6 + 0 1 Globular cluster 80 6093 16						
65 3623 11 13.7 +13 38 Spiral nebula 67 2682 8 45.8 +12 11 Open cluster 68 4590 12 34.2 -26 12 Globular cluster Globular cluster Globular cluster Globular cluster Globular cluster Open cluster O						
66				$+22\ 13$		
67						
68 4590 12 34.2 -26 12 Globular cluster Globular cluster Globular cluster Globular cluster 70 6681 18 36.7 -32 23 Globular cluster Globular cluster Open cluster 71 6838 19 49.3 +18 31 Open cluster Globular cluster Open cluster 72 6981 20 48.0 -12 55 Globular cluster Open cluster 73 6994 20 53.5 -13 1 Open cluster Globular cluster Open cluster Planetary nebula 75 6864 20 0.2 -22 12 Globular cluster Planetary nebula 76 650 1 36.0 +51 4 Spiral nebula 78 2068 5 41.6 + 0 1 Diffuse nebula 79 1904 5 20.1 -24 37 Globular cluster Globular cluster 80 6093 16 11.1 -22 44 Globular cluster Spiral nebula 81 3031 9 47.5 +70 10 Spiral nebula 82 3361 331.4 -29 21 Spiral nebula 85 4382 12 20.4 +18 45 Spiral nebula </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
69		2082	8 40.8	76 12		
To 6681 18 36.7 -32 23 Globular cluster Open cluster Open cluster Open cluster Globular cluster Open c		6627	12 34.2			-
71 6838 19 49.3 +18 31 Open cluster 72 6981 20 48.0 -12 55 Globular cluster 73 6994 20 53.5 -13 1 Spiral nebula 74 628 1 31.3 +15 16 Spiral nebula 75 6864 20 0.2 -22 12 Globular cluster 76 650 1 36.0 +51 4 Bula 77 1068 2 37.6 - 0 26 Spiral nebula 78 2068 5 41.6 + 0 1 Spiral nebula 79 1904 5 20.1 -24 37 Globular cluster 80 6093 16 11.1 -22 44 Globular cluster 81 3031 9 47.3 +69 32 Spiral nebula 82 3034 9 47.5 +70 10 Spiral nebula 83 5236 13 31.4 -29 21 Spiral nebula 84 4374 12 20.0 +13 26 Spiral nebula 85 4382 12 20.4 +18 45 Spiral nebula 86 4406 12 21.1 +13 30 Spiral nebula 87 4486 12 25.8 +12 57 Spiral nebula 88 4501 12 26.9 +14 58 Spiral nebula 89 4552 12 30.6 +13 6 Spiral nebula 89 4552 12 30.6 +13 6 Spiral nebula 89 4552 12 30.6 +13 6 Spiral nebula 90 4569 12 31.8 +13 43 Spiral nebula 91 12 36.0 +13 50 92 6341 17 14.1 +43 15 Open cluster 92 6341 17 14.1 +43 15 Open cluster 93 2447 7 40.5 -23 38 Spiral nebula 94 4736 12 46.2 +41 40 Spiral nebula 95 3351 10 38.7 +12 14 Spiral nebula 96 3368 10 41.5 +12 21 Spiral nebula 97 3587 11 9.0 +55 34 Planetary nebula 98 4192 12 8.7 +15 27 Spiral nebula 99 4254 12 13.8 +14 58 Spiral nebula 99 4254 12 13.8 +14 58 Spiral nebula 99 4254 12 13.8 +14 58 Spiral nebula 99 4254 12 13.8 +14 58 Spiral nebula 99 4254 12 13.8 +14 58 Spiral nebula 99 4254 12 13.8 +14 58 Spiral nebula 99 59 3587 13 59.6 +54 50 Spiral nebula 99 59 3587 13 59.6 +54 50 Spiral nebula 99 59 3587 13 59.6 +54 50 Spiral nebula 90 59 3587 13 59.6 +54 50 Spiral nebula 91 58667 15 3.8 +56 9 Spiral nebula						
72 6981 20 48.0 -12 55 Globular cluster Open cluster Open cluster Open cluster Open cluster Open cluster Spiral nebula Globular cluster Spiral nebula Globular cluster Spiral nebula Spi				+18 31		
1			1	-12 55		
74 628 1 31.3 +15 16 Spiral nebula Globular cluster Planetary nebula 76 650 1 36.0 +51 4 Globular cluster Planetary nebula 77 1068 2 37.6 - 0 26 Spiral nebula Diffuse nebula 78 2068 5 41.6 + 0 1 Diffuse nebula Diffuse nebula 80 6093 16 11.1 -22 44 Globular cluster Globular cluster Spiral nebula 81 3031 9 47.3 +69 32 Spiral nebula 82 3034 9 47.5 +70 10 Spiral nebula 83 5236 13 31.4 -29 21 Spiral nebula 84 4374 12 20.0 +13 26 Spiral nebula 85 4382 12 20.4 +18 45 Spiral nebula 86 4466 12 21.1 +13 30 Spiral nebula 87 4486 12 25.8 +12 57 Spiral nebula 89 4552 12 30.6 +13 50 92 6341 17 14.1 +43 15 Spiral nebula						
75 6864 20 0.2 -22 12 Globular cluster Planetary nebula 76 650 1 36.0 +51 4 Planetary nebula 77 1068 2 37.6 - 0 26 bula 78 2068 5 41.6 + 0 1 Diffuse nebula 79 1904 5 20.1 -24 37 Globular cluster 80 6093 16 11.1 -22 44 Globular cluster 81 3031 9 47.5 +70 10 Spiral nebula 82 3034 9 47.5 +70 10 Spiral nebula 83 5236 13 31.4 -29 21 Spiral nebula 84 4374 12 20.0 +13 26 Spiral nebula 85 4382 12 20.4 +18 45 Spiral nebula 87 4486 12 25.8 +12						
76 650 1 36.0 +51 4 Planetary nebula 77 1068 2 37.6 - 0 26 Spiral nebula 78 2068 5 41.6 + 0 1 Diffuse nebula 79 1904 5 20.1 -24 37 Globular cluster 80 6093 16 11.1 -22 44 Globular cluster 81 3031 9 47.5 +70 10 Spiral nebula 82 3034 9 47.5 +70 10 Spiral nebula 83 5236 13 31.4 -29 21 Spiral nebula 84 4374 12 20.0 +13 26 Spiral nebula 85 4382 12 20.4 +18 45 Spiral nebula 86 4406 12 21.1 +13 30 Spiral nebula 87 4486 12 25.8 +12 57 Spiral nebula 89 4552 12 30.6 +13 50 90 4569 12 31.8 +13 50 91 12 36.0 +13 50 9				$-22 \ 12$		
77 1068 2 37.6 - 0 26 Spiral nebula 78 2068 5 41.6 + 0 1 Diffuse nebula 79 1904 5 20.1 -24 37 Globular cluster 80 6093 16 11.1 -22 44 Globular cluster 81 3031 9 47.3 +69 32 Spiral nebula 82 3034 9 47.5 +70 10 Spiral nebula 83 5236 13 31.4 -29 21 Spiral nebula 84 4374 12 20.0 +13 26 Spiral nebula 85 4382 12 20.4 +18 45 Spiral nebula 86 4406 12 21.1 +13 30 Spiral nebula 87 4486 12 25.8 +12 57 Spiral nebula 89 4551 12 30.6 +13 6 Spiral nebula 90 4569 12 31.8 +13 50 Open cluster 93 2447 7 40.5 -23 38 Open cluster 94 4736 12 46.2 <td></td> <td>650</td> <td>1 36.0</td> <td>+51 4</td> <td>Planetary ne-</td> <td></td>		650	1 36.0	+51 4	Planetary ne-	
78 2068 5 41.6 + 0 1 Diffuse nebula Globular cluster Globular cluster Globular cluster Globular cluster Spiral nebula 80 6093 16 11.1 -22 44 Globular cluster Globular cluster Spiral nebula 81 3031 9 47.3 +69 32 Spiral nebula 82 3034 9 47.5 +70 10 Spiral nebula 83 5236 13 31.4 -29 21 Spiral nebula 84 4374 12 20.0 +13 26 Spiral nebula 85 4382 12 20.4 +18 45 Spiral nebula 86 4406 12 21.1 +13 30 Spiral nebula 87 4486 12 25.8 +12 57 Spiral nebula 89 4552 12 30.6 +13 6 Spiral nebula 89 4552 12 31.8 +13 43 Spiral nebula 91 12 36.0 +13 50 Not confirmed—probably comet 92 6341 77 14.1 +43 15 Spiral nebula Spiral nebula						
79 1904 5 20.1 -24 37 Globular cluster Globular cluster Globular cluster Globular cluster Spiral nebula 81 3031 9 47.3 +69 32 Spiral nebula Spiral nebula Spiral nebula						
80 6093 16 11.1 -22 44 Globular cluster Spiral nebula 81 3031 9 47.5 +69 32 Spiral nebula 82 3034 9 47.5 +70 10 Spiral nebula 83 5236 13 31.4 -29 21 Spiral nebula 84 4374 12 20.0 +13 26 Spiral nebula 85 4382 12 20.4 +18 45 Spiral nebula 86 4406 12 21.1 +13 30 Spiral nebula 87 4486 12 25.8 +12 57 Spiral nebula 89 4552 12 30.6 +13 6 Spiral nebula 90 4569 12 31.8 +13 43 Spiral nebula 91 12 36.0 +13 50 Spiral nebula 92 6341 17 14.1 +				$ + 0 _{0}$		
Si						
82 3034 9 47.5 +70 10 Spiral nebula 83 5236 13 31.4 -29 21 Spiral nebula 84 4374 12 20.0 +13 26 Spiral nebula 85 4382 12 20.4 +18 45 Spiral nebula 86 4406 12 21.1 +13 30 Spiral nebula 87 4486 12 25.8 +12 57 Spiral nebula 89 4552 12 30.6 +13 6 Spiral nebula 89 4552 12 30.6 +13 6 Spiral nebula 90 4569 12 31.8 +13 43 Spiral nebula 91 12 36.0 +13 50 92 6341 17 14.1 +43 15 Open cluster 93 2447 7 40.5 -23 38 Open cluster 94 4736 12 46.2 +41 40 Spiral nebula 95 3351 10 38.7 +12 14 Spiral nebula 97 3587 11 9.0 +55 34 Planetary nebula 98 4192 12 8.7 +15 27 Sp			16 11.1			
Signature Spiral nebula						
84 4374 12 20.0 +13 26 Spiral nebula 85 4382 12 20.4 +18 45 Spiral nebula 86 4406 12 21.1 +13 30 Spiral nebula 87 4486 12 25.8 +12 57 Spiral nebula 88 4501 12 26.9 +14 58 Spiral nebula 89 4552 12 30.6 +13 6 Spiral nebula 90 4569 12 31.8 +13 43 Spiral nebula 91 12 36.0 +13 50 Not confirmed—probably comet 92 6341 17 14.1 +43 15 Globular cluster Open cluster Open cluster Spiral nebula 93 2447 7 40.5 -23 38 Open cluster Spiral nebula Spiral nebula 95 3351 10 38.7 +12 21 Spiral nebula Spiral nebula 96 3368 10 41.5 +12 21 Spiral nebula 97 3587 11 9.0 +55 34 Planetary nebula 99 4254 12 13.8 +14 58 Spiral nebula						
12 12 20.4 +18 45 Spiral nebula						
86 4406 12 21.1 +13 30 Spiral nebula Spiral nebula Spiral nebula Spiral nebula 88 4501 12 26.9 +14 58 Spiral nebula Spiral nebula 89 4552 12 30.6 +13 6 Spiral nebula Spiral nebula Spiral nebula Not confirmed—probably comet 90 4569 12 31.8 +13 43 Spiral nebula Not confirmed—probably comet 91 12 36.0 +13 50 Not confirmed—probably comet 92 6341 17 14.1 +43 15 Open cluster Open cluster Open cluster Spiral nebula Spiral nebula Spiral nebula Spiral nebula Spiral nebula The Owl nebula 95 3351 10 38.7 +12 21 Spiral nebula Spiral nebula Spiral nebula Spiral nebula The Owl nebula 97 3587 11 9.0 +55 34 Planetary nebula Spiral nebula Spiral nebula Spiral nebula			1			
87 4486 12 25.8 +12 57 Spiral nebula						
Not confirmed—probably comet Spiral nebula				+1257		
89 4552 12 30.6 +13 6 Spiral nebula Spiral nebula Not confirmed—probably comet 91 12 36.0 +13 50 Not confirmed—probably comet 92 6341 17 14.1 +43 15 Globular cluster Open cluster Open cluster 93 2447 7 40.5 -23 38 Open cluster Open cluster 94 4736 12 46.2 +41 40 Spiral nebula Spiral nebula 95 3351 10 38.7 +12 21 Spiral nebula Spiral nebula 96 3368 10 41.5 +12 21 Spiral nebula The Owl nebula 97 3587 11 9.0 +55 34 Planetary nebula Dula 98 4192 12 8.7 +15 27 Spiral nebula Spiral nebula 100 4321 12 17.9 +16 23 Spiral nebula 101 5457 13 59.6 +54 50 Spiral nebula 102 5866? 15 3.8 +56 9 Spiral nebula			12 26.9	+14 58		
91 12 36.0 +13 50				+13 6	Spiral nebula	
92 6341 17 14.1 +43 15 Globular cluster Open cluster Open cluster Open cluster Spiral nebula Spiral nebula Spiral nebula Spiral nebula Spiral nebula Spiral nebula Planetary nebula Spiral nebula Spiral nebula Spiral nebula Spiral nebula Planetary nebula Spiral nebula S	90	4569			Spiral nebula	
92 6341 17 14.1 +43 15 Globular cluster Open cluster	91		12 36.0	+13 50		
93	00	2011	17 14 1	1 49 15	Clatantan almatan	
94						
95 3351 10 38.7 +12 14 Spiral nebula Spiral nebula Spiral nebula Spiral nebula Spiral nebula The Owl nebula Planetary nebula Spiral				141 40		
96				1 11 14		
97 3587 11 9.0 +55 34 Planetary nebula The Owl nebula 98 4192 12 8.7 +15 27 Spiral nebula Spiral nebula 100 4321 12 17.9 +16 23 Spiral nebula 101 5457 13 59.6 +54 50 Spiral nebula 102 5866? 15 3.8 +56 9 Spiral nebula 104 105 15 15 15 15 15 15 1				T12 14		
98						The Owl nebula
98 4192 12 8.7 +15 27 Spiral nebula 99 4254 12 13.8 +14 58 Spiral nebula 100 4321 12 17.9 +16 23 Spiral nebula 101 5457 13 59.6 +54 50 Spiral nebula 102 5866? 15 3.8 +56 9 Spiral nebula	01	0001	11 0.0	100 01		1 110 OWI HODUIA
99 4254 12 13.8 +14 58 Spiral nebula 100 4321 12 17.9 +16 23 Spiral nebula 101 5457 13 59.6 +54 50 Spiral nebula 102 5866 15 3.8 +56 9 Spiral nebula	98	4192	12 8.7	+15 27	Spiral nebula	
100 4321 12 17.9 +16 23 Spiral nebula 101 5457 13 59.6 +54 50 Spiral nebula 102 5866? 15 3.8 +56 9 Spiral nebula		4254	12 13.8	+14 58		
102 5866? 15 3.8 +56 9 Spiral nebula					Spiral nebula	
103 581 1 26.6 +60 11 Open cluster						
	103	581	1 26.6	+60 11	Upen cluster	


Mi	idnig	ht	٠.		 	 .Feb.	6
11	p.m.				 	 . "	21
10	"					 . Mar.	7
9	"					 . "	22
8	"					 .Apr.	6
7	"					, û	

Mi	dnig	ht	 			 May	8
11	p.m.					 . "	24
10	• "		 			 June	7
	"		 			 "	22
8	"					July	

Mi	idnigi	ht.	 <i>.</i>	 Aug.	5
11	p.m.		 .	 "	21
			 	 Sept.	7
9	**		 	 "	23
8	- 66		 	 Oct.	10
7	**		 	 "	26
6	**		 	 Nov.	6
5	"		 	 "	21

Mic	lnig	ht.	 	 	Nov.	6
11 1	o.m		 	 	. "	21
10	44		 	 	Dec.	6
9	44		 	 	. "	21
8	"		 	 	Jan.	5
7	"		 	 	"	2 0
6	"				Feb.	6

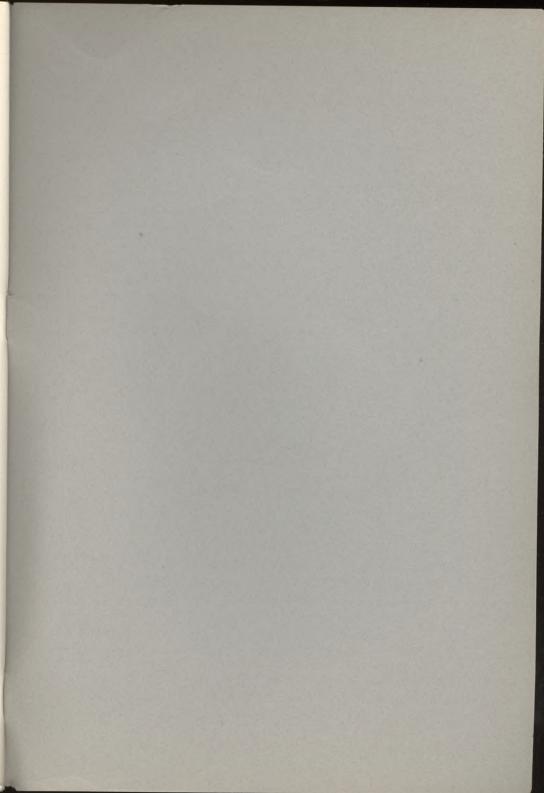
CHIEF STARS USED IN AERIAL NAVIGATION

No	. Name	Pronunciation	Constellation Name	Mag.	R.	A.	1900	Dec	÷.,
1	Achernar	ā'ker-när	a Eridani	0.6	01	34	S	57	44
2	Acrux	ă'krŭks	a Crucis	1.1	12	21	S	62	33
3	Aldebaran	ăl-dĕb'ä-răn	a Tauri	1.1	04	30	N	16	18
4	Alpheratz	ăl-fē'răts	a Andromedae	2.2	00	03	N	28	32
5	Altai r	ăl-tä'ĭ r	a Aquilae	0.9	19	46	N	08	36
6	Antares	ăn-ta'r ēz	a Scorpii	1.2	16	23	S	26	12
7	Arcturus	ärk-tŭ'rŭs	a Bootis	0.2	14	11	N	19	42
8	Betelgeuse	bĕt-ël-gûz'	a Orionis	0.8*	05	50	N	07	23
9	Canopus	ka-nō'-pûs	a Argus	-0.9	06	22	S	52	
10	Capella	kä-pĕl'ä	a Aurigae	0.2	05	09	N	45	54
11	Deneb	dĕn'ĕb	a Cygni	1.3	20	38	N	44	55
12	Dubhe	dōōb'hĕ	a Ursae Majoris	2.0	10	58	N	62	17
13	Fomalhaut	fō'măl-hôt	a Piscis Australis	1.3	23	52	S	30	09
14	Peacock	pē'kŏk	a Pavonis	2.1	20	18	S	57	03
15	Pollux	pŏľ ŭ ks	β Gemini	1.2	07	39	N	28	16
	Procyon	prō'sĭ-ŏn	a Canis Minoris	0.5	07	34	N	05	2 9
	Regulus	rĕg'ū-lūs	a Leonis	1.3		03	N	12	
	Rigel	rī'gĕl, rī'jĕl	$oldsymbol{eta}$ Orionis	0.3	05	10	S	08	19
19	Rigil Kent.	r. kĕn-tô'rŭs	a Centauri	0.1	14	33	S	60	25
20	Sirius	sĭr'ĭ- ŭ s	a Canis Majoris	-1.6	06	41	S	16	35
21	Spica	spī'kä	a Virginis	1.2		20	S	10	38
22	Vega	vē'gä	α Lyrae ·	0.1	18	34	N	38	41
47	Polaris	pō-lā'rĭs	α Ursae Minoris	2.3	01	23	N	88	46

^{*}No. 8. Magnitude varies from 0.5 to 1.1

PRONUNCIATION KEY

ā	as in	fate fat	ē	as	in	we	ī	as	in	ice	ō	as	in	go	ũ	as	in	unite
ă	"	fat	ĕ	"		met	Ĭ	"	ī	ill	ŏ	"		odd	ŭ	"		up
ä	"	arm	ë	"		water		•••••	••••		ô	. "		orb	û	"		urn
•••	••••••			••••				••••			ōō	5 "		food				•••••


Temperature and Precipitation at Canadian and United States Stations Prepared by Andrew Thomson.

			Me	an I	empe	erat	ure,	Fahre	enhe	it.				vera Innu	
Station.	Jan.	Feb.	Ma.	Ap.	May	Ju.	Jul.	Aug.	Sep	Oc.	No.	De.		H	ı. —
Victoria, B.C Vancouver, B.C Edmonton, Alta	39 36 6	40 39 12	44 43 22	49 48 40	53 53 51	57 60 57	$60 \\ 63 \\ 62$	60 63 59	56 57 50	51 50 41	45 43 26	41 38 14	49 50 37	86 86 89	19 13 41
Calgary, Alta Regina, Sask Winnipeg, Man	$^{11}_{-4}_{-3}$	$\begin{array}{c} 14 \\ -2 \\ 2 \end{array}$	25 14 16	40 37 38	49 50 52	$\frac{56}{59}$	$61 \\ 64 \\ 62$	59 61 64	50 51 54	$\frac{42}{39}$	$\frac{26}{21}$	20 8 6	38 33 35	94	-34 -40 -38
Toronto, Ont Ottawa, Ont Montreal, Que	23 12 14	$\frac{22}{13}$ $\frac{15}{15}$	30 25 26	42 42 41	53 55 55	$\begin{array}{c} 63 \\ 65 \\ 65 \end{array}$	69 69 70	67 66 67	60 59 59	48 46 47	37 33 33	27 17 20	45 42 43	93	12 24 18
Halifax, N.S Churchill, Man Aklavik, N.W.T	-19	23 -17 -16 -	$^{30}_{-6}$	$^{39}_{15}_{8}$	$\frac{49}{29}$	58 42 49	65 53 56	$\frac{64}{52} \\ 50$	58 41 38	49 26 19	$^{39}_{7}$	-10	44 18 16	81	-46 -46
St. John's, Nfld New York, N.Y Washington, D.C	23 31 33	22 31 35	28 37 42	35 49 53	43 60 64	$\frac{51}{68}$	59 73 76	60 73 75	54 56 68	45 56 57	37 44 45	29 35 36	41 52 55	83 95 98	-6 2
Chicago, Ill Denver, Colo San Francisco	25 29 50	28 32 51	36 39 53	48 47 54	59 57 56	68 67 57	74 72 57	73 71 58	66 63 60	55 51 59	41 39 55	30 32 51	50 50 55	97	-10 -13 37

 $M,\,H$ and L are the mean and the averages of the highest and of the lowest temperatures each year at the station, over the total time since the station was installed.

	Me	an P	recip	itati	on.	(Un	it =	ne te	nth	of ar	ı inc	h)		Yea	r.
Station	Jan.	Feb.	Ma.	Ap.	May	Ju.	Jul.	Aug.	Sep.	Oc.	No.	De.	М	w	D
Victoria, B.C Vancouver, B.C Edmonton, Alta	45 88 9	30 57 7	23 52 7	12 32 9	10 28 17	9 23 31	4 13 33	6 16 24	15 38 13	28 58 7	43 85 7	86		510 676 278	173 378 82
Calgary, Alta Regina, Sask Winnipeg, Man	5 4 9	6 3 8	7 5 11	7 7 13	$\frac{24}{20} \\ 22$	$\frac{32}{32}$	$\frac{26}{25}$	27 19 23	13 12 23	6 7 15	$\begin{array}{c} 7 \\ 5 \\ 11 \end{array}$	4			79 101 102
Toronto, Ont	28 30 37	$\begin{array}{c} 25 \\ 25 \\ 32 \end{array}$	25 26 35	$\begin{array}{c} 25 \\ 22 \\ 25 \end{array}$	29 28 30	$\frac{27}{32} \\ 35$	30 33 37	29 30 35	30 27 35	24 28 33	28 25 35	29	335	436 444 530	232
Halifax, N.S	56 6 7	45 10 8	50 11 6	45 10 7	42 10 8	$^{37}_{20}_{7}$	39 18 16	45 25 14	36 26 10	53 13 8	54 12 10	9	168	678 150	
St. John's, Nfld New York, N.Y Washington, D.C	54 36 35	51 41 35	45 35 37	42 33 33	36 32 36	$\frac{36}{34}$ 42	37 42 46	36 43 39	38 34 33	54 35 28	$\frac{61}{30}$ 24	35	430	691 587 614	331
Chicago, Ill Denver, Colo San Francisco	19 4 44	$^{23}_{\ 6}_{42}$	26 10 31	28 21 17	35 22 8	$\frac{34}{14} \\ 2$		$\frac{32}{14} \\ 0$	32 10 4	25 11 11	$\begin{array}{c} 24 \\ 6 \\ 24 \end{array}$	7	141	461 228 390	

 $M,\,W$ and D indicate the mean, the greatest and the least total precipitation in one year from Jan. 1 to Dec. 31 recorded at a station, records being available for varying periods from 30 to 50 years.

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

The year 1940 marked the completion of the first fifty years of the corporate existence of our Society. The Society was incorporated in 1890 under the name of The Astronomical and Physical Society of Toronto, and assumed its present name in 1903.

For many years the Toronto organization existed alone, but now the Society is national in extent, having active Centres in Montreal, P.Q.; Ottawa, Toronto, Hamilton and London, Ont.; Winnipeg, Man.; Edmonton, Alta.; Vancouver and Victoria, B.C. As well as about 700 members of these Canadian Centres, there are over 200 members not attached to any Centre, mostly resident in other nations, while some 300 additional institutions or persons are on the regular mailing list for our publications.

The Society publishes a monthly Journal containing about 500 pages and a yearly Observer's Handbook of 80 pages. Single copies of the Journal or Handbook are 25 cents, postpaid. In quantities of 10 or more copies, the price is 20 cents a copy.

Membership is open to anyone interested in astronomy. Annual dues, \$2.00; life membership, \$25.00. Publications are sent free to all members or may be subscribed for separately. Applications for membership or publications may be made to the General Secretary, 198 College St., Toronto.

The Society has for Sale:

Reprinted from the Journal of the Royal Astronomical Society, 1936-1939.

The Physical State of the Upper Atmosphere, by B. Haurwitz, 96 pages; Price 50 cents postpaid.

The Small Observatory and its Design, by H. Boyd Brydon, 48 pages; Price 25 cents postpaid.

General Instruction for Meteor Observing (Revised 1940), by Peter M. Millman, 18 pages; Price 15 cents postpaid.

Two Inexpensive Drives for Small Telescopes, by H. Boyd Brydon, 12 pages; Price 10 cents postpaid.

A. H. Young's Simple Mounting for the 6-inch Reflector, by H. Boyd Brydon, 16 pages; Price 10 cents postpaid.

The Anniversary Number of the Journal, containing articles on the history of the Society (Fiftieth Anniversary), and on the founding of the Toronto Magnetic Observatory and the Canadian Meteorological Service (Hundredth Anniversary); 80 pages; price 25 cents.

Send Money Order to 198 College St., Toronto.